
A Probabilistic Doxastic Temporal Logic for Reasoning aboutBeliefs in
Multi-agent Systems

Karsten Martiny1 and Ralf Möller2
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Abstract: We presentProbabilistic Doxastic Temporal (PDT)Logic, a formalism to represent and reason about proba-
bilistic beliefs and their evolution in multi-agent systems. It can quantify beliefs through probability intervals
and incorporates the concepts of frequency functions and epistemic actions. We provide an appropriate se-
mantics for PDT and show how agents can update their beliefs with respect to their observations.

1 INTRODUCTION

When logically analyzing knowledge and belief in re-
alistic scenarios, an agent usually has only incomplete
and inaccurate information about the actual state of
the world, and thus considers several worlds as being
possible. As it receives new information, it has to up-
date its beliefs about possible worlds. These updates
can for example result in regarding some worlds as
impossible or judging some worlds to be more likely
than before. Thus, in addition to analyzing the set of
worlds an agent believes to be possible, it is also use-
ful to quantify these beliefs in terms of probabilities.
This provides means to specify fine-grained distinc-
tions within the range of worlds that an agent consid-
ers possible.

When multiple agents are involved in such a set-
ting, an agent may not only have varying beliefs re-
garding the facts of the actual world, but also regard-
ing the beliefs of other agents. In many scenarios, the
actions of one agent will not only depend on its belief
of ontic facts (i.e., facts of the actual world), but also
on its beliefs in some other agent’s beliefs.

To formalize reasoning about such beliefs in
multi-agent settings, we presentProbabilistic Dox-
astic Temporal (PDT) Logic. PDT Logic builds
upon recent work on Annotated Probabilistic Tem-
poral (APT) Logic and provides a formalism which
enables the representation of and reasoning about dy-
namically changing quantified temporal multi-agent
beliefs through probability intervals. In this formal-
ism, analyses are intended to be carried out offline by
an external observer. In contrast to related work, PDT

Logic employs an explicit notion of time and thereby
facilitates the expression of richer temporal relations.

The remainder of this work is structured as fol-
lows: The next section presents related work about
knowledge in multi-agent systems and APT Logic.
Then, in Section 3, the syntax of PDT Logic is in-
troduced, followed by the definition of formal seman-
tics in Section 4. The evolution of multi-agent beliefs
over time is analyzed in Section 5. Finally, the paper
concludes with Section 6.

2 RELATED WORK

Approaches to formalize reasoning about knowledge
and belief date back to Hintikka’s work on epistemic
logic (Hintikka, 1962). Classical forms of epistemic
logic do not allow for a quantification of an agent’s
degree of belief in certain facts; it can only be spec-
ified whether an agent does or does not know (resp.
believe) some fact. To remove this limitation, sev-
eral approaches have been proposed to combine log-
ics of knowledge and belief with probabilistic quan-
tifications. For instance, (Fagin and Halpern, 1994)
and (van der Hoeck, 1997) define a belief operator
to quantify lower bounds on the probabilities that an
agent assigns to a formula.

To reason about dynamically changing beliefs, ex-
tensions to epistemic logics have been proposed, e.g.,
(Scherl and Levesque, 2003). In these works only
the single-agent case is considered, and therefore they
do not provide for representations of nested beliefs.
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Multi-agent extensions to these approaches can be
found for example in (van Ditmarsch et al., 2007). A
common limitation of these works is that they are only
able to reason about step-by-step changes and there-
fore explicit reasoning about time is difficult in these
frameworks. (Renne et al., 2009) alleviates these lim-
itations by combining Dynamic Epistemic Logic (van
Ditmarsch et al., 2007) with temporal modalities.

(Shakarian et al., 2011) introduce APT Logic, a
framework to represent probabilistic temporal evolu-
tions of worlds in threads. APT Logic assigns prior
probabilities to every thread and uses these probabil-
ities to determine probabilities of events occurring in
specific threads. To represent temporal relationships
between events, APT Logic introduces the concept
of frequency functions. We utilize the approach of
APT Logic to create a doxastic multi-agent frame-
work that can explicitly reason about temporal re-
lationships through the adoption of frequency func-
tions.

3 PDT LOGIC PROGRAMS:
SYNTAX

In this section, we start with defining the syntax of
PDT Logic programs, and then give a definition of
the formal semantics in the next section.

We assume the existence of a function-free first
order logic language with finite sets of constant sym-
bolsLconsand predicate symbolsLpred, and an infinite
set of variable symbolsLvar. Every predicate symbol
p∈ Lpred has anarity. A term is any member of the
setLcons∪Lvar. A term is called aground termif it
is a member ofLcons. If t1, .., tk are (ground) terms,
andp is a predicate symbol inLpred with arity n, then
p(t1, ..., tk) with k∈ {0, ...,n} is a (ground) atom. Ifa
is a (ground) atom, thena and¬a are (ground)liter-
als. The set of all ground literals is denoted byLlit .
As usual,B denotes the Herbrand Base ofL.

Time is modeled in discrete steps and we assume
that all agents reason about an arbitrarily large, but
fixed size window of time. The set of time points is
given byτ= {1, ..., tmax}. The set of agents is denoted
by A . The number of agents (|A |) is denoted byn. To
describe what agents observe, we define observation
atoms as follows:

Definition 1 (Observation Atoms). For any group of
agentsG ⊆ A and ground literall ∈ Llit , ObsG(l) is
anobservation atom. The set of all observation atoms
is denoted byLobs.

Intuitively, the meaning of a statement of the form
ObsG (l) is that all agents in the groupG observe that

the factl holds. We assume that the agents inG not
only observe thatl holds, but that each agent inG is
also aware that all other agents inG make the same
observation.

Definition 2 (Formulae). Atoms and observation
atoms are formulae. IfF andG are formulae, then
so areF ∧G, F ∨G, and¬F . A formula is ground if
all atoms of the formula are ground.

To describe observations at a specific time, we fur-
thermore definetime-stamped observation atoms:

Definition 3 (Time-stamped Observation Atoms). If
ObsG (l) ∈ Lobs is an observation atom, andt ∈ τ is a
time point, then[ObsG (l) : t] is a time-stamped obser-
vation atom.

To express temporal relationships, we define tem-
poral rules following the approach of APT rules from
(Shakarian et al., 2011).

Definition 4 (Temporal Rules). Let F,G be formulae,
∆t a time interval, andfr a name for a so-called fre-
quency function (as defined below in Definition 11).
Thenr fr∆t(F,G) is called a temporal rule.

The meaning of such an expression is “F is fol-
lowed byG in ∆t time units w.r.t.fr”.

Now, we can define the belief operatorBℓ,u
i,t′ to ex-

press agents’ beliefs. Intuitively,Bℓ,u
i,t′ (·) means that at

timet ′, agenti believes that some fact (·) is true with a
probability p∈ [ℓ,u]. We call the probability interval
[ℓ,u] thequantificationof agenti’s belief. We useFt
to denote that formulaF holds at timet.

Definition 5 (Belief Formulae). Let i be an agent,t ′

a time point, and[ℓ,u]⊆ [0,1]. Then,belief formulae
are inductively defined as follows:

1. If F is a formula andt is a time point, thenBℓ,u
i,t′ (Ft)

is a belief formula.
2. If r fr∆t(F,G) is a temporal rule, thenBℓ,u

i,t′ (r
fr

∆t(F,G))

is a belief formula.
3. If F and G are belief formulae, then so are

Bℓ,u
i,t′ (F), F ∧G, F ∨G, and¬F .

4 SEMANTICS

In this section, we will provide a formal semantics
that captures the intuitions explained above. We start
with the introduction of an example, which we will re-
turn to repeatedly when introducing the various con-
cepts of the semantics.

Example 1(Trains). Let Alice and Bob be two agents
living in two different cities CA and CB, respectively.
Suppose that Alice wants to take a train to visit Bob
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and has to change trains at a third city CC. We as-
sume that train T1 connects CA and CC, and train T2
connects CC and CB. Both trains usually require 2
time units for their trip, but they might be running late
and arrive one time unit later than scheduled. Alice
requires one time unit to change trains at city CC. If
T1 runs on time, she has a direct connection to T2,
otherwise she has to wait for two time units until the
next train T2 leaves at city CC. If a train is running
late, she can call Bob to let him know. These calls
can be modeled as shared observations between Al-
ice and Bob. For instance, if Alice wants to tell Bob
that train T1 is running late (i.e., T1 does not arrive
at CC at the expected time), this can be modeled as
ObsAB(¬at(T1,CC)) at the expected arrival time.

4.1 Possible Worlds

Ontic facts and according observations formworlds.
A world w consists of a set of ground atoms and a
set of observation atoms, i.e.,w∈ 2B ×2Lobs. With a
slight abuse of notation, we usea∈ w andObsG(l) ∈
w to denote that an atoma (resp. observation atom
ObsG (l)) holds in worldw. Since agents can only ob-
serve facts that actually hold in the respective world,
we can define consistency of worlds w.r.t. the set of
observations:

Definition 6 (World Consistency). A world w is con-
sistent, iff for every observation atomObsG (l) ∈ w,
the observed fact holds, i.e.,x ∈ w if l is a positive
literal x, x 6∈ w if l is a negative literal¬x.

The set of all possible worlds is denoted byW.
For the following discussion we assume a manual suc-
cinct specification of possible worlds depending on
the respective domain. Especially, we assume in the
following discussion thatW does not contain any in-
consistent worlds according to Definition 6.

Example 2 (Trains Continued). For Example 1, we
have ground terms A,B,CA,CB,CC,T1, and T2, rep-
resenting Alice, Bob, three cities, and two trains.
Furthermore, we have atoms on(x,y) indicating that
person y is on train x, and at(y,z) indicating that
train y is at city z. Finally, we have observa-
tion atoms of the kind ObsG(at(y,z)), indicating
that the agents inG observe that train y is at sta-
tion z. Thus, a possible world can for example
be w1 = {at(T1,CA),on(T1,A),ObsA(at(T1,A))}, in-
dicating that train T1 is at city CA and A has boarded
that train.

We define satisfaction of a ground formulaF by a
world w, in the usual way (Lloyd, 1987):

Definition 7 (Satisfaction of Ground Formulae). Let
F,F ′,F ′′ be ground formulae andw a world. Then,F

is satisfied byw (denotedw |= F)
- If F = a for some ground atoma, thena∈ w.
- If F = ¬F ′, thenw 6|= F ′.
- If F = F ′∧F ′′, thenw |= F ′ andw |= F ′′.
- If F = F ′∨F ′′ , thenw |= F ′ or w |= F ′′.

4.2 Threads

We use the definition ofthreads from (Shakarian
et al., 2011) (equivalent to the concept ofruns in (Fa-
gin et al., 1995)):

Definition 8. A threadis a mappingTh : τ →W

Thus, a thread is a sequence of worlds andTh(i)
identifies the actual world at timei according to thread
Th. The set of all possible threads is denoted byT .
Again, we refrain from usingT as the set of all pos-
sible sequences constructible fromτ andW, and in-
stead assume that any meaningful problem specifica-
tion gives information about possible temporal evolu-
tions of the system. For notational convenience, we
assume that there is an additional prior worldTh(0)
for every thread.

Example 3(Trains Continued). The description from
Example 1 yields the set of possible threadsT de-
picted in Figure 1.

4.3 Kripke Structures

With the definition of threads, we can use a slightly
modified version of Kripke structures (Kripke, 1963).
As usual, we define a Kripke structure as a tuple
〈W,K1, ...,Kn〉, with the set of possible worldsW and
binary relationsKi onW for every agenti ∈ A . Intu-
itively, (w,w′) ∈ Ki specifies that in worldw, agenti
considersw′ as a possible world.

We initialize the Kripke structure such that the set
of possible worlds contains exactly the worlds that oc-
cur at timet = 1 in some threadTh′:

∀Th∈ T : Ki(Th(0)) :=
⋃

Th′∈T

{Th′(1)}, i = 1, ...,n

With the evolution of time, each agent can eliminate
the worlds that do not comply with its respective ob-
servations. Through the elimination of worlds, an
agent will also reduce the set of threads it considers
possible. We assume that agents have perfect recall
and therefore will not consider some thread possible
again if it was considered impossible at one point.
Thus,Ki is updated w.r.t. the agent’s respective obser-
vations, such that it considers all threads possible that
both comply with its current observations and were
considered possible at the previous time point:
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t 1 2 3 4 5 6 7 8 9 10

Th1 on(T1,A)
at(T1,CA)

on(T1,A)
at(T1,CC)

on(T2,A)
at(T2,CC)

on(T2,A)
at(T2,CB)

2 Th2 on(T1,A)
at(T1,CA)

on(T1,A)
at(T1,CC)

on(T2,A)
at(T2,CC)

on(T2,A)
at(T2,CB)ObsA

(¬at(T2,CB))

2 Th3 on(T1,A)
at(T1,CA)

on(T1,A)
at(T1,CC)

on(T2,A)
at(T2,CC)

on(T2,A)
at(T2,CB)ObsAB

(¬at(T2,CB))

1 Th4 on(T1,A)
at(T1,CA)

on(T1,A)
at(T1,CC)

on(T2,A)
at(T2,CC)

on(T2,A)
at(T2,CB)ObsA

(¬at(T1,CC))

1 Th5 on(T1,A)
at(T1,CA)

on(T1,A)
at(T1,CC)

on(T2,A)
at(T2,CC)

on(T2,A)
at(T2,CB)ObsAB

(¬at(T1,CC))

1 2 Th6 on(T1,A)
at(T1,CA)

on(T1,A)
at(T1,CC)

on(T2,A)
at(T2,CC)

on(T2,A)
at(T2,CB)ObsA

(¬at(T1,CC))
ObsA

(¬at(T1,CB))

1 2 Th7 on(T1,A)
at(T1,CA)

on(T1,A)
at(T1,CC)

on(T2,A)
at(T2,CC)

on(T2,A)
at(T2,CB)ObsAB

(¬at(T1,CC))
ObsA

(¬at(T1,CB))

1 2 Th8 on(T1,A)
at(T1,CA)

on(T1,A)
at(T1,CC)

on(T2,A)
at(T2,CC)

on(T2,A)
at(T2,CB)ObsAB

(¬at(T1,CB))
ObsA

(¬at(T1,CC))

1 2 Th9 on(T1,A)
at(T1,CA)

on(T1,A)
at(T1,CC)

on(T2,A)
at(T2,CC)

on(T2,A)
at(T2,CB)ObsAB

(¬at(T1,CB))
ObsAB

(¬at(T1,CC))

Figure 1: Visualization of the possible threadsThk from Example 1:at(Ti ,Cj ) denotes that trainTi is currently at cityCj ,
on(Ti ,A) that Alice is currently on trainTi , andObsAG(¬at(Ti ,Cj)) denotes a call from Alice to inform Bob that trainTi is
currently not at cityCj . For the sake of simplicity, facts irrelevant to the analysis (such ason(Ti ,A) for time points 2 and 5) are
omitted from the presentation. Note that if a train is running late (the respective threads are marked with according circles),
there are always two possible threads: one where onlyA observes this and one where both share the observation. For an easier
distinction, we have marked the according group of an observation with boldface indices.

Ki(Th(t)) := {Th′(t) : (Th′(t −1) ∈ Ki(Th(t −1))∧

{ObsG(l)∈Th(t) : i∈G}={ObsG(l)∈Th′(t) : i∈G})}
(1)

The next lemmata describe key properties ofKi
following immediately from the above definitions.

Lemma 1. Ki defines an equivalence relation over
the possible worldsKi(Th(t)) at time t.

Lemma 2. The set of threads Th′ considered possible
w.r.t. Ki is narrowing to a smaller and smaller subset
over time, i.e.,{Th′ : Th′(t) ∈ Ki(Th(t))} ⊆ {Th′ :
Th′(t −1)∈ Ki(Th(t−1))} for all Th∈ T and t∈ τ.

Example 4 (Trains Continued). From Figure 1, we
obtain that at time 1, the only possible world is
{{at(T1,CA),on(T1,A)}}, which is contained in all
possible threads. Thus,Ki(Thj(1)) contains exactly
this world for all agents i and threads j. Conse-
quently, both agents consider all threads as possible
at time1.

Now, assume that time evolves for two steps
and the actual thread is Th4 (i.e., train T1 is
running late, but A does not inform B about
this). Both agents will update their possibility
relations accordingly, yielding K1(Th4(3)) =
{{ObsA(¬at(T1,CC))}} and K2(Th4(3)) =
{{at(T1,CC),on(T1,A)},{ObsA(¬at(T1,CC))}},
i.e., A knows that T1 is not on time, while B is
unaware of this.

4.4 Subjective Posterior Temporal
Probabilistic Interpretations

Each agent has probabilistic beliefs about the ex-
pected evolution of the world over time. This is ex-
pressed through subjective temporal probabilistic in-
terpretations:

Definition 9 (Subjective Posterior Probabilistic Tem-
poral Interpretation). Given a set of possible threads
T , some threadTh′ ∈ T , a time point t and an
agent i, I Th′

i,t : T → [0,1] specifies thesubjective
posterior probabilistic temporal interpretationfrom
agenti’s point of view at timet in threadTh′, i.e.,
a probability distribution over all possible threads:
∑Th∈T I Th′

i,t (Th) = 1. We callTh′ the point of view

(pov) threadof interpretationI Th′
i,t .

The prior probabilities of each agent for all threads
are then given byI Th′

i,0 (Th). Since all threads are in-
distinguishable a priori, there is only asingle prior
distribution for each agent (i.e.,∀Th,Th′,Th′′ ∈ T :
I Th′

i,0 (Th) = I Th′′
i,0 (Th)). Furthermore, in order to be

able to reason about nested beliefs (as discussed be-
low), we assume that the prior probability assess-
ments of all agents are commonly known (i.e., all
agents know how all other agents assess the prior
probabilities of each thread). This in turn requires
that all agents have exactly the same prior probabil-
ity assessment over all possible threads: if two agents
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have different, but commonly known prior probabil-
ity assessments, we essentially have an instance of
Aumann’s well-known problem of “agreeing to dis-
agree” (Aumann, 1976). Intuitively, if differing priors
are commonly known, it is common knowledge that
(at least) one of the agents is at fault and should revise
its probability assessments. As a result, we have only
one prior probability distribution which is the same
from all viewpoints, denoted byI . Note thatI di-
rectly corresponds to the concept of temporal proba-
bilistic interpretations in (Shakarian et al., 2011).
Example 5 (Trains Continued). A meaningful inter-
pretation is

I =
(

0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03
)

,

which assigns the highest probability to Th1 (no train
running late), lower probabilities to the threads where
one train is running late and A informs B (Th3 and
Th5), even lower probabilities to the events that either
both trains are running late and A informs B (Th7,
Th8, and Th9) or that one train is running late and A
does not inform B (Th2 and Th4), and lowest proba-
bility to the thread where both trains are running late
and A does not inform B (Th6).

Even though we only have a single prior proba-
bility distribution over the set of possible threads, it
is still necessary to distinguish the viewpoints of dif-
ferent agents in different threads, as the definition of
interpretation updates shows:
Definition 10 (Interpretation Update). Let i be an
agent,t a time point, andTh′ a pov thread. Then,
if the system is actually in threadTh′ at timet, agent
i’s probabilistic interpretation over the set of possible
threads is given by the update rule:

I Th′
i,t (Th)=

{

1
αTh′

it

· I Th′
i,t−1(Th) if Th(t) ∈ Ki(Th′(t))

0 if Th(t) 6∈ Ki(Th′(t))
(2)

with 1
αTh′

it

being a normalization factor:

αTh′
it = ∑

Th∈T ,Th(t)∈Ki(Th′(t))

I Th′
i,t−1(Th) (3)

The invocation ofKi in the update rule yields ob-
vious ramifications about the evolution of interpreta-
tions, as stated in the following lemma:
Lemma 3. The subjective temporal probabilistic in-
terpretationI Th′

i,t of an agent i assigns nonzero prob-
abilities exactly to the set of threads that i still
considers possible at time t, i.e.,I Th′

i,t (Th) > 0 ⇔

Ki(Th(t),Th′(t))

Essentially, the update rule assigns all impossible
threads a probability of zero and scales the probabili-
ties of the remaining threads such that they are propor-
tional to the probabilities of the previous time point.

Example 6 (Trains Continued). Applying the update
rule from (2) to the situation described in Example 4,
with I as given in Example 5, yields the updated in-
terpretation for A:

I Th4
A,3 =

(

0 0 0 0.4 0 0.2 0 0.4 0
)

(4)

i.e., A considers exactly those threads possible, where
the train is running late and she does not inform B
(threads Th4, Th6, and Th8). Due to the lack of any
new information, B can only eliminate the situations
where A does inform him about being late, and thus
B’s interpretation is updated to:

I Th4
B,3 ≈

(

0.82 0.02 0.10 0.02 0 0.02 0 0.02 0
)

. (5)

4.5 Frequency Functions

To represent temporal relationships within threads,
we utilize the concept offrequency functionsas in-
troduced in (Shakarian et al., 2011). Frequency func-
tions enable us to represent temporal relations be-
tween the occurrence of specific events and are de-
fined axiomatically as follows:

Definition 11 (Frequency Functions). (Shakarian
et al., 2011) LetTh be a thread,F andG be ground
formulae, and∆t > 0 be an integer. Afrequency func-
tion fr maps quadruples of the form(Th,F,G,∆t) to
[0,1] such that the following axioms hold:
(FF1) If G is a tautology, thenfr(Th,F,G,∆t) = 1.
(FF2) If F is a tautology andG is a contradiction, then
fr(Th,F,G,∆t) = 0.
(FF3) If F is a contradiction,fr(Th,F,G,∆t) = 1.
(FF4) If G is not a tautology, and eitherF or ¬G
is not a tautology, andF is not a contradiction,
then there exist threadsTh1, Th2 ∈ T such that
fr(Th1,F,G,∆t) = 0 andfr(Th2,F,G,∆t) = 1.

To illustrate the concept of frequency functions,
we present the point and existential frequency func-
tions from (Shakarian et al., 2011):

The point frequency functionpfr expresses how
frequently some eventF is followed by another event
G in exactly∆t time units:

pfr(Th,F,G,∆t)=
|{t : Th(t) |= F ∧Th(t +∆t) |= G}|

|{t : (t ≤ tmax−∆t)∧Th(t) |= F}|
(6)

The existential frequency functionefr expresses
how frequently some eventF is followed by another
eventG within the next∆t time units:

efr(Th,F,G,∆t) = (7)

efn(Th,F,G,∆,0, tmax)

fn(Th,F,∆t)+efn(Th,F,G,∆t, tmax−∆t, tmax)
,

fn(Th,F,∆t) := |{t : (t ≤ tmax−∆t)∧Th(t) |= F}|,
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Th(1) Th(2) Th(3) Th(4) Th(5) Th(6) Th(7) Th(8)

F G F G G F G F

Figure 2: Example threadThwith τ= {1, ...,8}. This figure
shows each world that satisfies formulaF or formulaG.

efn(Th,F,G,∆t,t1,t2) = |{t : (t1< t≤ t2)∧Th(t) |= F

∧∃t ′ ∈ [t +1,min(t2, t +∆t)] (Th(t ′) |= G)}|

To illustrate the concept of frequency functions,
we adapt an example from (Shakarian et al., 2011):
consider the threadTh depicted in Figure 2. The
thread evolves over 8 time steps and in each of the
respective worlds, eitherF or G is satisfied. Suppose
that we want to determine how oftenF is followed by
G exactly after two time steps. This can be expressed
through a point frequency function:pfr(Th,F,G,2)=
1
3. If instead we want to know how oftenF is followed
by G within the next two time steps, we can use an ex-
istential frequency function:efr(Th,F,G,2) = 3

3 = 1.
Note that the frequency functions are defined such
that neither of them considers the world at time 8
in the denominator, even thoughTh(8) |= F. This
is because there cannot be any world beyond time 8
such thatG is satisfied and consequently, considering
this world would mitigate any result of the frequency
functions.

4.6 Semantics of the Belief Operator

Now, with the definitions of subjective posterior prob-
abilistic temporal interpretations and the introduction
of frequency functions, we can build upon the defini-
tions from (Shakarian et al., 2011) for the satisfiability
of interpretations to provide formal semantics for the
belief operators defined in Section 3:

Definition 12 (Belief in Ground Formulae). Let I Th′
i,t′

be agenti’s interpretation at timet ′ in pov threadTh′.
Then, it holds w.r.t. this interpretation that agenti be-
lieves that some formulaF holds at timet with a prob-
ability in the range[ℓ,u] (denoted byI Th′

i,t′ |= Bℓ,u
i,t′ (Ft))

iff
ℓ≤ ∑

Th∈T ,Th(t)|=F

I Th′
i,t′ (Th)≤ u. (8)

Definition 13 (Belief in Rules). Let F and G be
ground formulae,fr be a frequency function, and
I Th′

i,t′ (Th) be agenti’s interpretation at timet ′ in pov
threadTh′. Then, it holds w.r.t. this interpretation that
agenti believes that some ruler fr∆t(F,G) holds with
a probability in the range[ℓ,u] (denoted byI Th′

i,t′ |=

Bℓ,u
i,t′ (r

fr

∆t(F,G))) iff

ℓ≤ ∑
Th∈T

I Th′
i,t′ (Th) · fr(Th,F,G,∆t)≤ u. (9)

Definition 14 (Nested Beliefs). Let i, j be agents,
Bℓk,uk

k,t (·) be some belief formula, andI Th′
i,t′ (Th) be

agenti’s interpretation at timet ′ in pov threadTh′.
Then, it holds w.r.t. this interpretation that agenti be-
lieves at timet ′ that with a probability in the range
[ℓ,u] agent j has some beliefBℓk,uk

k,t (·) at time t (de-

noted byI Th′
i,t′ |= Bℓ,u

i,t′ (B
ℓk,uk
k,t (·))) iff

ℓ≤ ∑
Th∈T , I Th

j,t |=B
ℓk,uk
k,t

I Th′
i,t′ (Th)≤ u. (10)

Example 7 (Trains Continued). We can use a point
frequency function to express beliefs about the punc-
tuality of trains. Assume that both A and B judge the
probability of a train running late (i.e., arriving after
3 instead of 2 time units, expressed through the tem-
poral rule rp f r

3 ) as being at most0.4. This yields the
following belief formulae

B0,0.4
i,0 (r p f r

3 (at(T1,CA),at(T1,CC)))

B0,0.4
i,0 (r p f r

3 (at(T2,CC),at(T2,CB)))
, i ∈ {A,B}.

One can easily verify that these formulae are satisfied
by the interpretation given in Example 5.

From the above definitions, we can use the belief
about some fact(·) to quantify the belief about the
negation of this fact¬(·):

Lemma 4. I Th′
i,t |= Bℓ,u

i,t′ (¬(·)) iff I Th′
i,t |= Bℓ′,u′

i,t (·) with
ℓ′ = 1−u and u′ = 1− ℓ.

5 EVOLUTION OVER TIME

In order to completely specify a problem in PDT
Logic, we introduce the concept ofdoxastic systems.

Definition 15 (Doxastic System). Let A be a set of

agents,T be a set of threads,A|A |×|T |
0 be a matrix

of prior probability distributions acrossT for every
agent inA , andF be a set of frequency functions.

Then, we call the quadrupleD = 〈A ,T ,F ,A|A |×|T |
0 〉

a doxastic system.

Note that several of the parameters discussed be-
fore are not explicitly specified in a doxastic system:
the set of possible worldsW, the set of ground atoms
B , the set of observation atomsLobs, nor the set of
time pointsτ are explicitly specified. However, all
relevant information regarding these parameters is al-
ready contained in the specification ofT .

To identify specific situations in a doxastic system
after time has passed and some observations occurred,
we furthermore definepointed doxastic systems:
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Definition 16 (Pointed Doxastic System, pds). Let

D = 〈A ,T ,F ,A|A |×|T |
0 〉 be a doxastic system andH

be a set of timestamped observation atoms such that
all observation atoms fromH occur in at least one of
the worlds (implicitly) defined inT . Then we call the
pair 〈D,H〉 apointed doxastic system.

Intuitively, the set of timed observations specified
in a pds points to a certain situation in a doxastic sys-
tem. One could vieŵt(H) = max{t : ∃[ObsG (l) : t] ∈
H} as the present time in a pds: the most recent obser-
vation occurred at̂t(H), all observations that actually
occurred in the past (t < t̂) are specified inH (and
thus deterministic in retrospective), and no further in-
formation about future observationst > t̂ is given. In
this sense,H specifies a certain history up tot̂(H) in
a doxastic system and points to the last event of this
history.

Example 8(Trains Continued). A doxastic system for
the train example can be specified as

D = 〈{A,B},{Th1, ...,Th9},{p f r,e f r},A0〉,

A0=

(

0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03

)

To identify the situation described in Example 4 (T1
is running late), we can specify the following pointed
doxastic system:〈D, [ObsA(¬at(T1,CC) : 3]〉

5.1 Evolution of Probabilistic
Interpretations

In accordance with the prior probability matrixA0
from Definition 15, we define an interpretation matrix
ATh′

t to store the interpretations of all agents 1, ...,n
across all threadsTh1, ...,T hm given that the doxastic
system is in pov threadTh′ at timet:

ATh′
t =







I Th′
1,t (Th1) . . . I Th′

1,t (Thm)
...

. . .
...

I Th′
n,t (Th1) . . . I Th′

n,t (Thm)






(11)

With the definition ofKi from (1), the update rule
from (2), and using the prior probability matrixA0
from Definition 15, we can provide an update matrix
UTh′

t to calculate the interpretation matrix for any pov
threadTh′ at any time pointt (◦ denotes the element-
wise multiplication of matrices):

ATh′
t = ATh′

t−1 ◦UTh′
t , with (12)

(uTh′
t )i j =

{

0 if Thj(t) 6∈ Ki(Th′(t))
1

αTh′
it

if Thj(t) ∈ Ki(Th′(t)) (13)

andαTh′
it a normalization factor as defined in (3).

The timed observations specified in the historyH
of a pds〈D,H〉 induce an updated set of reachability
relationsKi(Th(t)) for every threadTh that complies
with the given observations (for threadsTh⊥ that do
not comply with the given observationsKi(Th⊥(t)) =
/0). These updated reachability relations in turn yield
the updated interpretations inATh′

t . The complete
state of interpretations at any time point for every pos-
sible pov threadTh1, ...,T hm can then be specified as
a block matrix, which we call thebelief state(bs) of a
pds at timet:

bs(〈D,H〉, t) =
(

ATh1
t , ...,AThm

t

)

(14)

The belief state can be viewed as a specifica-
tion of conditional probabilities: thekth entry of
bs(〈D,H〉, t) specifies the interpretations of all agents
across all threads at timet given that the system is in
pov threadThk.

5.2 Evolution of Beliefs

In order to analyze the temporal evolution of beliefs,
we use the update rule from (12) to update belief
states. Since different possible observations yield dif-
ferent branches in the evolution of beliefs, we have
to update every thread in the belief state individually,
using the update matricesUTh

t as defined in (13):

bs(〈D,H〉, t) = bs(〈D,H〉, t −1)◦ (UTh1
t , ...,UThm

t )
(15)

Furthermore, to analyze satisfiability and valid-
ity of arbitrary finite belief expressionsBℓ,u

i,t′ (·) w.r.t.
a given pds〈D,H〉, we define an auxiliary belief vec-
tor~b(·) for different beliefsBℓ,u

i,t′ (·) as follows:

Bℓ,u
i,t′ (Ft) : (~b(Ft)) j =

{

1 if Thj(t) |= F

0 if Thj(t) 6|= F
(16)

Bℓ,u
i,t′ (r

fr

∆t(F,G)) : (~b(r fr∆t(F,G))) j = fr(Thj ,F,G,∆t)

Bℓ,u
i,t′ (B

ℓk,uk
k,t (·)) : (~b(Bℓk,uk

k,t (·))) j=

{

1 if I
Thj
k,t |= Bℓk,uk

k,t (·)

0 if I
Thj
k,t 6|= Bℓk,uk

k,t (·)

Using (11) and (16), we can determine a matrixPt′

with the probabilitiespThk

i,t′ (·) that each agenti assigns
at timet ′ to some event(·), for all possible pov threads
Th1, ...,Thm:

Pt′(·) =
(

ATh1
t ·~b(·), ...,AThm

t ·~b(·)
)

(17)

The rows inPt′ can be seen as conditional proba-
bilities: agenti believes at timet ′ that a fact(·) is true
with probabilitypThk

i,t′ given that the pov thread isThk.
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Using Definitions 12 - 14 and (17), we can provide
a definition for the satisfiability and validity of beliefs:

Definition 17 (Validity and Satisfiability of Beliefs).
Let FB be a belief formula as defined in Definition 5.
FB is satisfiable (valid) iff

• For FB ≡ Bℓ,u
i,t′ (·): ℓ ≤ pThk

i,t′ (·) andu≥ pThk
i,t′ (·) for

at least one (all)pThk
i,t′ in Pt′ .

• For FB ≡ ¬Bℓ,u
i,t′ (·): ℓ > pThk

i,t′ (·) or u< pThk
i,t′ (·) for

at least one (all)pThk
i,t′ in Pt′ .

• For FB ≡ F ′
B∧F ′′

B : for at least one (all)pThk
i,t′ in Pt′

bothF ′
B andF ′′

B are satisfied.
• ForFB ≡ F ′

B∨F ′′
B : F ′

B is satisfiable (valid) orF ′′
B is

satisfiable (valid).

To illustrate the evolution of beliefs, we finish the
example with an analysis of expected arrival times.

Example 9(Trains Continued). FromD, as specified
in Example 8, we can infer that Bob (and of course
Alice, too) can safely assume at time 1 that Alice will
arrive at time 8 at the latest (i.e., the actual thread
is one of Th1, ...,Th5) with a probability in the range
[0.9,1] because from Definition 17 we obtain that the
following belief is valid w.r.t.D for t = 1:

FBob,t ≡B0.9,1
B,t (re f r

8 (on(T1,A),(at(T2,CB)∧on(T2,A))).

Now, consider the previously described situation,
where T1 is running late and A does not inform B
about it. This leads to the updated interpretations
given in (4) and (5). These updates lead to a signif-
icant divergence in the belief of the expected arrival
time: Alice’s belief exhibits a drastically reduced cer-
tainty and changes to

B0.4,1
A,3 (re f r

8 (on(T1,A),(at(T2,CB)∧on(T2,A))),

while Bob’s previous belief remains valid.
Even though Alice’s beliefs have changed signif-

icantly, she is aware that Bob maintains beliefs con-
flicting with her own, as is shown by the following
valid expression of nested beliefs: B0.6,1

A,3 (FBob,3)
Finally, consider the pointed doxastic system

〈D, [ObsAB(¬at(T1,CC) : 3]〉, i.e., the same situation
as before with the only difference that Alice now
shares her observation of the delayed train with Bob.
It immediately follows that Bob updates his beliefs
in the same way as Alice, which in turn yields an
update in Alice’s beliefs about Bob’s beliefs so that
now the following expression is valid (because0.6 is
not a valid lower bound any longer):¬B0.6,1

A,3 (FBob,3).
This example shows how Alice can reason about the
influence of her own actions on Bob’s belief state
and therefore she can decide on actions that improve
Bob’s utility (as he does not have to wait in vain).

6 CONCLUSION

In this paper, by extending APT Logic to dynamic
scenarios with multiple agents, we have developed a
general framework to represent and reason about the
belief change in multi-agent systems. Next to lift-
ing the single-agent case of APT Logic to multiple
agents, we have also provided a suitable semantics
to the temporal evolution of beliefs. The resulting
framework extends previous work on dynamic multi-
agent epistemic logics by enabling the quantification
of agents’ beliefs through probability intervals. An
explicit notion of temporal relationships is provided
through temporal rules building on the concept of fre-
quency functions.

PDT Logic as introduced in this work provides the
foundation for future work. While a basic decision
procedure can be obtained through a direct applica-
tion of the given semantics, we will continue to in-
vestigate optimized algorithms, using both exact and
approximate methods. With a focus on inferring con-
sistent possible threads automatically, this will give
rise to a thorough complexity analysis of the decision
problems. With efficient algorithms, we can apply
PDT Logic to realistic problems.
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