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Abstract: We presenProbabilistic Doxastic Temporal (PDT)ogic, a formalism to represent and reason about proba-
bilistic beliefs and their evolution in multi-agent systems. It can quantify beliefs through probability intervals
and incorporates the concepts of frequency functions and epistemic actions. We provide an appropriate se-
mantics for PDT and show how agents can update their beliefs with respect to their observations.

1 INTRODUCTION Logic employs an explicit notion of time and thereby
facilitates the expression of richer temporal relations.
When logically analyzing knowledge and belief in re- The remainder of this work is structured as fol-

alistic scenarios, an agent usually has only incompletelows: The next section presents related work about

and inaccurate information about the actual state of knowledge in multi-agent systems and APT Logic.

the world, and thus considers several worlds as beingThen, in Section 3, the syntax of PDT Logic is in-

possible. As it receives new information, it has to up- troduced, followed by the definition of formal seman-

date its beliefs about possible worlds. These updatestics in Section 4. The evolution of multi-agent beliefs

can for example result in regarding some worlds as over time is analyzed in Section 5. Finally, the paper

impossible or judging some worlds to be more likely concludes with Section 6.

than before. Thus, in addition to analyzing the set of

worlds an agent believes to be possible, it is also use-

ful to quantify these beliefs in terms of probabilities.

This provides means to specify fine-grained distinc- 2 RELATED WORK

tions within the range of worlds that an agent consid-

ers possible. Approaches to formalize reasoning about knowledge
When multiple agents are involved in such a set- and belief date back to Hintikka’s work on epistemic

ting, an agent may not only have varying beliefs re- logic (Hintikka, 1962). Classical forms of epistemic

garding the facts of the actual world, but also regard- logic do not allow for a quantification of an agent’s

ing the beliefs of other agents. In many scenarios, the degree of belief in certain facts; it can only be spec-

actions of one agent will not only depend on its belief ified whether an agent does or does not know (resp.

of ontic facts (i.e., facts of the actual world), but also believe) some fact. To remove this limitation, sev-

on its beliefs in some other agent’s beliefs. eral approaches have been proposed to combine log-
To formalize reasoning about such beliefs in ics of knowledge and belief with probabilistic quan-
multi-agent settings, we preseRtobabilistic Dox- tifications. For instance, (Fagin and Halpern, 1994)

astic Temporal (PDT) Logic PDT Logic builds and (van der Hoeck, 1997) define a belief operator
upon recent work on Annotated Probabilistic Tem- to quantify lower bounds on the probabilities that an
poral (APT) Logic and provides a formalism which agent assigns to a formula.

enables the representation of and reasoning about dy- To reason about dynamically changing beliefs, ex-
namically changing quantified temporal multi-agent tensions to epistemic logics have been proposed, e.g.,
beliefs through probability intervals. In this formal- (Scherl and Levesque, 2003). In these works only
ism, analyses are intended to be carried out offline by the single-agent case is considered, and therefore they
an external observer. In contrast to related work, PDT do not provide for representations of nested beliefs.
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Multi-agent extensions to these approaches can bethe factl holds. We assume that the agentsjimot
found for example in (van Ditmarsch et al., 2007). A only observe that holds, but that each agent @ is
common limitation of these works is that they are only also aware that all other agents hmake the same
able to reason about step-by-step changes and thereebservation.

fore explicit reasoning about time is difficult in these pefinition 2 (Formulae) Atoms and observation
frameworks. (Renne et al., 2009) alleviates these lim- otoms are formulae. IE andG are formulae, then

itations by combining Dynamic Epistemic Logic (van
Ditmarsch et al., 2007) with temporal modalities.

(Shakarian et al., 2011) introduce APT Logic, a
framework to represent probabilistic temporal evolu-
tions of worlds in threads. APT Logic assigns prior
probabilities to every thread and uses these probabil-
ities to determine probabilities of events occurring in
specific threads. To represent temporal relationships
between events, APT Logic introduces the concept
of frequency functions. We utilize the approach of
APT Logic to create a doxastic multi-agent frame-
work that can explicitly reason about temporal re-
lationships through the adoption of frequency func-
tions.

3 PDT LOGIC PROGRAMS:
SYNTAX

In this section, we start with defining the syntax of
PDT Logic programs, and then give a definition of
the formal semantics in the next section.

We assume the existence of a function-free first
order logic language with finite sets of constant sym-
bols Leonsand predicate symbolsyreq, and an infinite
set of variable symbolg,,,. Every predicate symbol
P € Lpred has ararity. A termis any member of the
set LeonsU Lyvar. A term is called aground termif it
is a member offcons If t1,..,tk are (ground) terms,
andpis a predicate symbol ifipreq With arity n, then
p(t1,...,tx) with k € {0, ...,n} is a (ground) atom. I&
is a (ground) atom, thea and—a are (ground)iter-
als. The set of all ground literals is denoted i .

As usual,B denotes the Herbrand Base of

Time is modeled in discrete steps and we assume
that all agents reason about an arbitrarily large, but
fixed size window of time. The set of time points is
given byt = {1,...,tmax}. The set of agents is denoted
by 4. The number of agent$q|) is denoted by. To
describe what agents observe, we define observatio
atoms as follows:

Definition 1 (Observation Atoms) For any group of
agentsGg C 4 and ground literal € 4, Obs;(l) is
anobservation atomThe set of all observation atoms
is denoted by gps

Intuitively, the meaning of a statement of the form
Obs;(1) is that all agents in the grouf observe that
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so areF AG, F VG, and—F. A formula is ground if
all atoms of the formula are ground.

To describe observations at a specific time, we fur-
thermore defindme-stamped observation atoms

Definition 3 (Time-stamped Observation Atomdf
Obs; (1) € Lopsis an observation atom, amdt T is a
time point, therfObs; (1) : t] is a time-stamped obser-
vation atom.

To express temporal relationships, we define tem-
poral rules following the approach of APT rules from
(Shakarian et al., 2011).

Definition 4 (Temporal Rules) Let F, G be formulae,
At a time interval, andr a nhame for a so-called fre-
quency function (as defined below in Definition 11).
Thenr{l.(F,G) is called a temporal rule.

The meaning of such an expression i5 s fol-
lowed byG in At time units w.r.tfr".

Now, we can define the belief opera %9 to ex-

press agents’ beliefs. IntuitiveIBf"t‘,‘(-) means that at
timet’, ageni believes that some facd (s true with a
probability p € [¢,u]. We call the probability interval
[¢,u] the quantificationof agenti’s belief. We user

to denote that formul& holds at time.

Definition 5 (Belief Formulae) Leti be an agent;/
atime point, and?,u] C [0,1]. Then,belief formulae
are inductively defined as follows:

1. If Fisaformulaand is a time point, thele’t‘,‘(Ft)
is a belief formula.

2. Ifrf(F,G) is atemporal rule, thel( )
is a belief formula.

3. If F and G are belief formulae, then so are

BIY(F), FAG, F VG, and—F.

(I'Kt (F’ G))

4 SEMANTICS

Nn this section, we will provide a formal semantics

that captures the intuitions explained above. We start
with the introduction of an example, which we will re-
turn to repeatedly when introducing the various con-
cepts of the semantics.

Example 1(Trains) Let Alice and Bob be two agents
living in two different cities & and Gs, respectively.
Suppose that Alice wants to take a train to visit Bob
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and has to change trains at a third cityC We as-
sume that train Tconnects & and G, and train b
connects € and Gs. Both trains usually require 2
time units for their trip, but they might be running late

is satisfied byw (denotedw = F)

- If F =afor some ground atora, thena € w.
-If F ==F/, thenw [} F'.

-If F=F' AF”, thenw|=F’ andw = F".

and arrive one time unit later than scheduled. Alice -If F=F'VF”, thenw|=F orwp=F".

requires one time unit to change trains at city.Qf

T; runs on time, she has a direct connection o T

otherwise she has to wait for two time units untilthe 4.2 Threads

next train § leaves at city g. If a train is running

late, she can call Bob to let him know. These calls e use the definition othreadsfrom (Shakarian
can be modeled as shared observations between Al-gt g1, 2011) (equivalent to the conceptofsin (Fa-
ice and Bob. For instance, if Alice wants to tell Bob gin et al., 1995)):

that train Ty is running late (i.e., T does not arrive

at Cc at the expected time), this can be modeled as
Obsyg(—at(T1,Cc)) at the expected arrival time.

Definition 8. A threadis a mappingrh: 1 —W

Thus, a thread is a sequence of worlds arndi)
identifies the actual world at timeccording to thread
Th. The set of all possible threads is denotedfy
Again, we refrain from using/” as the set of all pos-
sible sequences constructible framandW, and in-
stead assume that any meaningful problem specifica-
tion gives information about possible temporal evolu-
tions of the system. For notational convenience, we
assume that there is an additional prior waoFlt(0)
for every thread.

Example 3(Trains Continued) The description from
Example 1 yields the set of possible threatdsle-
picted in Figure 1.

4.1 Possible Worlds

Ontic facts and according observations fonarlds

A world w consists of a set of ground atoms and a
set of observation atoms, i.ev,c 2% x 2Lobs. With a
slight abuse of notation, we uses w andObs; (1) €

w to denote that an atora (resp. observation atom
Obs; (1)) holds in worldw. Since agents can only ob-
serve facts that actually hold in the respective world,
we can define consistency of worlds w.r.t. the set of
observations:

Definition 6 (World Consistency) A world w is con-
sistent, iff for every observation ato@bs;(l) € w,

the observed fact holds, i.e,c w if | is a positive
literal x, x ¢ wif | is a negative literatx.

4.3 Kripke Structures

With the definition of threads, we can use a slightly

The set of all possible worlds is denoted W modified version of Kripke structures (Kripke, 1963).
For the following discussion we assume a manual suc-As usual, we define a Kripke structure as a tuple
cinct specification of possible worlds depending on (W, &, ..., &n), with the set of possible world&' and
the respective domain. Especially, we assume in thebinary relationskj onW for every agent € 4. Intu-
following discussion thatV does not contain any in-  itively, (w,w') € % specifies that in worldv, agent
consistent worlds according to Definition 6. considersv as a possible world.

Example 2 (Trains Continued) For Example 1, we f we |_rl1)||t|allzelctjhe Krltpke StrUCt;frethSUCh trdat ttrr]letset
have ground terms 8, Ca,Cs,Ce.T1, and B, rep- of possible worlds contains exactly the worlds that oc-

resenting Alice, Bob, three cities, and two trains. cur at timet = 1 in some thread H:

Furthermore, we have atoms ©qy) indicating that VThe T: %(Th(0)) := U {TH@)},i=1,...,n
person y is on train x, and &,z) indicating that THeT

train y is at city z. Finally, we have observa-
tion atoms of the kind ORgat(y,z)), indicating
that the agents inG observe that train y is at sta-
tion z. Thus, a possible world can for example
be wi = {at(T1,Ca),0n(T1,A),Obsx(at(T1,A))}, in-
dicating that train T is at city Gy and A has boarded
that train.

We define satisfaction of a ground formiHay a
world w, in the usual way (Lloyd, 1987):

With the evolution of time, each agent can eliminate
the worlds that do not comply with its respective ob-
servations. Through the elimination of worlds, an
agent will also reduce the set of threads it considers
possible. We assume that agents have perfect recall
and therefore will not consider some thread possible
again if it was considered impossible at one point.
Thus, % is updated w.r.t. the agent’s respective obser-
vations, such that it considers all threads possible that
both comply with its current observations and were
considered possible at the previous time point:

Definition 7 (Satisfaction of Ground Formulae) et
F,F’,F" be ground formulae and a world. ThenF
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Th at(T1,Ca) at(Ty,Cc) at(T,Cc) at(T2,Ca)
on(Ty,A) on(Ty,A) on(Ty,A) on(Ty,A)
at(Ty,Ca) at(Ty,Cc) at(T,Cc) Obs, at(T,Cg)
@ T onTA) on(Te,A) on(T,A) (-al(T2.C))  on(TaA)
@ Ths at(T1,Ca) at(T1,.Cc) at(T2,Cc) Obs\g at(T,Ca)
on(Ty,A) on(T1,A) on(Tz,A) (—at(T2,Cg)) on(Ty,A)
©) Th at(Ty,Ca) Obsy at(Ty,Cc) at(T,Cc) at(T,,Cg)
on(Ty,A) (—at(Ty,Cc)) on(Ty,A) on(Ty,A) on(Ty,A)
©) Th at(Ty,Ca) Obsg at(Ty,Cc) at(Tz,Cc) at(T2,Ca)
on(Ty,A) (—at(Ty,Cc)) on(Ty,A) on(Ty,A) on(Ty,A)
at(Ty,Ca) Obsy at(Ty,Cc) at(T2,Cc) Obsy at(T»,Cg)
@ @ The on('ll'l‘AA) (—at(Ty,Cc)) on('ll'l.A) on(%z,A) (—at(T1,Cg)) on('lz'z.A)
at(T1,Ca) Obsy, at(T1,Cc) at(T,Cc) Obsy at(T,Cg)
OO ™ onma (afCc)  onTLA on(T3.A (atlTCa)  onToA
at(Ty,Ca) Obsy at(Ty.Cc) at(Tp,Cc) Obs at(T,,Cg)
OO ™ onr,a) (afCe)  onTA on(Ta. A (a.Ce)  onTyA
at(T1,Ca) Obsy at(T1,Cc) at(T2,Cc) Obsy at(T,Cg)
@@ ™  onm A (-atiTce)  onTy A on(Ty,A) (-alTrCe)  only A
t 1 2 3 4 5 6 7 8 9 10

Figure 1: Visualization of the possible thredfl from Example 1:at(T;,C;) denotes that traifi; is currently at cityC;,
on(T;,A) that Alice is currently on traiffj, andObsyg(—at(T;,C;)) denotes a call from Alice to inform Bob that trafnis
currently not at cityCj. For the sake of simplicity, facts irrelevant to the anay(siich asn(Tj, A) for time points 2 and 5) are
omitted from the presentation. Note that if a train is ruigrigite (the respective threads are marked with accordirtgsiy,
there are always two possible threads: one where Aolyserves this and one where both share the observationn leaséer
distinction, we have marked the according group of an olasienv with boldface indices.

K(Th() = {TH() : (TH(t—1) € K (Th(t—1))A 4.4 Subjec'.[i.vel Posterior Tgmporal
{Obsy(1) €T(t): i€ G} = {Obsy (1 € TH(): i € G})} Probabilistic Interpretations

1
_ _ ) Each agent has probabilistic beliefs about the ex-
The next lemmata describe key properties®f  pected evolution of the world over time. This is ex-

following immediately from the above definitions. pressed through subjective temporal probabilistic in-
Lemma 1. % defines an equivalence relation over terpretations:
the possible worldstj(Th(t)) at time t. Definition 9 (Subjective Posterior Probabilistic Tem-

Lemma 2. The set of threads T onsidered possible ~ poral Interpretation) Given a set of possible threads
W.Lt. % is narrowing to a smaller and smaller subset ‘7, some threadll € 7, a time pointt and an
over time, i.e. {TH : TH(t) € K(Th(t))} C {TH : agenti, Iﬁ” : T — [0,1] specifies thesubjective
TH(t—-1)e %(Th(t—1))}forall The T andteT. posterior probabilistic temporal interpretatiofrom

Example 4 (Trains Continued) From Figure 1, we  @genti’s point of view at timet in threadTH, i.e.,
obtain that at time 1, the only possible world is a probabrl{llty distribution over all poss_|ble threads:
{{at(T1,Ca),on(T1,A)}}, which is contained in all  Yther 4;" (Th) =1. We callTH the point of view
possible threads. Thuski(Th;(1)) contains exactly  (pov) threadof interpretationﬂ”.

this world for all agents i and threads j. Conse- '
qguently, both agents consider all threads as possible
attimel.

The prior probabilities of each agent for all threads
are then given by,[J"(Th). Since all threads are in-
: distinguishable a priori, there is onlysingle prior
Now, assume that time evolves for two steps -.> " <% . y )
and the actual thread is T (ie., train T is distribution for each agent (i.e/;Th, TH, Th' € T :

running late, but A does not inform B about Ly (Th) = 15" (Th)). Furthermore, in order to be
this). Both agents will update their possibility @able to reason about nested beliefs (as discussed be-

relations accordingly, yielding %i(Th(3)) = low), we assume that the prior probability assess-
{{Obs\(—at(T1,Cc)) ! and  %(Th(3)) = ments of all agents are commonly known (i.e., a_II
{{at(T1,Cc),on(T1,A)}, {Obsy(—at(Ty,Cc)) } . agents know how all other agents assess the prior
i.e., A knows that T is not on time, while B is probabilities of each thread). This in turn requires
unaware of this. that all agents have exactly the same prior probabil-

ity assessment over all possible threads: if two agents
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have different, but commonly known prior probabil-

Example 6 (Trains Continued) Applying the update

ity assessments, we essentially have an instance ofule from (2) to the situation described in Example 4,

Aumann’s well-known problem of “agreeing to dis-
agree” (Aumann, 1976). Intuitively, if differing priors
are commonly known, it is common knowledge that

(at least) one of the agents is at fault and should revise

with I as given in Example 5, yields the updated in-
terpretation for A:

Li3=(0 0004 0020 04 0 (4

its probability assessments. As a result, we have onlyj.e., A considers exactly those threads possible, where

one prior probability distribution which is the same
from all viewpoints, denoted by. Note that/ di-

the train is running late and she does not inform B
(threads Th, Ths, and Th). Due to the lack of any

rectly corresponds to the concept of temporal proba- new information, B can only eliminate the situations

bilistic interpretations in (Shakarian et al., 2011).

Example 5 (Trains Continued) A meaningful inter-
pretation is

1=(0.7 0.02 009 002 009 001 002 002 003),

which assigns the highest probability to ¢mo train
running late), lower probabilities to the threads where
one train is running late and A informs B (% fand
Ths), even lower probabilities to the events that either
both trains are running late and A informs B (7,h
Thg, and T hy) or that one train is running late and A
does not inform B (T-hand Thy), and lowest proba-
bility to the thread where both trains are running late
and A does not inform B (Tgh

Even though we only have a single prior proba-
bility distribution over the set of possible threads, it
is still necessary to distinguish the viewpoints of dif-
ferent agents in different threads, as the definition of
interpretation updates shows:

Definition 10 (Interpretation Update)Let i be an
agent,t a time point, andT i a pov thread. Then,
if the system is actually in threadh' at timet, agent

i's probabilistic interpretation over the set of possible
threads is given by the update rule:

Y TR - ﬁ : ziTﬂl(Th) if Th(t) e K(TH(t))
" 0 if Th(t) & %(TH(t))
v
with ﬁ being a normalization factor:
it
ap = (Thy (@3)

TheT, Th)e K (TH (1))

The invocation ofk; in the update rule yields ob-
vious ramifications about the evolution of interpreta-
tions, as stated in the following lemma:

Lemma 3. The subjective temporal probabilistic in-
terpretation]iﬁH of an agent i assigns nonzero prob-
abilities exactly to the set of threads that i still
considers possible at time t, i.eLﬂ”(T h) >0«
K(Th(t), TH(t))

Essentially, the update rule assigns all impossible
threads a probability of zero and scales the probabili-
ties of the remaining threads such that they are propor-

tional to the probabilities of the previous time point.

where A does inform him about being late, and thus
B’s interpretation is updated to:

I3 3~ (0.82 002 010 002 0 Q02 0 Q02 0). (5)
4.5 = Frequency Functions

To represent temporal relationships within threads,
we utilize the concept ofrequency functionss in-
troduced in (Shakarian et al., 2011). Frequency func-
tions enable us to represent temporal relations be-
tween the occurrence of specific events and are de-
fined axiomatically as follows:

Definition 11 (Frequency Functions)(Shakarian
et al., 2011) Lefl h be a threadF andG be ground
formulae, and\t > 0 be an integer. Arequency func-
tion fr maps quadruples of the for(T h,F,G,At) to
[0, 1] such that the following axioms hold:

(FF1) If G is a tautology, thefr(T h,F,G,At) = 1.
(FF2) IfF is a tautology an€ is a contradiction, then
fr(Th,F,G,At) = 0.

(FF3) If F is a contradictionfr(Th,F,G,At) = 1.
(FF4) If G is not a tautology, and eithdf or -G
is not a tautology, and= is not a contradiction,
then there exist thread§h;, Thy € 7 such that
fr(Thy, F,G,At) = 0 andfr(T hp, F, G, At) = 1.

To illustrate the concept of frequency functions,
we present the point and existential frequency func-
tions from (Shakarian et al., 2011):

The point frequency functiopfr expresses how
frequently some evert is followed by another event
G in exactlyAt time units:

{t: Th(t) EFATh(t+At) & G}|
< o B A THD )]
The existential frequency functioefr expresses

how frequently some eveft is followed by another
eventG withinthe nextAt time units:

efr(Th,F,G,At) =
efnTh,F,G,A,0,tmax)
fn(Th,F,At) + efn(Th,F, G, At, tmax— At tmax)

fn(Th,F,At) :=|{t: (t <tmax— At) ATh(t) = F},

pfr(Th,F,G,At)= |

(7)
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Th(1) Th(2) Th(3) Th(4) Th(5) Th(6) Th(7) Th(8)
EHHE-HHEHe-E)

Figure 2: Example threaBihwitht= {1, ...,8}. This figure
shows each world that satisfies form#ar formulaG.

efn(ThF,G,At t1,to) = |{t: (t <t <t2) ATh(t)
ATt e [t+1,min(tz,t +At)] (Th(t') = G)}

To illustrate the concept of frequency functions,
we adapt an example from (Shakarian et al.,
consider the thread h depicted in Figure 2. The

= F

2011):

Definition 14 (Nested Beliefs) Let i, be agents,
BEk “(-) be some belief formula, and\TH (Th) be

agent| s interpretation at time’ in pov threadTH.
Then, it holds w.r.t. this interpretation that agebe-
lieves at timet’ that with a probability in the range

[¢,u] agentj has some beIieB[k‘jt’”k() at timet (de-

noted byZTf' (= BLU(BL () iff

l< |t’ (Th)
The, ITP =Bk

(10)

thread evolves over 8 time steps and in each of the Example 7 (Trains Continued) We can use a point

respective worlds, eithd¥ or G is satisfied. Suppose
that we want to determine how ofténis followed by

frequency function to express beliefs about the punc-
tuality of trains. Assume that both A and B judge the

G exactly after two time steps. This can be expressed probability of a train running late (i.e., arriving after

through a point frequency functiopfr(T h,F,G,2) =

1 . Ifinstead we want to know how oftdnis followed

by G within the next two time steps, we can use an ex-
istential frequency functiorefr(Th,F, G, 2) = § =1.

Note that the frequency functions are defined such

that neither of them considers the world at time 8
in the denominator, even thoughh(8) = F. This

3 instead of 2 time units, expressed through the tem-

poral rule r2") as being at mosd.4. This yields the
following belief formulae

BOO4(r2™ (at(T1,Ca), at(T1,Cc)))

B0%(rR" (at(To, o), at(To o)) o

is because there cannot be any world beyond time 8 One can easily verify that these formulae are satisfied
such thaG is satisfied and consequently, considering by the interpretation given in Example 5.

this world would mitigate any result of the frequency
functions.

4.6 Semantics of the Belief Operator

Now, with the definitions of subjective posterior prob-
abilistic temporal interpretations and the introduction
of frequency functions, we can build upon the defini-
tions from (Shakarian et al., 2011) for the satisfiability
of interpretations to provide formal semantics for the
belief operators defined in Section 3:

Definition 12 (Belief in Ground Formulae)Let Ith,”
be agent's interpretation at timé& in pov threadr H.
Then, it holds w.r.t. this interpretation that agebe-

lieves that some formula holds at time with a prob-
ability in the range/, u] (denoted by ™! = Bft‘,‘(Ft))
It/ (T h) < u.

it/

iff

! 8)

TheT Thit)=F

Definition 13 (Belief in Rules) Let F and G be
ground formulae,fr be a frequency function, and
Ith,” (Th) be agent’s interpretation at time’ in pov
threadT H. Then, it holds w.r.t. this interpretation that
agenti believes that some rule, (F,G) holds with

(<

a probability in the rangé/, u] (denoted byIITt,H =
Bl (1 (F.G))) iff
(< 3y i m f(Th -fr(ThF,G,A) <u. (9)

TheT
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From the above definitions, we can use the belief
about some fact-) to quantify the belief about the
negation of this fact:(-):

Lemma 4. [} |= By/(~(-)) iff 137 = By () with

/=1—uandd=1-"/.

5 EVOLUTION OVER TIME

In order to completely specify a problem in PDT
Logic, we introduce the concept dbxastic systems

Definition 15 (Doxastic System)Let 4 be a set of

agents,7 be a set of threadyé«‘oﬂ‘xm be a matrix
of prior probability distributions acrosg for every
agent in4, and ¥ be a set of frequency functions.
Then, we call the quadrupt® = (2,7, F, A7)
adoxastic system

Note that several of the parameters discussed be-
fore are not explicitly specified in a doxastic system:
the set of possible world#/, the set of ground atoms
B, the set of observation atom%y,s, nor the set of
time pointst are explicitly specified. However, all
relevant information regarding these parameters is al-
ready contained in the specification‘df

To identify specific situations in a doxastic system
after time has passed and some observations occurred,
we furthermore definpointed doxastic systems
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Definition 16 (Pointed Doxastic System, pdshet
D=(4,T, T,Agﬂ‘x‘r[‘> be a doxastic system arktl

anda{” a normalization factor as defined in (3).
The timed observations specified in the histbry

be a set of timestamped observation atoms such thaof @ pds(?, H) induce an updated set of reachability

all observation atoms frod occur in at least one of
the worlds (implicitly) defined inf". Then we call the
pair (D,H) apointed doxastic system

Intuitively, the set of timed observations specified
in a pds points to a certain situation in a doxastic sys-
tem. One could view(H) = max{t : 3[Obs;(I) : t] €
H} as the presenttime in a pds: the most recent obser
vation occurred &i(H), all observations that actually
occurred in the past  f) are specified irH (and
thus deterministic in retrospective), and no further in-
formation about future observationhs- f is given. In
this senseH specifies a certain history up f(H) in
a doxastic system and points to the last event of this
history.

Example 8(Trains Continued)A doxastic system for
the train example can be specified as

D= ({A,B},{Thy,...,The},{pfrefr},Ag),

Ag— 0.7 0.02 009 002 0.09 001 002 0.02 003
~ 0.7 0.02 009 002 009 001 002 002 003

To identify the situation described in Example 4 (T
is running late), we can specify the following pointed
doxastic system(D, [Obs (—at(T1,Cc) : 3])

5.1 Evolution of Probabilistic
Interpretations

In accordance with the prior probability matri¥
from Definition 15, we define an interpretation matrix
AtTH to store the interpretations of all agents.1n
across all threadghy, ..., T hy, given that the doxastic
system is in pov threa@h at timet:

L (Thy) (T he)
AT = :
[ (Th AN fhm
nt ( 1) nt ( )
With the definition of%; from (1), the update rule
from (2), and using the prior probability matri%
from Definition 15, we can provide an update matrix
UtT” to calculate the interpretation matrix for any pov

threadT i at any time point (o denotes the element-
wise multiplication of matrices):

(11)

AT = AT ou™Y with  (12)
0 ifThi(t) & %(TH(t))
(U ™)ij = {(%H if Th} M) e x(rhr) @)

relations%i(T h(t)) for every thread hthat complies
with the given observations (for threa@i$, that do
not comply with the given observatiotig(Th, (t)) =

0). These updated reachability relations in turn yield
the updated interpretations ih[T”. The complete
state of interpretations at any time point for every pos-
sible pov thread hy, ..., T hy, can then be specified as

a block matrix, which we call thbelief statgbs) of a
pds at timd:

bs((D,H),t) = (A{Thl,..., T“ﬂ)

The belief state can be viewed as a specifica-
tion of conditional probabilities: théth entry of
bs((D,H),t) specifies the interpretations of all agents
across all threads at timiegiven that the system is in
pov threadr hy.

(14)

5.2 Evolution of Beliefs

In order to analyze the temporal evolution of beliefs,
we use the update rule from (12) to update belief
states. Since different possible observations yield dif-
ferent branches in the evolution of beliefs, we have
to update every thread in the belief state individually,
using the update matrices' " as defined in (13):
bs((D,H),t) = bs((D,H),t = 1) o (U™, ..U ™)
(15)
Furthermore, to analyze satisfiability and valid-
ity of arbitrary finite belief expressiorBfl’t‘/‘(-) wW.I.t.
a given pdgD,H), we define an auxiliary belief vec-
tor b(-) for different beliefst’”() as follows:
1Lif Thit) =F

it
{o if Thi(t) £ F
(r&(F.G)) : (b(rf(F,G)))j=fr(Th;,F,G,At)

. Thi l1e,U
{1 if I, = B

/.U
Bi,t'

(R): (b(R));= (16)

/,u
Bi,t'

/,u
Bi,t'

()

Coif 4" g Bl
Using (11) and (16), we can determine a malix

with the probabilitiesJiTt*,’k(-) that each agemtassigns
attimet’ to some event ), for all possible pov threads

Thi, ... Thy
Pr() = (A{Thl 6()v’ ¢ 6())

The rows inPy can be seen as conditional proba-
bilities: ageni believes at tim¢’ that a fact(-) is true

with probability pﬂ,“ given that the pov thread .

(BE™()) + (BBE™ ()

(17)
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Using Definitions 12 - 14 and (17), we can provide
a definition for the satisfiability and validity of beliefs:

Definition 17 (Validity and Satisfiability of Beliefs)
Let Fg be a belief formula as defined in Definition 5.
Fg is satisfiable (valid) iff
e ForFg = ijt‘,‘(-): (< pItf“(-) andu > piTtr,"(-) for
; Th .
at least one (aII))i’t, inPy.
o ForFg = ﬂBf”t‘,‘(-): > pﬂ,“(-) oru< pItt‘%) for
at least one (aII)JItt'k inPy.

e ForFs = F;AF: for at least one (aII)JItt'k in Py
bothF4 andFy are satisfied. '

e ForFg = R4V RS R is satisfiable (valid) oFg is
satisfiable (valid).

To illustrate the evolution of beliefs, we finish the
example with an analysis of expected arrival times.

Example 9(Trains Continued) From D, as specified

in Example 8, we can infer that Bob (and of course
Alice, too) can safely assume at time 1 that Alice will
arrive at time 8 at the latest (i.e., the actual thread
is one of Th,...,Ths) with a probability in the range
[0.9,1] because from Definition 17 we obtain that the
following belief is valid w.r.tD fort = 1:

Feobt =Bay (rg " (0n(T1,A), (at(Tz,Cs) AON(T2,A)) ).

Now, consider the previously described situation,
where T is running late and A does not inform B
about it. This leads to the updated interpretations
given in (4) and (5). These updates lead to a signif-
icant divergence in the belief of the expected arrival
time: Alice’s belief exhibits a drastically reduced cer-
tainty and changes to

BRS(r5" (on(To, A), (at(T2,Ca) A ON(T2, A))).

while Bob'’s previous belief remains valid.

Even though Alice’s beliefs have changed signif-
icantly, she is aware that Bob maintains beliefs con-
flicting with her own, as is shown by the following
valid expression of nested beliefs%‘(i?l(FBOQg)

Finally, consider the pointed doxastic system
(D, [Obsag(—at(T1,Cc) : 3)), i.e., the same situation
as before with the only difference that Alice now
shares her observation of the delayed train with Bob.
It immediately follows that Bob updates his beliefs
in the same way as Alice, which in turn yields an
update in Alice’s beliefs about Bob’s beliefs so that
now the following expression is valid (becaseé is

not a valid lower bound any Ionger)ﬁB%g’l(FBotlg).

This example shows how Alice can reason about the

influence of her own actions on Bob’s belief state

6 CONCLUSION

In this paper, by extending APT Logic to dynamic
scenarios with multiple agents, we have developed a
general framework to represent and reason about the
belief change in multi-agent systems. Next to lift-
ing the single-agent case of APT Logic to multiple
agents, we have also provided a suitable semantics
to the temporal evolution of beliefs. The resulting
framework extends previous work on dynamic multi-
agent epistemic logics by enabling the quantification
of agents’ beliefs through probability intervals. An
explicit notion of temporal relationships is provided
through temporal rules building on the concept of fre-
quency functions.

PDT Logic as introduced in this work provides the
foundation for future work. While a basic decision
procedure can be obtained through a direct applica-
tion of the given semantics, we will continue to in-
vestigate optimized algorithms, using both exact and
approximate methods. With a focus on inferring con-
sistent possible threads automatically, this will give
rise to a thorough complexity analysis of the decision
problems. With efficient algorithms, we can apply
PDT Logic to realistic problems.
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