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Abstract: We consider a group decision-making problem within multi-attribute utility theory, in which the relative im-
portance of decision makers (DMs) is known and their preferences are represented by means of an additive
function. We allow DMs to provide veto values for the attribute under consideration and build veto and adjust
functions that are incorporated into the additive model. Veto functions check whether alternative performances
are within the respective veto intervals, making the overall utility of the alternative equal to 0, whereas adjust
functions reduce the utilty of the alternative performance to match the preferences of other DMs. Dominance
measuring methods are used to account for imprecise information in the decision-making scenario and to de-
rive a ranking of alternatives for each DM. Specifically, ordinal information about the relative importance of
criteria is provided by each DM. Finally, an extension of Kemeny’s method is used to aggregate the alternative
rankings from the DMs accounting for their relative importance.

1 INTRODUCTION

The additive model is considered a valid approach
in many practical situations for the reasons described
in (Raiffa, 1982) and (Stewart, 1996). Its functional
form is

u(Ai) =
n

å
j=1

w ju j(xi j); (1)

where xi j is the performance over the attribute (or cri-
terion) X j for the alternative Ai, u j is the component
utility function and w j is the weight, respectively, for
attribute X j. Note that å

n
j=1 w j = 1 and w j � 0.

The additive model is a compensatory model in
the sense that poor performance for an attribute can
be compensated by good performances for other at-
tributes.

For some multicriteria decision analysis (MCDA)
problems and certain attributes, however, DMs may
find it convenient to provide a veto value that identi-
fies attribute performances that rule out the alternative
regardless of the value taken in the other attributes.
In a group decision-making context, moreover, more
than one DM could provide different veto values for
different attributes.

For example, let us consider a couple who decide
to buy a home, so both have veto power. They iden-
tify several criteria for selecting the house, like the

price, the location, the size or the age. One of the
two might rule out any house smaller than 40m2, re-
gardless of house price, location and age, whereas the
other might rule out any smaller than 60 m2. There-
fore, in this group decision-making scenario, a pos-
sible veto range would be [0;40], ruling out the pur-
chase of any house smaller than 40m2, and a possible
adjust range would be (40;60], decreasing the utility
of the respective house to account for the DM veto
values.

The veto concept has been variously considered
as a real-world approach for representing the lim-
its of DM preferences in the literature.To establish
these preferences the veto threshold is represented as
a quantifiable measure, which becomes an important
tool in multicriteria and group decision-making.

In social theory, the concept of veto is justified by
the prudence axiom enunciated by Arrow and Ray-
naud (Arrow and Raynaud, 1986), whose main idea
is that it is not prudent to accept highly conflicting al-
ternatives that may result in vulnerable decisions. Re-
garding the previous axiom, Moulin defines the prin-
ciple of proportional veto in a group of DMs (Moulin,
1981), according to which any subset has the right to
veto a number of alternatives in proportion to the size
of the subgroup.

In MCDM problems the concept of veto has been
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used for the management of non-compensatory meth-
ods. In outranking methods the use of veto usually
represents the intensity of preference of the minority
(Roy and Slowinski, 2008). Nowak used ELECTRE-
III to build a multi-attribute ranking using preference
thresholds to distinguish situations of strict and weak
preference in stochastic dominance approaches (No-
vak, 2004). Later, Munda (2009) implemented a veto-
based threshold using fuzzy set theory to represent
qualitative information.

Moreover, additive compensatory methods have
also incorporated the concept of veto. An example
is the technique for order preference by similarity to
ideal solution (TOPSIS) method (Yoon, 1980). The
basic idea behind TOPSIS is that the selected alter-
native should be as close to the ideal solution as far
from the anti-ideal solution. Both alternatives behave
like veto thresholds, not in the strict sense of rejection
of alternatives but as reference points for solving the
decision-making problem.

(Bana e Costa et al., 2002) defines a multi-criteria
approach for prohibiting alternatives based on the
measuring attractiveness by a categorical based eval-
uation technique (MACBETH). The methodological
basis of this technique is indirectly related to the con-
cept of veto power used in the non-compensatory
models.

In connection with research based on the power of
veto, (Marichal, 2004) proposes to axiomatize indi-
vidual indices to valuate when each criterion behaves
as a veto or for an aggregation by means of the Cho-
quet integral. These indices make it possible to iden-
tify and measure the impact or trend of each criterion
within the overall evaluation of the alternatives. In
(Liginlala and Ow, 2006) the same idea of the effects
of veto is used, expressing degrees of conjunction,
disjunction, veto and approval given by the indices
through fuzzy analysis measures, which represent a
risk tolerance measure of the DM.

More recently, Daher and Almeida (Daher and
Almeida, 2012) developed an additive group prefer-
ence model that incorporates a utility reduction factor.
DMs express their preferences in terms of a ranking
of alternatives and are able to make an informed veto
by providing information about the undesirable or un-
acceptable ranking of some alternatives. The ranking
veto is achieved by using a reduction factor on the
global utility of the alternatives.

In this paper we consider that veto values provided
by DMs are applicable on alternative performances
rather than on alternative rankings. We propose an ad-
ditive multi-attribute value model accounting for the
concepts of veto and adjust ranges. Different DMs
with veto power identify a veto value on each attribute

to express the limits of their preferences. They consti-
tute the basis for constructing veto and adjust ranges,
thus extending the classical additive model.

All DMs provide veto values, but the correspond-
ing veto will be effective for only the most important
DMs. These veto values are used to build a veto in-
terval, whereas veto values corresponding to the least
important DMs are used to build an adjust function
that reduces component utilities to match the prefer-
ences of other DMs.

The extension of the additive multi-attribute value
model to account for veto and adjust ranges is pro-
vided in Section 2. First, a veto and an adjust func-
tion is defined on the basis of the veto values provided
by DMs. Then dominance intensity methods are in-
troduced and used to derive a ranking of alternatives
for each DM in Section 2.1. Finally, we aggregate
the ranking from the different DMs to derive a con-
sensus ranking in Section 2.2. Some conclusions are
provided in Section 3.

2 ADDITIVE MULTI-ATTRIBUTE
VALUE MODEL ACCOUNTING
FOR VETO

We consider a set of k DMs, denoted by DMl , l =
1; :::;k, whose relative importance is known and de-
noted by wDMl . Without loss of generality we as-
sume that the most important DM is DM1, followed
by DM2, and so on until DMk. Consequently, wDM1 �
wDM2 � :::� wDMk , and ål wDMl = 1.

How to measure the weights of DMs in a group
decision-making context is an interesting research
topic. (Yue, 2011) provides a brief overview of ap-
proaches proposed by different authors to determine
the weights of DMs. Morever, a new approach based
on an extended TOPSIS method is also proposed.

All DMs are allowed to provide veto values, but
the corresponding veto will be effective for only the r
most important DMs, r � k. Veto values correspond-
ing to the k� r remaining DMs will be partially taken
into account, as described later.

We consider a decision-making problem with m
alternatives fA1; :::;Amg and n attributes fX1; :::;Xng.
DM preferences are modeled by an additive multi-
attribute utility function, see Eq (1).

Ordinal information about weights is available
and each DMl provides an attribute importance rank-
ing, arranged in descending order from the most to the
least important attribute:

wl 2W =
n

wl = (wl
1; :::;w

l
n)jwl

1 � :::� wl
n � 0

o
;
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and
n
å

i=1
wl

i = 1:

Many methods accounting for ordinal informa-
tion on weights and alternative values/utilities within
MAVT/MAUT can be found in the literature (Sara-
bando and Dias, 2010; Punkka and Salo, 2013;
Aguayo et al., 2014; Punkka and Salo, 2014).

We denote by vl
j the veto threshold provided by

the l-th DM for the attribute X j, i.e. the l-th DM
wants the alternative performances to be equal to or
greater (lower) than vl

j if an increasing (decreasing)
component utility function is associated with attribute
X j. Consequently, the veto interval for the l-th DM is,
(0;vl

j] in attribute X j. For simplicity’s sake, we will
consider from now on that component utility func-
tions are increasing.

A veto range can then be identified in each at-
tribute [vL

j ;v
U
j ], where vL

j = rL
j , being [rL

j ;r
U
j ] the at-

tribute range, and vU
j = maxl=1;::;rfvl

jg, i.e. the high-
est veto value for attribute X j for the r most important
DMs.

We build an adjust range for each attribute X j,
(aL

j ;a
U
j ], with aL

j = vU
j = maxl=1;::;rfvl

jg, i.e. the high-
est veto value for attribute X j for the r most important
DMs, and aU

j = maxl=1;:::;kfvl
jg, i.e. the highest veto

value for attribute X j considering all DMs.
We add the above information to the additive

multi-attribute utility function by means of the follow-
ing functions:

� v(Ai) is the veto function that checks if the per-
formances for a given Ai are within the respective
veto intervals:

v(Ai) =
n

Õ
j=1

v j(Ai);

with v j(Ai) =

�
1; if xi j > vU

j
0; if xi j � vU

j
:

Note that v(Ai) = 0 if at least one performance
is within the veto interval for the corresponding
attribute.

� d j(Ai) is the adjust function that decreases the
utility associated with the alternative perfor-
mances within the corresponding adjust range.
One possible approach is to apply a linear adjust
function:

d j(Ai) =

8>><>>:
1 if xi j > aU

j
xi j�aL

j

aU
j �aL

j
if aL

j < xi j � aU
j

0 if xi j � aL
j

:

However, we believe that the veto values for the
k � r less important DMs should be added by

means of this adjust function. Veto values pro-
vided by the k� r DMs may be within the adjust
interval. In this case, we use this information to
build a piecewise linear function.
For example, let us assume that the adjust range is
[20;50], 50 being the highest veto value provided
by the DMs. Then, if three of the k� r less im-
portant DMs have provided the veto values 23, 28
and 35, i.e. veto values within the adjust range,
then the adjust function shown in Fig. 1 could be
plotted accounting for the above information.

Figure 1: Example of adjust function.

The adaptation of the additive multi-attribute util-
ity function to account for the veto and adjust func-
tions would be as follows:

ul(Ai) = [
n

å
j=1

u j(xi j)wl
jd j(Ai)]� v(Ai): (2)

This expression would then be used to derive a
ranking of the alternative under consideration for each
DM that should be aggregated taking into account
the relative importance of DMs to reach a consensus
ranking.

In the decision-making scenario under considera-
tion, however, we have assumed ordinal information
about weights, i.e. each DM has provided an attribute
importance ranking, wl . In the next section we de-
scribe how to derive an alternatives ranking on the
basis of the available ordinal information using dom-
inance measuring methods, which are based on the
notion of pairwise dominance. Then we review meth-
ods for aggregating rankings and select the best one
for our decision-making scenario, in which complete
rankings are available as well as their relative impor-
tance.

2.1 Deriving a Ranking of Alternatives
for each DM

A recent approach for dealing with imprecise infor-
mation, such as ordinal information about weights, is
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to compute different measures of dominance to de-
rive a ranking of alternatives (Ahn and Park, 2008;
Mateos et al., 2012; Jiménez et al., 2013; Aguayo,
2014; Mateos et al., 2014). These approaches known
as dominance measuring methods (DMMs). DMMs
are based on the computation of a dominance ma-
trix, D, including pairwise dominance values, which
are leveraged in different ways to derive measures of
dominance to rank the alternatives under considera-
tion.

The dominance matrix for the l-th DM, Dl , can be
defined as follows:

Dl =

0BBBBBB@

� Dl
12 � � � Dl

1(m�1) Dl
1m

Dl
21 � �� � Dl

2(m�1) Dl
2m

Dl
31 Dl

32 � � � Dl
3(m�1) Dl

3m
...

...
...

...
...

Dl
m1 Dl

m2 � � � Dl
m(m�1) �

1CCCCCCA ;

where
Dl

ks = minful(Ak)�ul(As)g
s:t:

wl
1 � :::� wl

n � 0
(3)

in our decision-making scenario accounting for veto
information, see Eq (2), and for ordinal information
about weights.

Note that given two alternatives Ak and As, alter-
native Ak dominates As if Dl

ks � 0, and there exists at
least one combination of weights such that the over-
all value of Ak is strictly greater than that of As: This
concept of dominance is called pairwise dominance.

The optimization problems to be solved to de-
rive pairwise dominance values are linear optimiza-
tion problems. Consequently, they can be?efficiently
solved using the simplex method. Note that ordinal
information could also be considered in the compo-
nent utilities, i.e., providing a ranking of the alterna-
tives and also of the difference between the values of
consecutive alternatives for each attribute, as in (Sara-
bando and Dias, 2010) or (Aguayo, 2014; Aguayo
et al., 2014). Then the resulting optimization prob-
lem would likewise be linear.

As already mentioned, the dominance matrix, Dl ,
including pairwise dominance values, is used in dif-
ferent ways to derive measures of dominance to rank
the alternatives under consideration in the DMMs.
For instance, in (Mateos et al., 2014) a DMM is pro-
posed, which derives a global dominance intensity in-
dex to rank alternatives on the basis that

Dl
ks � wlT (u(Ak)�u(As))��Dl

sk;

8wl j wl
1 � :::� wl

n � 0;

with u(Ai) = (u1(xi1)�d1(Ai); :::;un(xin)�dn(Ai)).
The DMM is implemented as follows:

1. If Dl
ks � 0, then alternative Ak dominates As, and

the dominance intensity of Ak over As (DIl
ks) is 1,

i.e., DIl
ks = 1.

Else (Dl
ks < 0):

- If Dl
sk � 0, then alternative Al dominates Ak,

and DIl
ks = 0.

- Else (Dl
sk < 0), DIl

ks =
�Dl

sk
�Dl

sk�Dl
ks

.

2. Calculate a global dominance intensity (GDI) for

each alternative Ak, i.e. GDIl
k =

m
å

s=1; s 6=k
DIl

ks, and

rank the alternatives according to them.
The performance of this method was compared in

(Mateos et al., 2014) with other existing approaches
(surrogate weighting methods, which select a weight
vector from a set of admissible weights to represent
the set (Stillwell et al., 1981); modified classical deci-
sion rules (Salo and Hamalainen, 2001; Puerto et al.,
2000), and the DMM proposed in (Ahn and Park,
2008)), where ordinal information represents impre-
cision concerning weights.

Monte Carlo simulation was used to demonstrate
that there is, according to the paired-samples t-test, no
significant difference between the DMM used in this
paper and the rank-order centroid weights method
(ROC), a surrogate weighting method, and that they
outperform the other methods in terms of average hit
ratios and rank-order correlations. However, ROC can
be only applied when ordinal relations regarding at-
tribute weights are provided, whereas DMM is more
generally applicable since it can also be used when the
imprecision concerning weights or even value func-
tions is represented in other ways, for example by in-
terval values, probability distributions or even fuzzy
numbers.

Note that the described dominance measuring
method is used to derive k rankings of alternatives,
i.e a ranking for each DM.

2.2 Aggregating the Ranking of
Alternatives

Different methods for aggregating rankings can be
found in the literature by different authors. (Lin,
2010) discusses three classes of methods, namely
distribution-based, heuristic, and stochastic optimiza-
tion search.

The original Thurstone scaling and its extensions
(Thurstone, 1931; Green, 1978) represent the first
class of methods that are most appropriate for aggre-
gating many short ranked lists. Heuristic algorithms
and stochastic search methods are applicable for ag-
gregating a small number of long lists.
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Heuristic algorithms are deterministic, ranging
from simple arithmetic averages of ranks (Borda’s
methods, (Borda, 1981)) to Markov chains and sta-
tionary distributions, in which only pairwise ranking
information is used (Dwork et al., 2001; DeConde
et al., 2006).

Stochastic search algorithms, on the other hand,
aim at maximizing a particular criterion. They are
usually distance measure dependent, and Kemeny
optimal aggregation (which optimizes the average
Kendall distances between a candidate aggregate list
and each of the input lists) is an example. However,
it is widely recognized that computing the Kemeny
optimal aggregate is NP-hard even when the number
of ranked lists to be aggregated is small. Stochastic
search algorithms based on the cross entropy Monte
Carlo approach, such as the order explicit algorithm
(Lin and Ding, 2009), provide an alternative for find-
ing an optimal solution while circumventing the com-
binatorial nature of the problem. Instead of imposing
a discrete uniform distribution on all the potential so-
lutions, an iterative importance sampling technique is
utilized to slowly tighten the net to place most distri-
butional mass on the optimal solution and its neigh-
bors. Extensive simulation studies were performed to
assess the performance of the method, leading to sat-
isfactory results.

Besides, (Niu et al., 2013) divides rank aggrega-
tion methods into two categories according to the way
in which rank information is used: explicit and im-
plicit rank aggregation methods. Explicit methods di-
rectly utilize rank information to define the ranking
function or the objective function, whereas, for im-
plicit methods, other information, such as pairwise
preference or list-wise ranking is first gathered based
on the rank information and then leveraged for rank
aggregation.

Note also that the above methods can be catego-
rized taking into account whether they assume a com-
plete, partial or top k-rank ranking of the alternatives
and whether the analysis includes the relative impor-
tance of the rankings.

In our decision-making scenario, complete rank-
ings and the relative importance of such rankings (rel-
ative importance of DMs) are available. Moreover,
the values that lead to the corresponding rankings
(global dominance intensities) are also available. The
only aggregation methods that exploit all the above
information is the Kemeny method (Kemeny, 1959)
and its extensions.

As already mentioned, Kemeny optimal aggrega-
tion optimizes the average Kendall distances between
a candidate aggregate ranking and each of the input
rankings. As computing the Kemeny optimal aggre-

gate is NP-hard even when the number of ranked lists
to be aggregated is small, we have used the order ex-
plicit algorithm (OEA)(Lin and Ding, 2009) to solve
the combinatorial problem under consideration.

OEA uses a global optimization technique,
called the cross-entropy Monte Carlo method, which
searches iteratively for an optimal list that minimizes
a criterion, the sum of weighted distances between
the candidate (aggregate) list and each of the in-
put ranked lists. The method is, however, general
and amenable to any other optimization criterion. A
modified Kendall’s tau measure and the Spearman’s
footrule, as described in (Fagin et al., 2003), are used
to measure the distance between two ranked lists.

3 AN ILLUSTRATIVE EXAMPLE

We consider five DMs whose relative importance is
wDM1 = 0:35�wDM2 = 0:25�wDM3 = 0:2�wDM4 =
0:1=wDM5 = 0:1. Seven alternatives fA1; :::;A7gwill
be analyzed on the basis of four attributes fX1; :::;X4g,
whose ranges are [0,100] in all cases.

The corresponding veto will be effective for only
the three most important DMs. Table 1 shows the
veto values provided by the DMs. Note that except
for DM1 DMs do not provide veto values for all at-
tributes and the only veto for attribute X4 is provided
by DM1.

Table 1: Veto values for DMs.

X1 X2 X3 X4
DM1 20 15 10 20
DM2 15 10 5 -
DM3 25 10 - -
DM4 30 25 - -
DM5 27 10 - -

Each DM expresses the relative importance of the
attributes under consideration, see Table 2. We as-
sume that the four component utility functions are lin-
ear and increasing in the attribute ranges, [0;100], for
the five DMs.

Table 2: Relative importance of attributes for DMs.

Relative importance of attributes
DM1 w1 � w2 � w3 � w4
DM2 w1 � w3 � w2 � w4
DM3 w3 � w1 � w2 � w4
DM4 w1 � w3 � w4 � w2
DM5 w2 � w1 � w4 � w3

Table 3 shows the alternative performances for the
four attributes under consideration as well as the veto
and adjust ranges for each attribute.
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Table 3: Alternative performances and veto and adjust
ranges.

X1 X2 X3 X4
A1 35 60 40 35
A2 20 20 40 65
A3 26 27 30 94
A4 40 35 50 63
A5 35 85 10 33
A6 60 17 20 45
A7 27 65 20 45

Veto range [0;25] [0;15] [0;10] [0;20]
Adjust range (25;30] (15;25] - -

The adjust functions for attributes X1 and X2 are
shown in Fig. 2. Note that the adjust function for at-
tribute X2 is a linear function since none of the DMs
provided a veto value within the adjust range, whereas
the adjust function for attribute X1 is a piecewise util-
ity function since the veto value 27 corresponding to
DM5 is within the adjust range and assigned a value
0:5.

Figure 2: Adjust functions for attributes X1 and X2.

Table 4 shows the values output by the veto and
adjust function for the alternative performances in-
cluded in Table 3. The performances of alternatives
A2 and A5 for attributes X1 and X3, respectively, are
vetoed. The utility for those alternatives will be 0, see
Eq. 2, and both will always be the two worst-ranked
alternatives and will, therefore, be worst ranked in the
consensus ranking. Consequently, we have omitted
these alternatives from further analyses.

Besides, adjust functions decrease the component
utility associated with alternatives A3 and A7 for at-

tribute X1 and with alternatives A2 and A6 for attribute
X2.

Table 4: Veto and adjust values.

v(Ai) d1(Ai) d2(Ai)
A1 1 1 1
A2 0 0 0.5
A3 1 0.25 1
A4 1 1 1
A5 0 1 1
A6 1 1 0.2
A7 1 0.5 1

Optimization problems can be solved using the sim-
plex method to derive the dominance matrices corre-
sponding to the five DMs. Dominance matrices are as
follows:

D1 =

0BBB@
� :031 :05 �:248 :066
�:306 � �:334 �:532 �:224
�:099 :076 � �:198 �:017
�:171 �:07 �:149 � �:075
�:214 �:035 �:281 �:463 �

1CCCA ;

D2 =

0BBB@
� :031 :075 �:248 :066
�:284 � �:334 �:532 �:116
�:033 :076 � �:198 :088
�:171 �:022 �:149 � �:05
�:214 �:035 �:264 �:463 �

1CCCA ;

D3 =

0BBB@
� :031 �:099 �:024 :116
�:237 � �:266 �:216 �:116
�:033 :076 � :05 :088
�:199 �:099 �:299 � �:05
�:207 �:099 �:299 �:231 �

1CCCA ;

D4 =

0BBB@
� �:067 �:143 �:248 :066
�:284 � �:334 �:532 �:069
:045 :075 � �:198 :111
�:104 �:072 �:149 � �:037
�:214 �:173 �:281 �:463 �

1CCCA ;

D5 =

0BBB@
� :008 �:045 :072 �:049
�:329 � �:207 �:148 �:378
�:249 :035 � :058 �:298
�:564 �:235 �:315 � �:613
�:082 �:035 �:111 :037 �

1CCCA :

Note that the alternatives corresponding to the rows
and columns of the above dominance matrices are A1,
A3, A4, A6 and A7, since A2 and A5 were removed
from the analysis.

The dominance measuring method described in
the previous section is then applied to compute global
dominance intensities (GDIs) for each DM on the ba-
sis of which to derive the corresponding ranking of
the considered alternatives.

Table 5 shows the GDIs associated with each alter-
native, whereas Table 6 shows the resulting rankings
of alternatives for the DMs under consideration.

ICORES�2015�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

104



Table 5: Global dominance intensities.

DM1 DM2 DM3 DM4 DM5
A1 5.4 5.4 5.1 4.1 5.5
A3 2.2 2.3 2.8 3.0 2.7
A4 4.3 4.4 5.7 5.4 4.4
A6 4.9 5.0 3.6 5.1 2.4
A7 3.1 2.9 2.7 2.4 5.0

Table 6: Alternative rankings for DMs.

DM1 DM2 DM3 DM4 DM5
1st A1 A1 A4 A4 A1
2nd A6 A6 A1 A6 A7
3rd A4 A4 A6 A1 A4
4th A7 A7 A3 A3 A3
5th A3 A3 A7 A7 A6

Finally, Lin and Din’s method (OEA) is used to
aggregate the rankings in Table 6 also taking into ac-
count the relative importance of such rankings (rel-
ative importance of DM), wDM1 = 0:35 � wDM2 =
0:25 � wDM3 = 0:2 � wDM4 = 0:1 = wDM5 = 0:1, to
derive the consensus ranking shown in Table 7.

Table 7: Consensus ranking.

Alternative
1st A1
2nd A6
3rd A4
4th A7
5th A3

Note that alternative A1 is best ranked in the con-
sensus ranking, followed by A6 and A4. Alternative
A1 was best ranked by the two most important DMs
(DM1 and DM2) and by DM5, whereas it was placed
second by DM3. Although alternative A4 was first
ranked by DM3 and DM4, the relative importance of
both DMs in the consensus is only 0:3, and A4 is
placed third by the other three DMs.

Note also that the ranking for DM1 matches the
consensus ranking. A sensitivity analysis was carried
out to identify the weight of DM1 for which the con-
sensus ranking differed. To do this, wDM1 is progres-
sively decreased, the remaining weights proportion-
ally updated and the consensus ranking recomputed.
The value for wDM1 that makes the consensus rank-
ing different than the DM1’s ranking is 0:2166, and
the corresponding consensus ranking is A1, A4, A6,
A7 and A3. We found that A1 is the best-ranked alter-
native no matter what the value of wDM1 is.

4 CONCLUSIONS

In this paper we have extended the additive multi-
attribute utility model to incorporate the concept of
veto as an approximation to real situations to repre-
sent the limits of the DM preferences.

Although all DMs are allowed to provide veto val-
ues, the corresponding vetoes are effective for only
the most important DMs. They are used to define
veto ranges. Veto values corresponding to the other
less important DMs are partially taken into account,
leading to the construction of adjust ranges. A veto
and an adjust function are then incorporated into the
additive model.

A dominance measuring method is used to ac-
count for imprecise information (ordinal information
about weights) in the decision-making scenario and to
derive the ranking of alternatives, whose performance
has been analyzed in the literature using Monte Carlo
simulation techniques.

Finally, Kemeny’s method was selected to aggre-
gate the alternative rankings from the DMs since it is
the method that best fits the decision-making infor-
mation, i.e. both complete rankings (and the respec-
tive global dominance intensities) and their relative
importance are available.

As computing the Kemeny optimal aggregate is
NP-hard, a stochastic search method, the order ex-
plicit algorithm proposed by Lin and Din, was used
to solve this combinatorial problem.

We propose the possibility of using trapezoidal
fuzzy numbers to aggregate group preferences regard-
ing the attribute weights as a future research line.
Then, a fuzzy dominance matrix would be computed
and a dominance-measuring method accounting for it
would be used to derive a fuzzy ranking of alterna-
tives for each DM. Finally, a fuzzy ranking aggrega-
tion process would be performed to derive a consen-
sus ranking.

Another research line is the study of parameter r,
i.e. the number of DMs whose vetoes are effective on
the basis of a threshold on their relative importance.
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Mateos, A., Jiménez, A., and Blanco, J. (2012). Measur-
ing method performance under incomplete informa-
tion about weights. Journal of Multicriteria Decision
Analysis, 19(3-4):129–142.
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