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Abstract: Person re-identification from facial captures remains a challenging problem in video surveillance, in large
part due to variations in capture conditions over time. The facial model of a target individual is typically
designed during an enrolment phase, using a limited number of reference samples, and may be adapted as new
reference videos become available. However incremental learning of classifiers in changing capture conditions
may lead to knowledge corruption. This paper presents an active framework for an adaptive multi-classifier
system for video-to-video face recognition in changing surveillance environments. To estimate a facial model
during the enrolment of an individual, facial captures extracted from a reference video are employed to train
an individual-specific incremental classifier. To sustain a high level of performance over time, a facial model
is adapted in response to new reference videos according the type of concept change. If the system detects
that the facial captures of an individual incorporate a gradual pattern of change, the corresponding classifier(s)
are adapted through incremental learning. In contrast, to avoid knowledge corruption, if an abrupt pattern
of change is detected, a new classifier is trained on the new video data, and combined with the individual’s
previously-trained classifiers. For validation, a specific implementation is proposed, with ARTMAP classifiers
updated using an incremental learning strategy based on Particle Swarm Optimization, and the Hellinger Drift
Detection Method is used for change detection. Simulation results produced with Faces in Action video data
indicate that the proposed system allows for scalable architectures that maintains a significantly higher level of
accuracy over time than a reference passive system and an adaptive Transduction Confidence Machine-kNN
classifier, while controlling computational complexity.

1 INTRODUCTION

Face recognition (FR) has become an important func-
tion in several types of video surveillance (VS) ap-
plications. For instance, inwatch-list screening, FR
systems seek to determine if a target face captured in
video streams corresponds to an individual of inter-
est in a watchlist. Inperson re-identification, a FR
system seek to alert a human operator as to the pres-
ence of individuals of interest appearing in either live
(real-time monitoring) or archived (post-event analy-
sis) video streams. These applications rely on the de-
sign of a representative facial model1 to perform tem-

1A facial model is defined as either a set of one or more
reference face captures (used for template matching), or a
statistical model (used for classification).

plate matching or classification.Watch-list screening
uses one or more regions of interest (ROIs) extracted
from reference still images or mugshots, while inper-
son re-identificationROIs are extracted from refer-
ence videos and tagged by a human operator.

This paper focuses on the design of robust face
classification systems for video-to-video FR in chang-
ing surveillance environments, as required inperson
re-identificationor search and retrieval. For exam-
ple, in such applications, the operator can isolate a
facial trajectory2 for an individual over a network
of cameras, and enrol a face model to the system.
Then, during operations, facial regions captured in

2A facial trajectory is defined as a set of ROIs (isolated
through face detection) that correspond to a same high qual-
ity track of an individual across consecutive frames.
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live or archived video streams are matched against fa-
cial models of target individuals of interest to be fol-
lowed. It is assumed that holistic facial models are es-
timated by training a neural network or statistical clas-
sifier on reference ROI patterns extracted from oper-
ational videos using a face detector. In this context,
the performance of state-of-the-art commercial and
academic systems is limited by the difficulty in cap-
turing high quality facial regions from video streams
under semi-controlled (e.g., at inspection lanes, por-
tals and checkpoint entries) and uncontrolled (e.g., in
cluttered free-flow scenes at airports or casinos) cap-
ture conditions. Performance is severely affected by
the variations in pose, scale, orientation, expression,
illumination, blur, occlusion and ageing.

More precisely, given a face classifier, the vari-
ous conditions under which a face can be captured
by video cameras are representative of differentcon-
cepts, i.e. different data distributions in the input fea-
ture space. These concepts contribute to the diversity
of an individual’s face model, and underlying class
distributions are composed by information from all
possible capture conditions (e.g. pose orientations
and facial expressions that could be encountered dur-
ing operations).

However, in practice, ROIs extracted from videos
are matched against facial models designed a priori,
using a limited number of reference captures collected
during enrolment. Incomplete design data and chang-
ing distributions contribute to a growing divergence
between the facial model and the underlying class dis-
tribution of an individual. In person re-identification
applications, reference video containing an individ-
ual of interest may become available during opera-
tions or through some re-enrolment process. Under
semi or uncontrolled capture conditions, the corre-
sponding ROIs may be sampled from various con-
cepts (e.g., with different facial orientation), but the
presence of all the possible concepts inside a sin-
gle reference sequence cannot be guaranteed. For
this reason, a system for video-to-video FR should be
able to assimilate new reference trajectories over the
time (as they become available) in order to add newly
available concepts to the individuals’ facial models,
as they may be relevant to perform FR under future
observation conditions. Therefore, adapting facial
models to assimilate new concepts without corrupting
previously-learned knowledge is an important feature
for FR in changing real-world VS environments.

In this paper, an active framework for an adaptive
multi-classifier system is proposed for video-to-video
FR as seen in person re-identification applications. It
maintains a high level of performance in changing
VS environments by adapting its face models to con-

cepts emerging in new reference videos, without cor-
rupting the previously acquired knowledge. A spe-
cific implementation is proposed using, for each tar-
get individual enrolled to the system, a pool of two-
class incremental ARTMAP neural network classi-
fiers (Carpenter et al., 1992) optimized using an in-
cremental learning strategy based on Dynamic Nich-
ing PSO (DNPSO) (Nickabadi et al., 2008; Connolly
et al., 2012). Pools are combined using the weighted-
average score-level fusion. When a new reference
trajectory becomes available for enrolment or adapta-
tion of an individual’s face model, a change detection
mechanism based on Hellinger histogram distances
(Ditzler and Polikar, 2011) evaluates whether the cor-
responding ROI patterns exhibit gradual or abrupt
changes w.r.t. the previously-learned knowledge. If
the new reference samples exhibit gradual changes
w.r.t. a previously-stored reference distribution, the
corresponding classifier is updated using the DNPSO-
based learning strategy. If the new reference samples
present significant (or abrupt) changes compared to
all the previously-stored distributions, a new refer-
ence distribution is stored. A new classifier is then
trained on the new ROI patterns and combined with
the individual’s previously learned classifiers at the
score level.

The accuracy and resource requirements of the
proposed approach are compared to a passive ver-
sion (incremental only) of the framework, as well
as an adaptive version of a Transduction Confidence
Machine-kNN (TCM-kNN) system (Li and Wechsler,
2005), using ROIs extracted from real-world video
surveillance streams of the publicly-available Faces
in Action database (Goh et al., 2005). It is composed
of over 200 individuals captured over 3 sessions (sev-
eral months), and exhibits both gradual (e.g. expres-
sion, ageing) and abrupt (e.g. orientation, illumina-
tion) changes. A person re-identification scenario is
considered, where an analyst can label ROIs captured
in operational videos, and provide new sets of refer-
ence ROI patterns for adaptation. Each new set can
incorporate a different concept, for example a differ-
ent facial pose or illumination, and the system may
encounter ROIs from every possible concept during
its operation.

2 VIDEO-TO-VIDEO FACE
RECOGNITION

Many video FR techniques have been proposed in the
literature, relying on both spatial and temporal in-
formation to perform recognition (Zhou et al., 2006;
Barry and Granger, 2007; Matta and Dugelay, 2009).
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However, only a small subset is suitable for video-
to-video FR in video surveillance applications (C.
Pagano, E. Granger, R. Sabourin, 2012). For exam-
ple, research by Connolly et al. (Connolly et al.,
2012) are focused on N-class classifiers for video
FR in access control applications. In addition, some
specialized classification architecture have been pro-
posed for anopen-setrecognition environment, such
as FR in VS. Among them, the open-set TCM-kNN
is a global multi-class classifier employed with a spe-
cialized rejection option for unknown individuals (Li
and Wechsler, 2005).

This research focuses on modular systems de-
signed with individual-specific detectors (one or two-
class classifiers). In fact, individual-specific detec-
tors have been shown to outperform global classifiers
in applications where the design data is limited w.r.t.
the complexity of underlying class distributions and
to the number of features and classes (Oh and Suen,
2002). For example, Tax and Duin (Tax and Duin,
2008) proposed a heuristic to combine one-class clas-
sifiers for solving multi-class problems, where rejec-
tion thresholds are class-dependent. Given the lim-
ited amount of reference patterns and the complex-
ity of environments, class-modular approaches have
been extended to improve classification performance,
by assigning a classifier ensemble to each individual.
Pagano et al. (C. Pagano, E. Granger, R. Sabourin,
2012) proposed a system for FR in VS comprised
of an ensemble of 2-class ARTMAP classifiers per
individual, each one designed using target and non-
target patterns. In addition to the performance im-
provement, the advantages of class-modular architec-
tures in FR in VS (and biometrics in general) include
the ease with which biometric models of individuals
(classes) may be added, updated and removed from
the systems, and the possibility of specializing fea-
ture subsets and decision thresholds to each specific
individual.

To integrate new reference data, several adap-
tive methods have been proposed in the literature,
which can be differentiated by the level of the adap-
tation. While incremental classifiers (like ARTMAP
(Carpenter et al., 1992) and self-organizing (Fritzke,
1996) neural networks), adapt their internal param-
eters in response to new data, ensembles of classi-
fiers (EoC) allow for two levels of adaptation, updat-
ing the internal parameters of a swarm of classifiers,
and/or the selection and fusion function (Kuncheva,
2004). Updating a single classifier can translate to
low system complexity, but incremental learning of
ROI patterns extracted from videos that represent sig-
nificantly different concepts can corrupt the previ-
ously acquired knowledge (Connolly et al., 2012; Po-

likar and Upda, 2001). On the other hand, classifier
ensembles are well suited to prevent knowledge cor-
ruption, as previously acquired knowledge can be pre-
served by training a new classifier on the new data.
However, the benefits of EoC (accuracy and robust-
ness) are achieved at the expense of system complex-
ity (the number of classifiers grows). The time re-
quired for face classification grows with the number
of classifiers, and the structure of ROI pattern distri-
butions. The trade off between accuracy and com-
plexity is critical in VS applications, as the recogni-
tion may be performed in real time.

More recently, active approaches for adaptive
classification have been proposed in the literature,
exploiting a change detection mechanism to drive
on-line learning, such as the diversity for dealing
with drifts algorithm (Minku and Yao, 2012) and
the Just-in-Time architecture that regroups reference
templates per concept (Alippi et al., 2013). How-
ever these approaches have been developed for on-
line learning, where the goal is to adapt to the concept
currently observed by the system. Their adaptation
focuses on the more recent concepts, through weight-
ing or by discarding of previously-learned concepts,
which may degrade system performance w.r.t. other
concepts.

Although relevant to video-to-video face recogni-
tion due to their open-set nature and ability to adapt
to new data, these methods are not designed for a re-
identification scenario. They either increase the sys-
tem’s complexity with each newly available reference
sequence, or consider a single operational concept at
the expense of the previously-acquired knowledge.
In this paper, a new framework is proposed to per-
form active adaptation, allowing to refine facial mod-
els of individuals over time using new reference tra-
jectories without corrupting the previously acquired
knowledge, and controlling the system’s growth. De-
pending on the detected pattern of change, it relies on
a hybrid updating strategy that dynamically adapts an
ensemble of classifiers on the three possible levels:
the ensemble (adding new classifiers), the classifiers
(adapting their internal parameters), and the decision.

3 CONCEPT CHANGE AND FACE
RECOGNITION

In this paper, a mechanism is considered to detect
changes in the underlying data distribution, as can be
observed in new sets of reference ROI patterns pro-
vided by an operator in face re-identification appli-
cations. This mechanism triggers different updating
strategies depending on the nature of concepts ob-
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Table 1: Types of changes occurring in video surveillance environments.

Type of change Examples in video-to-video FR

1) random noise – inherent noise of system (camera, matcher, etc.)
2) gradual changes – ageing of user over time
3) abrupt changes – new unseen capture conditions (e.g. new pose angle, scale,etc.)
4) recurring contexts – unpredictable but recurring changes in capture conditions (e.g. daily

variations in artificial or natural illumination.)

served by the system in these sequences. This section
illustrates the relation between the abstract notion of
concepts and the real-world recognition problem - the
actual facial captures.

A conceptcan be defined as the underlying data
distribution of the problem at some point in time
(Narasimhamurthy and Kuncheva, 2007), and acon-
cept changeencompasses various types of noise,
trends and substitutions in the underlying data dis-
tribution associated with a class or concept. A cat-
egorization of changes has been proposed by Minku
et al. (Minku et al., 2010), based on severity, speed,
predictability and number of re-occurrences, but the
following four categories are mainly considered in the
literature: noise, abrupt changes, gradual changes and
recurring changes (Kuncheva, 2008).

In the context of video-to-video FR, a concept
is related to a specific capture condition of physio-
logical characteristic, and concept changes originate
from variations in those capture conditions and/or in-
dividuals’ physiology, which have yet to be integrated
into the system’s facial models. As shown in Table
1, they may range from minor random fluctuations
or noise, to sudden abrupt changes of the underly-
ing data distribution, and are not mutually exclusive
in real-word surveillance environments. In this pa-
per, video-to-video FR is performed under semi- and
uncontrolled capture conditions, and concept changes
are observed in new reference ROI patterns. The re-
finement of previously-observed concepts (e.g., new
reference ROIs are captured for previously seen pose
angles), corresponds to gradual changes, and data
corresponding to newly-observed concepts (e.g., new
ROIs are captured under previously unseen illumina-
tion conditions, or pose angles), corresponds to abrupt
changes. A new concept can also correspond to a re-
curring change as specific observation conditions may
be re-encountered in the future (e.g., faces captured
under natural vs. artificial lighting).

In proof of concept simulations, the system pro-
posed in Section 4 processed ROI patterns from the
Faces in Action (FIA) database (Goh et al., 2005). It
contains reference videos captured over 3 sessions,
and using camera for 0◦ and±72.6◦ pose angles.

Concept 1 Concept 2

Concept 3 Concept 4

Concept 1 Concept 2

Concept 3

Facial model of Individual 21 Facial model of Individual 71

Figure 1: The most representative reference ROIs of differ-
ent concepts detected by the proposed system for individu-
als 21 and 71 of the Faces in Action database.

Changes in the reference ROI patterns have been de-
tected for each individual of interest, and the corre-
sponding concepts have been integrated into the sys-
tem. Fig. 1 shows the most representative ROIs of the
different concepts detected for individuals 21 and 71
(the smallest Hellinger distance between an ROI pat-
tern and the histogram representation of the concept
by the system). Note that the system detected 4 differ-
ent concepts for individual 21, corresponding respec-
tively to: 2 frontal orientations with different facial
expressions, and 2 different profile views. In the same
way, 3 concepts have been detected for individual 71:
2 frontal orientations with different facial hair, and
a profile view. This illustrates the relation between
concepts detected by the system in the feature space,
and the capture conditions of the ROIs - these con-
cepts correspond to different observation conditions
encountered in ROIs from reference videos.

4 AN ADAPTIVE
MULTI- CLASSIFIER SYSTEM
FOR VIDEO-TO-VIDEO FR

Figure 2 presents an active framework for an adap-
tive multi-classifier system (AMCS) with change de-
tection and weighting that is specialized for video-to-
video FR in changing environments, as seen in person
re-identification applications. In this figure, the refer-
ence trajectories are presented as sets of ROIs for sim-
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Figure 2: Architecture of the proposedAMCSw for video-to-video FR in changing environments. The designand update
architecture for each individual of interesti is presented in (a), and the operational architecture (for all I individuals) in (b).

plification purposes, but the system can incorporate a
segmentation module prior to the feature extraction
and selection one to automatically extract ROIs from
a reference sequence.

Depending on the nature of ROI patterns extracted
from new reference videos, the proposed system re-
lies on three different levels of adaptation to maintain
the level of accuracy: (1) internal parameters of the
classifiers are updated through incremental learning
of data from already known concepts, (2) new classi-
fiers are added to assimilate new concepts, and (3), the
fusion of classifiers is updated. This hybrid approach
allows to preserve past knowledge of concepts, as
classifiers are only updated incrementally with ROI
patterns from similar concepts, otherwise new classi-
fiers are trained. This mechanism controls the growth
of the system, as new classifiers are only added when
necessary, i.e. when a set of significantly different
ROI pattern is presented to the system.

In this paper, a specific implementation of the pro-
posed weighted AMCS framework (calledAMCSw)
is presented using probabilistic fuzzy-ARTMAP
(PFAM) (Lim and Harrison, 1995) classifiers. PFAM
classifiers are incremental learning neural-networks
known to provide a high level of accuracy with mod-
erate time and memory complexity (Lim and Harri-
son, 1995). They rely on an unsupervised categoriza-
tion of the feature space into hyper-rectangles asso-
ciated to output classes through a MAP field, which

is then modelled as mixtures of Gaussian distribu-
tions to provide probabilistic prediction scores in-
stead of binary decisions. These classifiers are op-
timized with a DNPSO algorithm (Nickabadi et al.,
2008), as this updating strategy has already been suc-
cessfully applied to FR in video in (Connolly et al.,
2012). More precisely, DNPSO is a dynamic popula-
tion based stochastic optimization technique inspired
by the behaviour of a flock of birds (Eberhart and
Kennedy, 1995), which is used to determine optimal
sets of hyper-parametersh = (α,β,ε, ρ̄, r) of PFAM
classifiers w.r.t. validation data.

In addition, following the recommendations in
(Kittler and Alkoot, 2003) on the fusion of corre-
lated classifiers, an average score-level fusion rule
is considered for the ensembles of PFAM classifiers.
More precisely, to filter out ambiguities, the average is
weighted to favour scores that are highest w.r.t. their
threshold: for an individuali with a concept-specific
thresholdθi

k (determined with validation data for con-
ceptk), each scoresi

k(q) is weighted byωi
k, defined by

the confidence measure:

ωi
k = max{0,(si

k(q)−θi
k)} (1)

This weight reflects the quality of the input patternq
in reference to conceptk. Finally, for change detec-
tion, the Hellinger Drift Detection Method (HDDM)
presented in (Ditzler and Polikar, 2011) has been cho-
sen for its low computational and memory costs.

For each enrolled individuali = 1, ..., I , this mod-
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ular system is composed by a pool ofK i two-class
PFAM classifiersP i = {ICi

1, ..., IC
i
Ki}, K i ≥ 1 be-

ing the number of concepts detected in the individ-
ual’s reference ROI pattern sets. Decisions are pro-
duced using classifier-specific (concept) thresholds
{θi

1, ...,θ
i
Ki}, and a global user-specific thresholdΘi .

The supervised learning of new reference ROI pattern
sets by the 2-class PFAM classifiers is handled using
the DNPSO-training strategy presented in (Connolly
et al., 2012).AMCSw is an active system, where the
adaptation strategy is guided by change detection, us-
ing HDDM (Ditzler and Polikar, 2011). In order to
compare a new set of reference ROI patterns to all the
Ki previously-encountered concepts, histogram rep-
resentations{C i

1, ...,C
i
Ki
} are stored into a long-term

memoryLTMi . In addition, a short term memory
STMi is used to store reference data for design or
adaptation and for validation.

Algorithm 1: Strategy to design and adapt the facial
model of individuali with the proposedAMCSw.

Input: Set of new reference ROIs for individuali provided
by the operator at timet, Vsi [t]

Output: Updated classifier poolP i (K i = 1 or K i > 1)
1: Perform feature extraction and selection onVsi [t] to ob-

tain a set of ROI patternsA i [t]
2: STMi ← A i [t]
3: for each conceptk= 1 toK i do
4: Measureδi

k[t] the distance betweenA i [t] and the con-
cept representationC i

k using Hellinger distance
5: Compareδi

k[t] to the change detection thresholdβi
k[t]

of the conceptk
6: end for
7: if δi

k[t] > βi
k[t] for each conceptk ∈ [1,Ki ], or Ki = 0

then {Abrupt change or 1st concept}
8: K i ← K i +1
9: Set index of the chosen conceptk∗← K i

10: Generate the concept representationC i
K i from A i [t]

and store it intoLTMi

11: Initiate a DNPSO-learning strategy using data from
STMi , to obtain the best classifierICi

K i

12: UpdateP i ←{P i , ICi
K i}

13: else{Gradual change}
14: Determine the index of the closest conceptk∗ =

min{δi
k[t] : k= 1, ...,K i}

15: Re-initiate a DNPSO-learning strategy using data
from STMi , to obtain the updated best classifierICk∗

16: end if
17: for each conceptk= 1 toK i do
18: Compute the classifier specific thresholdθi

k using
data fromSTMi {see Section 5.3}

19: end for
20: Compute the user specific thresholdΘi using data from

STMi {see Section 5.3}

The class-modular architecture ofAMCSw allows

to design and update facial models independently for
each individual of interesti, according to Alg. 1 and
Fig. 2a. When a new set of reference ROIsVsi [t]
is provided by the operator at timet, relevant fea-
tures are first extracted and selected from each ROI
in order to produce the corresponding set of ROI pat-
ternsA i [t]. STMi temporarily stores validation data
used for classifier design and threshold selection. The
change detection process assess whether the under-
lying data distribution exhibits significant changes
compared to previously-learned data. For this pur-
pose, the system compares previously-observed con-
cepts{C i

1, ...,C
i
Ki} stored inLTMi andA i [t] using the

Hellinger distance, following:

δi
k[t] =

1
D

D

∑
d=1

√

√

√

√

B

∑
b=1

(√

A(b,d)

∑B
b′=1 A(b′,d)

−
√

C i
k(b,d)

∑b
b′=1 C i

k(b
′,d)

)2

(2)

whereD is the dimensionality of the feature space,
B the number of bins inA andC i

k, andA(b,d) and
C i

k(b,d) the frequency count in binb of featured.
If a significant (abrupt) change is detected be-

tweenA i [t] and all the stored concept models, or if
Vsi [t] is the first reference sequence for the individ-
ual (no previous concept has been stored), a new con-
cept is assumed. More precisely, an abrupt change
betweenC i

k andA i [t] is detected ifδi
k[t]> βi

k[t], with
βi

k[t] an adaptive threshold computed from the previ-
ous distance measures following:

βi
k[t] = δ̂i

k+ tα/2.
σ̂√
∆t

(3)

whereα is the confidence interval of the t-statistic
test, ∆t the total amount of past distance measures,
andδ̂i

k andσ̂ their average and variance. In this case,
K i is incremented, and a new incremental classifier
ICi

Ki is designed for the concept (ICi
1 if the first con-

cept) using the training and adaptation module with
the data fromSTMi . When a moderate (gradual)
change is detected, the classifierICi

k∗ corresponding
to the closest concept representationC i

k∗ is updated
and evolved through incremental learning.

Finally, if several concepts are stored in the sys-
tem,P i is updated to combine the most accurate clas-
sifiers of the known concepts: if a new concept has
been detected, a new classifierICi

Ki is added toP i ,
and if a known conceptk∗ is updated, the correspond-
ing classifierICi

k∗ is updated. If only one concept has
been detected, a single classifier is assigned to the in-
dividual, P i = ICi

1. The fusion of classifiers is per-
formed at score level, using a weighted average to
favour scores that are highest w.r.t. their threshold.
For this purpose, classifier specific thresholdsθi

k are
determined with validation data for conceptk, and a
user specific thresholdΘi is also computed.
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During operations, when theAMCSw is not de-
signing or updating facial models, it functions ac-
cording to the architecture shown in Fig. 2b. The
system extracts a patternq in response to input ROI
from face detection. Then, an overall score is com-
puted for each individual poolP i through fusion of
PFAM classifiers’ scoressi

k(q) (k = 1, ...,K i), using
weighted average fusion. Each scoresi

k(q) is multi-
plied by the weightωi

k computed following Eq. 1.

The weighted average∑Ki

k=1 ωi
k.s

i
k is then compared to

the class specific thresholdΘi to produce the overall
decisiondi(q).

5 EXPERIMENTAL
METHODOLOGY

5.1 Video Database

The Carnegie Mellon University Faces In Action
(FIA) face database (Goh et al., 2005) has been used
to evaluate the performance of the proposed system. It
is composed of 20-second videos capturing the faces
of 221 participants in both indoor and outdoor sce-
nario, each video mimicking a passport checking sce-
nario. Videos have been captured at three different
horizontal pose angles (0◦ and±72.6◦), each one with
two different focal length (4 and 8mm). For the exper-
iments of this paper, all ROIs have been segmented
from each frame, using the OpenCV v2.0 implemen-
tation of the Viola-Jones algorithm (Viola and Jones,
2004), and the faces have been rotated to align the
eyes (to minimize intra-class variations (Gorodnichy,
2005)). ROIs have been scaled to a common size of
70x70 pixels, which was the smallest detected ROI.
Features have finally been extracted with the Multi-
Bloc Local Binary Pattern (LBP) (Ahonen, 2006) al-
gorithm features for block sizes of 3x3, 5x5 and 9x9
pixels, concatenated with the grayscale pixel intensity
values, and reduced toD = 32 features using Princi-
pal Component Analysis. The dimensionality of the
final feature space has been determined through pre-
liminary experiments,D = 32 being the smallest di-
mensionality that could be performed without reduc-
ing classification performance.

The FIA videos have been separated into 6 sub-
sets, according to the different cameras (left, right and
frontal face angle, with 2 different focal length, 4 and
8 mm) for each one of the 3 sessions, and for each in-
dividual. Only indoors videos for the the frontal angle
(0◦) and left angle (±72.6◦) are considered for exper-
iments in this paper.

5.2 Simulation Scenario

Ten (10) individuals of interests have been selected as
target individuals, subject to two experimental con-
straints: 1) they appear in all 3 sessions, and 2), at
least 30 ROIs for every frontal and left videos have
been detected by the OpenCV segmentation. The
ROIs of the remaining 200 individuals are mixed into
a Universal Model (UM), to provide classifiers with
non-target samples. Only 100 of those individuals
have been randomly selected for the training UM, to
ensure that the scenario contains unknown individuals
in testing (i.e.the remaining 100 whose samples have
never been presented to the system during training).

To avoid bias due to the more numerous ROI sam-
ples detected from the frontal sessions, the original
FIA frontal sets have been separated into two sub-
sets, forming a total of 9 sets of reference ROI pat-
terns for design and update (see Table 2). Simulations
emulate the actions of a security analyst in a decision
support system that provides the systems with new
reference ROI pattern sets. The reference setsVsi [t]
are presented to update the face models of individuals
i = 1, ..,10 at a discrete timet = 1,2, ...,9.

Reference sets used for design are populated us-
ing the ROI patterns from the same individual, from
the cameras with 8-mm focal length in order to pro-
vide ROI patterns with better quality. ROIs captured
during 3 different sessions and 2 different pose angles
may be sampled from different concepts, and the tran-
sition from sequence 6 to 7 (change of camera angle)
represents most abrupt concept change in the refer-
ence ROI patterns. Changes observed from one ses-
sion to another, such as from sequences 2 to 3, 4 to
5, 7 to 8 and 8 to 9 depends on the individual. As
faces are captured over intervals of several months,
both gradual and abrupt changes may be detected.

For each time stept = 1,2, ...,9, the systems are
evaluated after adaptation on the same test dataset,
emulating a practical security checkpoint station
where different individuals arrive one after the other.
The test dataset is composed by ROI patterns from
every session and pose angle to simulate face re-
identification applications where different concepts
may be observed during operations, but where the
analyst gradually tags and submits new ROI patterns
to the system to adapt face models. Every different
concept (face capture condition) for which the system
can adapt is present in the test data, and thus should
be preserved over time. In order to present different
facial captures than the ones used for training, only
the cameras with 4-mm focal length are considered
for testing. While every facial capture is scaled to
a same size, the shorter focal length adds additional
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Table 2: Correspondence between the 9 reference ROI patternsets of the experimental scenario and the originalFIA video
sequences.

Time stept 1 2 3 4 5 6 7 8 9

Reference ROI
pattern sets

Vs[1] Vs[2] Vs[3] Vs[4] Vs[5] Vs[6] Vs[7] Vs[8] Vs[9]

Corresponding
FIA sequence

Frontal
camera,
session 1

Frontal
camera,
session 2

Frontal
camera,
session 3

Left cam-
era, ses-
sion 1

Left cam-
era, ses-
sion 2

Left cam-
era, ses-
sion 3

noise (lower quality ROIs), thus accounting for refer-
ence ROIs that do not necessarily originate from the
same observation environment in a real-life surveil-
lance scenario.

5.3 Protocol for Validation

For each time stept = 1, ...,9, and each individual
i = 1, ...,10, a temporary datasetdbLearni is gener-
ated, and used to perform training and optimization of
2-class PFAM networks. It is composed of ROI pat-
terns (after feature extraction and selection) from the
reference set of the individual of interest (target) at
time t, as well as twice the same amount of non target
patterns equally selected from the UM dataset and the
Cohort Model (CM) of the individual (samples from
the other individuals of interest). Selection of non tar-
get pattern is performed using theCondensed Near-
est Neighbor(CNN) algorithm (Hart, 1968). About
the same amount of target and non-target patterns is
generated using CNN, as well as the same amount of
patterns not selected by the CNN algorithm, in order
to have patterns close to the decision boundaries be-
tween target and non-target, as well as some patterns
corresponding to the center of mass of the non target
population.

The experimental protocol follows the (2x5 fold)
cross-validation process to produce 10 independent
replications, with pattern order randomization at the
5th replication. For each independent replication,
dbLearni is divided into the following subsets based
on the 2x5 cross-validation methodology (with the
same target and non-target proportions): (1)dbTraini

(2 folds): the training dataset used to design and up-
date the parameters of PFAM networks, (2)dbValep

i

(1 fold): the first validation dataset used to select the
number of PFAM training epochs (the amount of pre-
sentations of patterns fromdbTraini to the networks)
during the DNPSO optimization, and (3),STMi (2
folds): the second validation dataset, used, to perform
the DNPSO optimization. Using recommended pa-
rameters in (Connolly et al., 2012), an incremental
learning strategy based on DNPSO is then employed
to conjointly optimize all parameters of these clas-

sifiers (weights, architecture and hyper-parameters)
such that the area under the P-ROC curve is mini-
mized.

When a gradual change is detected, and a
previously-learned concept is updated, an existing
swarm of classifiers is re-optimized using the DNPSO
training strategy. The optimization resumes from the
last state – the parameters of each classifier of the
swarm. On the other hand, when an abrupt change
is detected, a completely new swarm is generated and
optimized for the new conceptC i

Ki . The classifier spe-
cific thresholdθi

k∗ is computed from a ROC curve pro-
duced by the classifierICi

k∗ over validation data from
the conceptk∗, satisfying the constraintf pr ≤ 5%
for the highestt pr value. The classifiers from each
concept are then combined intoP i = {ICi

1, ..., IC
i
Ki},

and another validation ROC curve is produced for the
combined pool response, from which the class spe-
cific thresholdΘi is selected with the same constraint.

The proposed system is compared to a modular
version of the original system proposed in (Connolly
et al., 2012), which is a passive approach. In essence,
it behaves like anAMCSw that would never detect
a change, and thus always incrementally learn new
data for the same concept with the same incremen-
tal classifier. In addition, an adaptive version of the
open-set TCM-kNN (Li and Wechsler, 2005) is also
evaluated, as such system has already been applied
to video-to-video FR. The same reference sequences
are provided to the TCM-kNN system, and, since it
is based on the kNN classifier, the update of the pro-
totypes is straightforward. In addition, to adapt its
whole architecture, its parameters are also updated at
every time step, as well as the value ofk (for thekNN)
which is validated through (2x5 folds) cross valida-
tion. Finally, a final decision thresholdΘi is validated
for each individual of interest using the same method-
ology thanAMCSw.

To measure system performance, the classifiers
are characterized by their precision-recall operating
characteristics curve (P-ROC), and the area under this
P-ROC (AUPROC). Precision is defined as the ratio
TP/(TP+FP), with TP andFP the number of true
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and false positive, and recall is another denomination
of the true positive rate (t pr). The precision and recall
measures can be summarized by the scalarF1 measure
for a specific operational point. Precision-recall mea-
sures enable to consider to focus on the performance
over target samples, which is of a definite interest in a
face re-identification application where the system is
presented with a majority of non-target samples. Fi-
nally, as the number of prototypes is directly propor-
tional to the time and memory complexity required to
classify and input ROI pattern during operations, sys-
tem complexity is measured as the sum of the num-
ber of prototypes (F2 layer neurons for all the PFAM
classifiers in a pool) forAMCSw and the passive refer-
ence system, and the number of stored reference ROI
pattern in TCM-kNN.

6 RESULTS AND DISCUSSIONS

Table 3: Changes detected per individual of interest
(marked as a X) for each time step. The ID correspond to
the IDs of the 10 individuals selected as target.

ID Time stept Tot.1 2 3 4 5 6 7 8 9
2 X X X 3
21 X X X X 4
69 X X X X 4
72 X X X 3
110 X X X X 4
147 X X X X 4
179 X X X X 4
190 X X X 3
198 X X X 3
201 X X X X X 5
Tot. 10 0 6 0 8 1 8 2 2

For each target individual, Table 3 presents the time
steps when changes have been detected, as well as the
total number of detections.t = 1 corresponds to the
initialization of the first concepts of each individual,
which is when the maximum number of changes (10)
have been detected. Then, it can be observed that the
3 highest detection counts (6, 8 and 8 individuals) oc-
cur att = 3, 5 and 7. These changes correspond to the
introduction of training samples from the second and
third frontal session, and the first profile session (left
face angle). This result confirms the relation between
change detection in the feature space and the obser-
vation environment. In fact, those 3 time steps are
the most likely to exhibit significant abrupt changes:
t = 3 andt = 5 respectively present data captured at
least 2 and 3 months after the data presented att = 1,
and t = 7 is the first introduction of faces captured
from a different angle.

Fig. 3 shows the average overall transaction-level
performance of the compared systems, for the 10 in-
dividuals of interest according to the globalAUPROC
measure over allf pr values (Fig. 3a), andF1 mea-
sures (Fig. 3b) at an operating point selected (during
validation) to respect the constraintf pr ≤ 5%. Per-
formance is assessed on predictions for each ROI pat-
tern captured in test sequences (transactional level),
after the systems are updated on each adaptation ROI
pattern set.

It can be observed that theAUPROCperformance
(Fig. 3a) for the proposedAMCSw is significantly
higher than the adaptive TCM-kNN throughout the
entire simulation. In addition, although higher than
the adaptive TCN-kNN, the performance of the pas-
sive AMCS is also significantly lower thanAMCSw
from t = 3 until the end.AMCSw starts at 0.75±0.03,
and continues to increase as new ROI pattern sets are
used to adapt face models, to end at 0.89±0.02. Al-
though starting at the same performance level, the
passive AMCS exhibits a less significant improve-
ment over the time, ending at 0.82± 0.03. Finally,
TCM-kNN starts at 0.51± 0.02, and gradually in-
creases to 0.58±0.02 after the last reference set,

The same observations can be made for theF1
performance (Fig. 3b) ofAMCSw and TCM-kNN.
AMCSw starts at 0.47± 0.06 and increases to end a
0.76±0.04, while TCM-kNN starts at 0.26±0.02 to
end at 0.37± 0.02. In addition, theF1 performance
of the passive AMCS illustrates the knowledge-
corruption that may occur when training an incre-
mental classifier with data originating from different
concepts. Although close toAMCSw up to t = 6, its
performance significantly drops from 0.63± 0.05 to
0.53±0.08 att = 7, as a consequence of the presen-
tation of reference data from the first profile session,
and remains belowAMCSw for the rest of the simula-
tion, to end at 0.64±0.08.

It can also be noted that thef pr measure (Fig. 3c)
of AMCSw and the passive AMCS remain under the
operation constraint of 5% fixed in validation, starting
at 1.3%± 0.6 and ending at respectively 4.0%± 1.1
and 3%± 1.2. However, thef pr measure of TCM-
kNN is always above the operational constraint, start-
ing at 7.0%±0.5 and ending at 10.1%±0.7.

Finally, in addition to exhibiting significantly bet-
ter classification performance, the memory complex-
ity of AMCSw is significantly lower than TCM-kNN
(Fig. 3d). The memory complexity of TCM-kNN
grows to about 900 prototypes after the 9 adaptation
sequences, whileAMCSw ends with 250±13.7 proto-
types. As only a single incremental classifier is used
for the passive AMCS, its memory complexity is the
lowest, with 201± 28 prototypes. Considering that
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Figure 3: Average overall transaction-levelAUPROC(a),F1(b) and f pr(c) performance ofAMCSw and TCM-kNN, after the
integration of the 9 pattern sets.t = [1,2] corresponds to the 1st frontal angle set,t = [3,4] the 2nd frontal angle set,t = [5,6]
the 3rd frontal angle set, andt = {7,8,9} to the 1st, 2nd and 3rd left angle sets respectively. Memory complexity (d) is
measured as the number of prototypes for theAMCSw pools and TCM-kNN systems after adaptation for each ROI pattern set.
Average values of all measures and confidence interval over 10 replications are averaged for the 10 individuals of interest.

a prototype or reference sample is stored using 128
bytes (a vector of 32-bit floats), the reference sample
stored by the TCM-kNN system after the 9 adapta-
tion ROI pattern sets use up to 115 kBytes, while the
prototypes ofAMCSw use around 32 kBytes, and the
incremental passive system around 26 kBytes.

7 CONCLUSION

In this paper, an adaptive framework for an AMCS
is proposed for face re-identification in video surveil-
lance, using an hybrid strategy that allows to com-
promise between incremental learning and ensemble
generation to preserve the knowledge of historic cap-
ture conditions. A specific implementationAMCSw
is used for experimentations, using an ensemble of 2-
class PFAM classifiers for each enrolled individual,
where all parameters are optimized using a DNPSO-
training strategy, and using a Hellinger based Drift
Detection Method to detect possible changes in ref-
erence videos.

Simulation results indicate that the proposed
AMCSw is able to maintain a high level of perfor-
mance when significantly different reference videos
are learned for an individual. The proposedAMCSw

exhibits higher classification performance than a ref-
erence open-set TCM-kNN system. In addition, when
compared to a passive AMCS where the change de-
tection process is bypassed, it can be observed that
the proposed active methodology enables to increase
the overall performance and mitigate the effects of
knowledge corruption when presented with reference
data exhibiting abrupt changes, yet controlling the
system’s complexity as the addition of new classi-
fiers (and thus the increase of complexity) is only trig-
gered when a significantly abrupt change is detected.
The proposedAMCSw thus provides a scalable archi-
tecture that avoids issues related to knowledge cor-
ruption, and thereby maintains a high level of accu-
racy and robustness while bounding its computational
complexity.

In the proposed scenario, the change detection
has been performed with the assumption of a single
concept per reference video, while different obser-
vation conditions could be observed inside a single
sequence. In future research, the proposed AMCS
framework could be further improved with a detection
of changes inside those sequences for a better model-
ing of the facial models. Finally, this paper focuses on
face classification of ROI patterns. In video surveil-
lance, classification responses should be combined
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over several cameras and frames for robust spatio-
temporal recognition.
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