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Abstract: The identification of correct or incorrect actions is a very significant task in the field of the brain-computer 
interface systems. In this paper, observations of correct or incorrect actions are identified by means of event 
related potentials (ERPs) that represent the brain activity as a response to an external stimulus or event. ERP 
signals from 47 electrodes, located on various positions on the scalp, were acquired from sixteen volunteers. 
The volunteers observed correct or incorrect actions of other subjects, who performed a special designed 
task. The recorded signals were analysed and five second order statistical features were calculated from 
each one. The most prominent features were selected using a statistical ranking procedure forming a set of 
32 feature vectors, which were fed to a Support Vector Machines (SVM) classifier. The performance of the 
classifier was assessed by means of the leave-one-out cross validation procedure resulting in classification 
accuracy 84.4%. The obtained results indicate that the analysis of ERP-signals that are collected during the 
observation of the actions of other persons could be used to understand the specific cognitive processes that 
are responsible for processing the observed actions. 

1 INTRODUCTION 

The participation in joint actions affects significantly 
our behaviour, since decisions, perceptions and 
beliefs are modulated by those of others with whom 
we are together as family, friends, partners or 
colleagues. Especially, the observation of actions 
performed by other people contributes considerably 
in the learning process and the skills we develop. A 
person will try to reproduce actions that leave 
positive impressions and avoid actions that are less 
desirable or have negative impact. Furthermore, if an 
observed action is recognized as important by 
others, it is quite probable that the observer will 
emulate this action. 

Several studies suggest that learning by 
observation and learning through self-action activate 
similar mechanisms in the human brain. (Petrosini et 
al., 2003). In particular, it has been observed that 
when a subject performs an incorrect action, the 
waveform of the event related potentials (brain 
activity as a response to an external stimulus or 
event - ERP) contains a negative peak known as 

Error Related Negativity (ERN). ERN appears at 
around 100ms after the start of the incorrect action 
and is related with activity in the anterior cingulate 
cortex (ACC) (van Schie et al., 2004). ERN is 
consistently observed when a mismatch occurs 
between representations of anticipated and actual 
responses (Falkenstein et al., 2000). ERN with 
smaller amplitude and longer latency has also been 
found in experimental paradigms exploring aspects 
of error monitoring that cover the observation of 
actions of persons or artificial agents “exterior” to 
the observer, termed “observed” ERN (oERN) (van 
Schie et al., 2004). In correspondence with the ERN 
measured when a person performs a wrong action, 
ACC activity was implicated also in observation of 
errors. It has been found that the medial prefrontal 
cortex (MPFC) is activated not only when errors are 
committed (Ridderinkhof et al., 2004), but also 
when observing errors of other persons (Newman-
Norlund et al., 2009). Furthermore, it has been 
shown that the MPFC is activated when observing 
human errors and machine errors (Desmet et al., 
2014). Those findings strengthen the hypothesis that 
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the same mechanisms are activated both when 
committing and when observing errors. 
Nevertheless, because it has been found that 
sometimes a negative ERN-like deflection is 
produced even for correct actions (Scheffers and 
Coles, 2000), something similar could happen when 
observation of the action of other persons takes 
place. Recently oERN investigations have been 
expanded also to the context of cooperative and 
competitive behavior, related to reward-dependency 
of performance monitoring (de Bruijn and von 
Rhein, 2012). 

ERN presents special interest for implementing 
Brain-Computer Interface (BCI) systems (Millán et 
al., 2010). BCI systems decode brain signals into 
actions controlling devices that will assist the users 
of the system. In such systems an interface usually 
has to recognize the user’s intent. When the user 
perceives that the interface made an error in 
recognizing his/her intent, it has been repeatedly 
shown that an error-related potential, of a similar 
kind to ERN is elicited (Ferrez and Millán, 
2008).This potential has been termed “interaction 
ErrP”, to reflect the fact that it is produced by the 
interaction between the computer’s actions and the 
user who recognizes them as incorrect. Interaction 
ErrP exhibits a different morphology as compared to 
the ERN elicited in classical forced-choice 
experiments. In a recent study, it has been shown 
that oERN can be detected in an observation 
experiment using single trial signals (Vi et al., 
2014). Furthermore, in this study was shown that 
ERN is also present during the anticipation of an 
action. 

Special efforts have been devoted in 
implementing classification systems for identifying 
the existence of oERN and ErrP, for improving the 
performance of BCI systems (Ferrez and Millán, 
2008). The existence of differences in the ERPs of 
observers, when observing correct or incorrect 
actions, might foster the development of 
classification systems capable of detecting 
performance errors of a human - or an artificial 
agent – in need of being monitored in a joint-action 
situation. The primary aim of the present study is to 
propose a methodology for discriminating 
observations of correct and incorrect actions, based 
on scalp-recorded ERPs, using second order 
statistical features. 
 

2 MATERIAL AND METHODS 

2.1 Subjects and ERPs’ Recording 
Procedure 

The ERP data used in the present study were 
collected in previous research (van Schie et al., 
2004). The data were acquired from sixteen (16) 
healthy volunteers (observers), who observed correct 
or incorrect responses of subjects (actors) 
performing a special designed task. In particular, the 
actors were seated in front of a table facing an 
observer, having in front of them, on the table, two 
joystick devices positioned to the left and right of a 
LED stimulus device. The actors were asked to 
respond to the direction of a center arrowhead 
surrounded by distracting flankers pointing either in 
the same direction as the center arrow, or in opposite 
direction (Fig. 1). 

 

Figure 1: Experimental setup. 

The brain electrical activity of the observers was 
recorded from 47 Ag/AgCl electrodes as well as 
vertical and horizontal electro-oculograms and was 
sampled with sampling rate 250 Hz. Electrodes were 
mounted in an elastic cap (Easy cap, Montage 10) 
configured for equal arrangement of the electrodes 
over the scalp (Fig. 2) (van Schie et al., 2004). The 
electrode common was placed on the sternum. 
Ocular artifacts were corrected using the method 
described in (Gratton et al., 1983). 
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Figure 2: Placement of electrodes. 

The experimental session involved 8 runs of 100 
trials of the task and the observations of correct or 
incorrect responses were averaged over a 800ms 
epoch (baseline [-100 , 0] ms before response) (Fig. 
3). This procedure is necessary in order to 
discriminate the ERP signal from noise (brain 
activity that is not relevant to the task).  

 

Figure 3: Example of ERP signals from observation of 
correct (blue line) and incorrect action (red line). 

A time window, starting at -6 msec and ending at 
700 msec (corresponding to 176 samples) after the 
response, was selected for analysis. A total of 32×47 
= 1504 ERP recordings were available for analysis. 
From the available recordings, 16×47=752 
recordings corresponded to observation of correct 
actions and the rest 16×47=752 recordings 
corresponded to observations of incorrect actions. 

 

2.2 Proposed Methodology 

The proposed methodology aims to classify feature 
vectors that are extracted from the available raw data 
into two classes of interest: 

 Observation of correct actions 
 Observation of incorrect actions 

The methodology involves three tasks: 
 Feature calculation: in this task, a number of 

quantitative features that provide a compact 
description of the available raw data is 
extracted. The features are organized in feature 
vectors, also known as patterns. 

 Feature selection: this task aims to select a 
subset of features from the original set of the 
available features in order to achieve the best 
classification performance. 

 Classification: in this task, the available 
patterns, using the selected features, are 
classified in the classes of interest. 

Each task is described below. 

2.2.1 Feature Calculation 

Various features have be used to describe ERP 
waveforms, such as first order statistical features 
(Ventouras et al., 2011), features from frequency 
domain (Liang et al., 2010), wavelet coefficients 
(Aniyan et al., 2014). In this paper, it is proposed the 
calculation of second order statistical features that 
describe the morphology of an ERP waveform. 
These features have been used widely in image 
analysis in order to represent the texture of an image 
(Haralick et al., 1973). 

In particular, let  nx  ( 1,2, ,176n   ) denotes 

a discrete time ERP recording,  min min nn
x x and 

 max max n
n

x x . Then, the values of the ERP 

recording can be quantized into N  levels by means 
of the formula: 

  min

max min

0.5 1 n
n

x x
y N

x x

 
    

 (1)

where ny  is an integer between zero and 1N  . 

The co-occurrence matrix (Haralick et al., 1973), 
 dC , with point distance d has dimensions N N  

and each element  
,
d

i jc  provides the probability of 

co-occurring the values iy  and jy  between two 

sample points with distance d. The co-occurrence 
matrix can be used to provide 2nd order statistical 
features related with the “texture” of a signal. From 
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the co-occurrence matrix the following features can 
be calculated (Haralick et al., 1973): 

1. Maximum probability entry: 
  1 ,

,
max d

i j
i j

f c  

2. Element difference moment of 2nd order: 

   2

2 ,
d

i j
i j

f i j c 
 

This feature has relatively low values when the 
high values of C are near the main diagonal. 

3. Entropy: 
   

3 , ,logd d
i j i j

i j

f c c   

This is a measure of randomness, having its 

highest value when the elements of  dC  are all 
equal. 

4. Energy: 
  2

4 ,
d

i j
i j

f c     

This feature has relatively low values when all 
entries of co-occurrence matrix are equal. It 
measures the uniformity of a signal. 

5. Homogeneity: 
 
,

5 1

d
i j

i j

c
f

i j


   

This feature has relatively high value when the 
values of co-occurrence matrix are concentrated 
on the main diagonal. 
In total, from each participant’s ERPs, 47×5=235 

features were calculated. 

2.2.2 Feature Selection 

One of the most important tasks in a classification 
application is the selection of a subset of features 
from a (usually) large set of available features. If 
non-relevant features or features that characterized 
by low discriminatory power are selected, then the 
classification accuracy will be negatively affected. 
Additionally, reducing the number of features results 
in faster execution time of the classification task, 
making it possible to develop real time applications. 

The feature selection methods can be grouped 
into two broad classes: filter methods and wrapper 
methods (Chandrashekar and Sahin, 2014). The 
filter methods perform feature selection using a 
criterion that is not dependent on the classifier to be 
used later. The most well-known criteria are the 
Pearson correlation coefficient (Guyon and 
Elisseeff, 2003) and the mutual information (Sotoca 
and Pla, 2010). On the other hand, the wrapper 

methods use the performance of the classifier as a 
criterion. 

Having selected the criterion, the next step is to 
determine the optimization strategy to be applied in 
order to achieve the best value of the criterion with 
respect to the available features. Several methods 
have been proposed in the literature, from simple 
ones like the sequential forward selection, sequential 
backward selection, sequential floating forward 
selection (Chandrashekar and Sahin, 2014), to more 
advanced ones, such as genetic algorithms (Tsai et 
al., 2013) or artificial immune networks (Yue et al., 
2008). 

In this paper, a simple feature selection method 
(Liu and Motoda, 1998), using as criterion the 
Wilcoxon test (Montgomery and Rumger, 2003) was 
applied. In particular, let D  be a matrix with Q rows 
and P columns. Each row corresponds to a feature 
vector that is formed by concatenating all the feature 
values from the 47 recordings of an observer. Each 
column corresponds to a feature. In our case, Q=32 
and P=235. Furthermore, let C be a vector with Q 
elements, whose values belong to the set  1,2 . If 

the element of C with index i has value 1 
(respectively 2), then the ith row of D corresponds to 
observation of correct (incorrect) action. Finally, let 

jZ  denote the Wilcoxon score using the jth column 

of D and the vector C. Then, the feature selection 
produces a vector of binary values 

 1 2, , , Px x xx  , where 1ix   (respectively 

0ix  ) indicates that the feature i  has been selected 

(not selected) ( 1,2, ,i P  ). The algorithm evolves 
as follows: 
 Initialization: 

o  1,1, ,1
P

f  ,  0,0, ,0
P

x  , 0k   

o Calculate the Wilcoxon score jZ  for 

each feature. 
o Find the most significant feature:  

 
 

: 1

arg max
j

j
j f

p Z


  

o 0pf  , 1px   

o 1k k   
 while k K  (K is the desired number of 

features): 
o For each i  with 1if  , calculate the 

mean value of cross-correlation, i , of 

the i  column of D  with all previously 
selected columns of D : 
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1 1 1

1

j

Q
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q

i P Q Q
j x

j qi qj
j q q

D D

x D D

 



  





  

 (2)

o Get a weighted Z score: 

 1i i iWZ Z a      (3)

o Select the feature with the highest 
weighted Z score 

 
 

: 1

arg max
j

j
j f

p WZ


  

o 0pf  , 1px   

o 1k k   
The parameter a ( 0 1a  ) sets a weighting. 

When a = 0, potential features are not weighted. A 
value of a close to 1 outweighs the significance 
statistic; this means that features that are highly 
correlated with the features already picked are less 
likely to be included in the output list. 

2.2.3 Classification 

The classification task aims to assign a feature 
vector to one of a predefined number of classes. 
There are two major types of classification 
algorithms: unsupervised and supervised. The 
unsupervised algorithms, also known as clustering 
algorithms, group the available feature vectors into 
clusters without prior knowledge of the true class of 
each feature vector. Representative algorithms are 
the k-means (Hartigan, 1975), fuzzy c-means (FCM) 
(Bezdek, 1981), self-organizing maps (SOMs) 
(Kohonen, 1982). 

The supervised algorithms incorporate a training 
phase, using feature vectors with known class labels, 
which adjusts the parameters of the algorithms to 
(sub)optimal values. After the training phase, the 
algorithm can be used to classify feature vectors 
with unknown class labels. The most widely used 
supervised classification algorithms are the k-nearest 
neighbour algorithms, the artificial neural networks 
and the support vector machines (SVM) 
(Theodoridis and Koutroumbas, 2009). 

The SVM algorithm (Steinwart and Christmann, 
2008) was incorporated in the present work, due to 
the fact  that it has been successfully applied to 
various classification tasks in multidisciplinary 
scientific fields. It is primarily an algorithm for 
binary (two classes) classification problems, but it 
can be extended to multiclass problems. Given a set 
feature vectors with known class labels, the 

algorithm finds the hyperplane, among all possible 
hyperplanes, that has the maximum distance from 
the closest feature vectors of the two classes. The 
closest to the hyperplane feature vectors are called 
support vectors. 

The hyperplane is a linear decision boundary. 
The SVM algorithm can be extended to use non-
linear decision boundaries by means of the so-called 
kernels (Boser et al., 1992). One of the most widely 
used kernels is the radial basis function (RBF) 
kernel, with parameter 0   which is defined by 

the following equation: 

 
2

, i j

i jk e
  d d

d d  (4)

where ,i jd d  denote two feature vectors. Obviously, 

the RBF kernel is a multidimensional Gaussian with 
variance 1 / 2 . 

The performance of a classifier is usually 
evaluated by means of a cross validation scheme 
(Seymour, 1993), which involves the random 
separation the available feature vectors into training 
and testing sets. The training set is used in order to 
estimate the parameters of the classifier (support 
vectors in the case of SVM) and the testing set 
provides a benchmark for evaluating its 
performance. This process is repeated several times 
and the average performance is calculated. One of 
the most widely used forms of cross validation is the 
k-fold cross validation, where the available feature 
vectors are divided randomly into k equal sets. One 
set is used for testing the classifier and the remaining 
k-1 form the training set. The procedure is repeated 
k times, each time using a different set for testing 
purposes. One special case of the k-fold cross 
validation is the leave-one-out (LOO) cross-
validation procedure, where each sets contains only 
one feature vector (i,e. k = number of feature 
vectors). Thus, each time one feature vector is left 
out for testing and the remaining ones are used for 
training. The LOO procedure was adopted in order 
to evaluate the performance of the SVM classifier in 
a reliable manner, taking into account the limited 
number of cases available in the classes, and in the 
same time avoid overtraining and achieving an 
acceptable generalization in the classification.  

3 RESULTS 

As was mentioned before, 235 features were 
calculated from each participant’s ERPs. The feature 
selection algorithm was applied using the 32 
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available feature vectors (16 feature vectors from 
observations of correct actions and 16 feature 
vectors from observation of incorrect actions). In 
order to determine the number of features to be 
selected (K), as well as the value of the weighting 
factor a, the value of the parameter γ of the radial 
basis function, the distance d between samples and 
the number of quantization levels N, all the 
combinations  , , , ,K a d N , for K = 1, 2,…,10,  

a = 0, 0.1, 0.2,…,1, γ = 0.5, 1.0, 1.5,…, 5, d = 1, 
2,…,5 and N = 25, 50, 75, 100 were investigated. 
For each combination, feature selection method and 
the SVM classifier with the LOO approach were 
applied. The best classification results were 81.3% 
for Class 1 (observation of correct actions) and 
87.5% for Class 2 (observation of incorrect actions), 
providing total classification accuracy 84.4%. Table 
I lists the results in the form of a confusion matrix. 

Table 1: Confusion matrix. 

Actual Class Predicted Class 
Class 1 Class 2 

Class 1 13 3 
Class 2 2 14 

The aforementioned results were obtained for  
(K, a, γ, d, N) = (2, 0.8, 1, 1, 50). The selected 
features were the entropy and uniformity of 
electrode 24. Table II presents the mean value and 
the standard deviation of each selected feature for 
the two classes. 

Table 2: Mean values and standard deviations in 
parentheses of selected Features for the two classes. 

Feature Class 
Class 1 Class 2 

Entropy of electrode 
24 

4.66 (0.098) 4.47 (0.16) 

Energy of electrode 
24 

0.012 (0.002) 0.017 (0.005) 

As can be observed, the entropy is in average 
slightly higher in Class 1 than in Class 2, which 
means that the co-occurrence matrices of the ERPs 
from observations of correct actions are in general 
more uniform than the ones from observations of 
incorrect actions. On the other hand, the energy is in 
average slightly lower in Class 1 than in Class 2, 
which also means that the co-occurrence matrices of 
the ERPs from observations of correct actions are in 
general more uniform than the ones from 
observations of incorrect actions. 

 

4 CONCLUSIONS 

In this paper, the identification of observations of 
correct or incorrect actions was studied by means of 
event related potentials. A methodology using 
statistical feature selection and the SVM algorithm 
was applied. The proposed methodology reduced 
significantly the initial large number of features, 
providing satisfactory classification results. 
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