
Towards the Integration of Model-Driven Engineering, Software Product
Line Engineering, and Software Configuration Management

Felix Schwägerl, Thomas Buchmann, Sabrina Uhrig and Bernhard Westfechtel
Applied Computer Science I, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany

Keywords: Model-Driven Software Engineering, Software Product Lines, Software Configuration Management.

Abstract: Model-Driven Software Engineering (MDSE), Software Product Line Engineering (SPLE) and Software Con-
figuration Management (SCM) have been established as independent disciplines to ease different aspects of
software development. The usage of models as high-level abstractions promises to increase productivity, while
software product lines manage variability within a family of similar software products; software configuration
management systems manage evolution and support collaborative development. In this paper, we explore the
state of the art regarding the pairwise combinations MDSE/SPLE, SPLE/SCM, and MDSE/SCM and show
that an integrated solution combining all three disciplines is missing. We present a conceptual framework
to integrate MDSE, SPLE and SCM uniformly based on a filtered editing model. The framework implies a
number of advantages, namely unconstrained variability, a reduction of cognitive complexity, improved con-
sistency, tool independence, and a higher level of automation. Our formalism is based on a uniform versioning
model for temporal, cooperative, and logical versioning of models. By an example, we show the feasibility of
our approach.

1 INTRODUCTION

The discipline Model-Driven Software Engineering
(MDSE) (Völter et al., 2006) is focused on the de-
velopment of models as first-class artifacts in or-
der to describe software systems at a higher level
of abstraction and to automatically derive platform-
specific source code. In this way, MDSE promises to
increase the productivity of software engineers, who
may focus on creative and intellectually challenging
modeling tasks rather than on repeated activities at
source-code level. Models are typically expressed in
well-defined languages such as the Unified Modeling
Language (UML), which define the structure as well
as the behavior of model elements. The Eclipse Mod-
eling Framework (EMF) (Steinberg et al., 2009) pro-
vides the technological foundation for many model-
driven applications.

Software Product Line Engineering (SPLE) (Pohl
et al., 2005) enforces an organized reuse of software
artifacts in order to allow for the systematic devel-
opment of a set of similar software products. Com-
monalities and differences among different members
of the product line are typically captured in variability
models, e.g., feature models (Kang et al., 1990). Dif-
ferent methods exist to connect the variability model

to a platform, which provides a (non-functional) im-
plementation of the product domain. The concept of
negative variability considers the platform as a multi-
variant product which forms the superimposition of
all product variants. In order to automatically derive
a single-variant product, the variability within the fea-
ture model needs to be resolved by specifying a fea-
ture configuration.

Software Configuration Management (SCM) is a
well-established discipline to manage the evolution of
software artifacts1. A sequence of product revisions
is shared among a repository. Besides storage, tradi-
tional SCM systems (Chacon, 2009; Collins-Sussman
et al., 2004; Vesperman, 2006) assist in the aspects
of collaboration and variability to a limited extent,
by providing operations like diff, branch and merge.
Internally, the components of a versioned software
artifact – most frequently, the lines of a text file –
are represented as deltas. The most commonly used
delta storage type are directed deltas, which consist
of the differences between consecutive revisions in
terms of change sequences, whereas symmetric deltas
(Rochkind, 1975) constitute a superimposition of all
revisions, annotated with revision visibilities.

1Throughout this paper, we use the terms software con-
figuration management and version control as synonyms.

5Schwägerl F., Buchmann T., Uhrig S. and Westfechtel B..
Towards the Integration of Model-Driven Engineering, Software Product Line Engineering, and Software Configuration Management.
DOI: 10.5220/0005195000050018
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 5-18
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

A combination of three mutually independent, tra-
ditional tools, one for each discipline, seems satisfac-
tory at first glance. An arbitrary MDSE tool might
be used for the creation of a software model (e.g., a
set of UML class diagrams), a preprocessor language
for managing the variability of the software model (or
the source code generated from it), and a line-oriented
version control system to manage the evolution of the
software model (or the source code).

In this paper, we present a conceptual framework
which realizes an integrated combination of the three
disciplines. It assumes an editing model similar to
version control systems, where the developer may use
his/her preferred tool to perform changes to versioned
software artifacts within a single-version workspace.
The workspace is synchronized with a repository that
persists all existing product versions. In addition to
revision graphs, the high-level variability mechanism
of feature models is provided to define logical prod-
uct variants. Version selection is performed in both
the revision graph and the feature model. In the lat-
ter case, a feature configuration is selected, which al-
lows for the combination of various logical proper-
ties in a consistent product variant. The adoption of a
version control oriented editing model to SPL devel-
opment brings the advantage of unconstrained vari-
ability: Single-version constraints do not affect the
multi-version product in the repository. By provid-
ing an integrated mechanism, the distinction between
variability in time and variability in space is blurred.
Our conceptual framework will allow to postpone the
decision, whether a change to a product constitutes a
temporal evolution step or a new product variant, until
the commit.

In the subsequent section, we outline the state
of the art with respect to the pair-wise combina-
tions MDSE/SPLE, MDSE/SCM and SPLE/SCM.
Section 3 clarifies the contribution of our paper, be-
fore we describe a conceptual framework (Section 4)
that allows for a combination of MDSE, SPLE and
SCM in an integrated way, by providing a uniform
versioning concept and a multi-version product model
for the repository. In Section 5, an example is con-
ducted. Section 6 includes a critical discussion, be-
fore the paper is concluded.

2 STATE OF THE ART

2.1 MDPLE/MDSE Integration

Model-Driven Product Line Engineering (MDPLE) is
motivated by a common goal of MDSE and SPLE —
increased productivity. Lifting up variability manage-

ment to the abstraction layer of modeling seems ad-
equate: Both disciplines consider models as primary
artifacts. Feature models (Kang et al., 1990) have a
well-defined syntax and semantics. The platform of
the product line is provided as a domain model with a
fixed or variable meta-model.

There exist a number of approaches to MDPLE
based on positive variability. They require spe-
cific tools in order to compose variable realization
fragments with the common core, typically using
model transformations (Jayaraman et al., 2007; Ziadi
and Jézéquel, 2007) or aspect-oriented programming
techniques (Völter and Groher, 2007). This way, the
core model is kept small and concise, but conflicts
arise as soon as transformations or aspects are com-
bined to realize several features.

Approaches based on negative variability assume
a multi-variant domain model that realizes all features
of the product domain in a place. It must be syn-
tactically well-formed, but need not be semantically
meaningful (i.e., neither executable nor translatable
into a target language). Existing approaches differ in
the way how features are mapped to realization ar-
tifacts. On the one hand, mapping information may
be stored within the domain model, e.g., using an-
notations (Gomaa, 2004; Buchmann and Westfechtel,
2012), which correspond to preprocessor directives at
source code level (Kästner et al., 2009). On the other
hand, mapping information can be made explicit by
using a distinct mapping model (Heidenreich et al.,
2008; Buchmann and Schwägerl, 2012).

A common assumption of the mentioned ap-
proaches based on negative variability is that the user
operates in a multi-variant view. When modifying
the superimposition, all variants are visible at a time,
and mapping information is added manually. The ap-
proach described in (Westfechtel and Conradi, 2009)
deviates from this editing model. Like in version con-
trol systems, the user operates in a single-version view
(filtered editing, see (Sarnak et al., 1988)) and need
not map model elements to revision visibilities man-
ually. The framework presented in this paper ties on
this approach, providing higher-level abstractions for
the feature model and the domain model.

2.2 MDPLE/SCM Integration

Model Version Control subsumes the combination
of MDSE and version control (Altmanninger et al.,
2009), with the goal of lifting existing version con-
trol metaphors (commit, update, etc.) up to the ab-
straction level of models. Rather than calculating
deltas on the low-level physical representation (e.g.,
lines of text within the XMI serialization), existing

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

6

approaches to model versioning (Koegel et al., 2010;
Taentzer et al., 2014; Westfechtel, 2014) define op-
erations such as object insertion or attribute change.
This improves both accuracy and consistency to a sig-
nificant extent. Special emphasis is put on three-way
merging, which is necessary to reconcile concurrent
modifications to versioned artifacts. Model-specific
kinds of merge conflicts can occur, which must be re-
solved in order to produce a consistent result. For
typical conflict types, the reader is referred to (Alt-
manninger et al., 2010; Koshima and Englebert, 2014;
Westfechtel, 2014). The three-way merge tool BT-
Merge (Schwägerl et al., 2013) guarantees a consis-
tent merge result, given valid EMF model versions as
inputs.

For storing and merging model versions, change
logs are may be used to describe the performed mod-
ifications. Approaches such as (Koegel et al., 2010;
Schneider et al., 2004) record the user’s changes, but
lack generality because they require a custom editor
or at least extensions to existing editors. In case no
change log is available, it needs to be reconstructed
by matching and differencing, as realized in (Oliveira
et al., 2005; Brun and Pierantonio, 2008; Taentzer
et al., 2014). The quality of the matching can be sig-
nificantly improved by the use of universally unique
identifiers (UUIDs) that remain stable within subse-
quent revisions of model elements.

2.3 SPLE/SCM Integration

Software Product Line Evolution deals with common
problems that occur during the management of the
life-cycle of software product lines, for instance prop-
agating changes from the variability model to the plat-
form. A survey can be found in (Laguna and Crespo,
2013). In contrast to approaches discussed in this pa-
per, platform and variability model are represented as
artifacts on the same conceptual level, i.e., there is no
“versioning” relationship as in software configuration
management. When lifting product line evolution up
to the modeling level, model transformations or de-
composition techniques (Heider et al., 2012) play an
important role.

As mentioned above, both SPLE and SCM man-
age variability within software artifacts. While SCM
is focused on variability in time, i.e., evolution, SPLE
provides mechanisms for variability in space, i.e., the
co-existence of similar products in terms of logical
variants. All approaches mentioned below study vari-
ability in space at a level that does not meet the re-
quirements of software product lines, which are de-
veloped in a systematic way. Furthermore, their pri-
marily targeted product space is text files.

With branches, traditional version control systems
(Chacon, 2009; Collins-Sussman et al., 2004) offer
logical variants to a limited extent. It is only possible
to restore variants that have been committed earlier
(extensional versioning, see (Conradi and Westfech-
tel, 1998)), but not to create new variants based on
a predicate on variant options, i.e., feature configura-
tions (intensional versioning).

The commercial SCM system Adele (Estublier
and Casallas, 1994) has logical variants built into
its object-oriented data model as symmetric deltas,
which are exposed to the user. Temporal variability is
realized by a versioning layer on top which relies on
directed deltas. Thus, logical and temporal versioning
are not integrated at the same conceptual level.

In (Reichenberger, 1995), an approach for or-
thogonal version management is proposed. A ver-
sion cube is formed by product, revision, and variant
space. Albeit, this approach does not consider that the
variant space may be subject to temporal evolution.

In (Zeller and Snelting, 1997), an approach to uni-
fied versioning based on feature logic is presented.
Versions of artifacts (i.e., text files) are stored with
selective deltas; visibilities are controlled by feature-
logical expressions. Constraints on feature combina-
tions are expressed by version rules.

The uniform version model (UVM) presented in
(Westfechtel et al., 2001) defines a number of ba-
sic concepts (options, visibilities, constraints) for ver-
sion control, which have been initially introduced in
the context of change-oriented versioning (Munch,
1993). UVM is designed to support both intensional
and extensional versioning and does not assume a
concrete product model, i.e., it is applicable to the
MDSE context. It will provide the theoretical foun-
dation for the framework presented in this paper.

3 CONTRIBUTIONS

Despite the increased variability gained with it, in-
tensional versioning has never become popular for
industrial applications. In our opinion, this is due
to the high cognitive overhead resulting from both
the low-level representation of both the version space
(boolean variables and predicates) and the the product
space (sequences of text lines).

Our conceptual framework provides an integrated
solution to MDSE, SPLE and SCM, which addresses
several drawbacks such as the constrained variability
which is common to the MDPLE approaches, the lack
of logical versioning concepts in model version con-
trol, and inadequacies concerning the low-level repre-
sentation of both the variant space and product space

Towards�the�Integration�of�Model-Driven�Engineering,�Software�Product�Line�Engineering,�and�Software�Configuration
Management

7

feature space

revision space

product space

option space

mapped
to

mapped
to

versioned
by

versioned by

versioned by

Figure 1: The roles of the revision, the feature and the prod-
uct space within the repository. Abstractions represented by
dashed lines are invisible to the user.

in integrated SPLE/SCM solutions. Our framework
uses the UVM described in the previous section as its
theoretical foundation and provides higher-level ab-
stractions for it. A prototype called SuperMod (Su-
perimposition of Models) is currently under develop-
ment, which will use EMF both for its own implemen-
tation and as the primarily targeted product space.

3.1 The Conceptual Framework

As depicted in Figure 1, our conceptual framework
consists of elements which are defined by set theory
and distributed over three spaces: A revision space,
which controls the temporal evolution of both the
product space and the feature space. Elements of the
product space are also versioned with respect to the
feature space in order to achieve logical variability.
Both the revision space and the feature space abstract
from a low-level option space.

The product space is represented as a superimpo-
sition of product versions. In SPLE, this corresponds
to negative variability, and in SCM to symmetric
deltas, respectively. The superimposition allows for
extrinsic variability (Westfechtel and Conradi, 2009);
single-version restrictions do not apply for the multi-
version representation. The connection between the
product space and the version space is established
by visibilities (also known as presence conditions in

SPLE, see (Czarnecki and Kim, 2005)), boolean ex-
pressions on the options of the version space, which
are assigned to elements of the product space and
the feature space. The decision which elements are
variable, i.e., to which elements visibilities may be
assigned, depends on the specific product space im-
plementation. This allows for an adjustable level of
granularity with respect to versioned elements. The
prototype SuperMod will support heterogeneous file
systems as product spaces, consisting of EMF models
and further contents such as plain text or XML files.

The revision space is inherited from revision con-
trol systems and utilizes a directed acyclic revision
graph. Logical variability is managed by a feature
model, which provides a high-level representation of
logical properties of a system. Internally, elements
of both the revision and the feature space are mapped
onto options which are managed by the option space
that realizes UVM as described in (Westfechtel et al.,
2001). This mapping happens behind the scene, while
only the higher-level abstractions of revision graph
and feature model/configuration are presented to the
user for version selection and version space editing.

The feature model plays a dual role: For the revi-
sion space, it is versioned the same way as the product
space; for the product space, it incorporates an addi-
tional variability model.

3.2 An Integrated Editing Model

As illustrated in Figure 2, our conceptual framework
defines an editing model oriented towards version
control metaphors. The basic assumption is that the
user edits a single version selected by a choice (the
read filter), but the changes affect multiple versions
which are defined by a so called ambition (the write
filter). Editing a product version consists of three –
partly automated – steps:

checkout

revision space

multi-version product space

ambition choice

...

defines

commit

modifies

visibilities

multi-version
feature space

option space single-version
feature space

single-version
product space

...

repository workspaceuser

Figure 2: The integrated editing model underlying our conceptual framework.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

8

1. Checkout: The user performs a version selection
(a choice) in the repository. In the revision graph,
the selection comprises a single revision. In the
feature space, a feature configuation has to be
specified. A single-version copy of the repository,
filtered by the selected version, is loaded into the
workspace.

2. Modify: The user applies a set of changes to the
single-version product and/or to the feature model
in the workspace.

3. Commit: The changes are written back to the
repository. For this purpose, the user is prompted
for an additional selection of a partial feature
configuration (an ambition) to delineate the log-
ical scope of the performed changes. Visibilities
of versioned elements are updated automatically,
and a newly created revision is submitted to the
repository.

3.3 Benefits of an Integrated Approach

Taking into account the remarks given in the previ-
ous and current section, our conceptual framework
advances the state of the art by the following aspects:

Unconstrained Variability. Typically, SPLE tools
based on negative variability require that the
multi-variant domain model is valid with respect
to its meta-model. This may impede variability to
a certain extent. E.g., in an intrinsic multi-variant
UML model, it is not allowed that a class has dif-
ferent names in different versions. By means of an
extrinsic product space model, we allow models
to vary arbitrarily within the multi-version repos-
itory; single-version workspace models are still
constrained by their respective meta-models.

Non-Destructive Updates. Combined SPLE/SCM
solutions that assume orthogonality between the
revision and the variant space, e.g., (Reichen-
berger, 1995), are faced with destructive updates:
A change to the logical visibility of an element
is not limited to the current revision, but global,
which may lead to an inconsistent reproduction
of old revisions. Our conceptual framework
guarantees the immutability of revisions.

Reduction of Cognitive Complexity. By the adop-
tion of typical version control metaphors (e.g., up-
date or commit), our approach reduces the cogni-
tive complexity for the development of a model-
driven software product line. The user applies
his/her local changes in a single-version view, and
visibilities are updated automatically. The user is
neither faced with difficult architectural decisions
with respect to a multi-variant domain model (a

common problem with negative variability), nor
with the necessity to describe feature realizations
by means of model transformations (as in SPLE
approaches based on positive variability).

Uniform Versioning. Our conceptual framework
provides a uniform versioning concept for logical
and temporal changes. Not until writing back a
change to the repository, the user has to decide
if it incorporates a new revision of an existing
variant or a new variant that co-exists in parallel.

Multi-Resource EMF Models. Many MDPLE
tools, e.g. (Heidenreich et al., 2008; Buchmann
and Schwägerl, 2012), as well as model version-
ing tools such as (Schwägerl et al., 2013), assume
that a model is a self-contained single-resource
entity. Our conceptual framework preserves
the integrity of cross-resource links in case
multiple EMF resources are submitted to version
control. This applies even for references to the
meta-model, which may vary, too. Furthermore,
non-model (plain text or XML) files may be
versioned.

Tool Independence. Our conceptual framework as-
sumes a purely state-based environment; it does
not require change logs which would in turn need
an integration of custom recording mechanisms
into the tools which are used to modify elements
of the workspace. Changes are reconstructed by
differencing, using UUIDs if available.

4 FORMALIZED APPROACH

In this section, we detail our contributed conceptual
framework. The versioning mechanism and the edit-
ing model described in the previous subsection are
formalized based on the notions introduced by the
uniform version model (Westfechtel et al., 2001). An
extrinsic meta-model for the product space is formal-
ized by means of several Ecore models.

4.1 The Option Space

The option space – which is mapped by both the revi-
sion space and the feature space – is defined by a set
of concepts described in (Westfechtel et al., 2001) us-
ing set theory and propositional logic. In Sections 4.2
and 4.3, we will show how the mapping between fea-
ture/revision space and option space is realized, be-
fore an integration is described in Section 4.4.

Options. An option represents a (logical or tempo-
ral) property of a software product which is either

Towards�the�Integration�of�Model-Driven�Engineering,�Software�Product�Line�Engineering,�and�Software�Configuration
Management

9

present or absent. The option space defines a global
option set:

O = fo1; : : : ;ong (1)

Choices and Ambitions. A choice is a conjunction
over all options, each of which occurs in either posi-
tive or negated form:

c = b1^ : : :^bn; bi 2 foi;:oig (i 2 f1; : : : ;ng) (2)

An ambition is an option binding which allows for
unbound options (bi = true, such that this component
can be eliminated from the conjunction):

a = b1^ : : :^bn; bi 2 foi;:oi; trueg (i 2 f1; : : : ;ng)
(3)

Options occurring positively or negatively in the
conjunction are bound. Thus, a choice is a complete
binding and designates a specific version, whereas an
ambition may have unbound options (partial binding)
in order to describe a set of versions. The version
specified by the choice is used for editing, whereas the
change affects all versions specified by the ambition.
The ambition must include the choice; otherwise, the
change would be performed on a version located out-
side the scope of the change. Formally, this means
that the choice must imply the ambition:

c) a (4)

Version Rules. The option space defines a set of
version rules — boolean expressions over a subset of
defined options. The rule base R is composed of a
set of rules r1; : : : ;rm all of which have to be satisfied
by an option binding in order to be consistent. Thus,
we may view the rule base as a conjunction:

R = r1^ : : :^rm (5)

A choice c is strongly consistent if it implies the rule
base R :

c) R (6)
In the case of ambitions, only the existence of a

consistent version is required. An ambition is weakly
consistent if it overlaps with the constrained option
space:

R ^a 6= f alse (7)

Visibilities. Each element e of the versioned prod-
uct space may define a visibility v(e) — a boolean ex-
pression over a subset of defined options. An element
e is visible under a choice c iff its visibility is implied
by the choice, i.e., it evaluates to true given the option
bindings of the choice:

c) v(e) (8)

Filtering. The operation of filtering a product space
by a choice c can be realized as a conditional copy,
where elements e that do not satisfy the choice (c 6)
v(e)) are omitted.

In case an element e does not define a visibility,
we implicitly assume v(e) = true (global visibility).
The visibility f alse, in turn, would correspond to a
deletion from the repository.

4.2 The Feature Space

The option space introduced in Section 4.1 is appli-
cable to intensional versioning. However, concepts
such as options, constraints and choices should not be
exposed to the user directly because they are repre-
sented at a too low conceptual level. Feature models
(Kang et al., 1990) meet the requirements of SPLE
in a satisfactory way. We show how feature modeling
concepts can be mapped to the low-level option space.
In Section 4.7, we will revisit the feature space in its
role of an additional product space.

Feature Options. A feature is a discriminating log-
ical property of a software product. It is adequate to
map each feature to a feature option f 2 O f , where
O f � O.

Feature Dependencies and Constraints. Feature
models offer several high-level abstractions: First of
all, features are organized in a tree, which makes them
existentially depend on each other. Non-leaf features
are either AND- or OR-features. If an AND-feature
is selected, its mandatory child features have to be se-
lected as well. In the case of an OR-feature, exactly
one child has to be selected (exclusive disjunction).

Table 1: Mapping feature models to option space constraints.

Pattern Transformation
root feature fr fr
child feature fc of parent feature f fc) f
AND feature f and mandatory child fc f) fc
OR feature f and child features f1; : : : fn f) (f1
 : : :
 fn)
f1 excludes f2 :(f1^ f2)
f1 requires f2 f1) f2

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

10

Table 2: Mapping revision graphs to option space constraints.

Pattern Transformation
initial revision r0 r0
new revision ri after revision ri�1 ri) ri�1
mutually exclusive branches with origins rL and rR :(rL^ rR)

Additionally, cross-tree relationships may be defined:
requires and excludes constraints.

It is straightforward to map feature models to
propositional logic (see Table 1).

Version Selection. Feature configuations describe
the characteristics of a single product of the product
line and thus may be considered as a version selection
within the feature space. A feature configuration is
derived from a feature model by assigning a selection
state to each feature. A feature configuration can be
mapped to a choice or ambition by setting the binding
bi for a feature option fi 2 O f as follows:

bi =

8<: fi if feature fi is selected.
: fi if feature fi is deselected.
true if no selection is provided for fi.

(9)

Please note that only partial feature configurations
allow for unbound options (bi = true). These may
only be specified for ambitions, not for choices.

4.3 The Revision Space

In SCM, the evolution of a software product is ad-
dressed. The history of a repository is typically rep-
resented by a revision graph. Revision control de-
viates from variability management in two aspects.
First, revisions are organized extensionally, i.e., only
revisions that have been committed earlier may be
checked out. Second, revisions are immutable: Once
committed, they are expected to be permanently avail-
able, and should not be affected by destructive up-
dates (see Section 3.3).

Revision Options. Temporal versioning can be re-
alized by revision options (called transactions options
in (Westfechtel et al., 2001)) r 2 Or, where Or � O.
For each commit, a new revision option is introduced
automatically. In order to achieve immutability, nei-
ther a revision option itself nor a visibility referring to
it may ever be deleted.

Revision Constraints. Automatically derived revi-
sion constraints may reduce the size of the revision

space considerably. As summarized in Table 2, impli-
cations are introduced for consecutive revisions trans-
parently. Furthermore, exclusion constraints are in-
troduced for branches intended to co-exist in parallel.

Choice Selection. A version in the revision space is
selected as a single revision rc by the user. Since each
revision option requires the corresponding options of
its predecessor revision (ri) ri�1), a choice in the re-
vision space is created by conjunction of the selected
revision with all of its predecessors. All other revi-
sions appear in a negative binding. For each revision
option ri 2 Or within a revision choice cr, the option
binding bi is determined as:

bi =

8<: ri if ri is the selected revision rc
or a predecessor of it.

:ri else.
(10)

Choices referring to the revision space are neces-
sarily complete since the binding true may never ap-
pear. The number of selectable versions equals the
number of available revision options (extensional ver-
sioning).

Ambition Selection. In contrast to choices, ambi-
tions in the revision space only consist of one bound
option, namely a newly introduced revision option
which is a successor of the previously selected revi-
sion choice. As a consequence, within a revision am-
bition ar, exactly one revision rn occurs in a positive
state. Bindings for other revision options are implic-
itly set to true.

ar = rn; rn is a successor of rc: (11)

Rather than including all predecessors of the se-
lected revision, in an ambition, only the new revi-
sion itself occurs. This results in much shorter vis-
ibilities when taking into account the editing model
shown in Section 4.8. Ambitions of this form are
weakly consistent since constraints ri of the form
ri) ri�1 (see Table 2) will be evaluated as follows:
rn^ (rn) rc) = rn^ rc 6= f alse.

4.4 Hybrid Versioning

The combination of the revision and the feature space
causes interactions between elements of the revision

Towards�the�Integration�of�Model-Driven�Engineering,�Software�Product�Line�Engineering,�and�Software�Configuration
Management

11

space and the and variant space. Thus, we provide the
following extensions to our framework.

Hybrid Option Space. In hybrid versioning, the
option set is decomposed into two disjoint subsets,
feature options and revision options:

O = O f [̇Or (12)

An analogous decomposition is applied to the rule
base.

R = R f [̇R r (13)

Hybrid Choice Selection. A version selection has
to be performed in both the revision and the feature
space. Correspondingly, a hybrid choice is a complete
option binding on O f [̇Or. It must be ensured that
each selected feature option is visible under the subset
cr of the choice that refers to the revision space.

c = cr ^ c f (14)

Hybrid Ambition Specification. From the user’s
perspective, the specification of a hybrid ambition
does not differ from a specification in the feature
space. A conjunction of the selected feature configu-
ration a f and a revision option rn, which is introduced
transparently as a successor of the revision rc selected
for the choice, is formed automatically.

a = rn^a f (15)

Since a revision ambition is always weakly con-
sistent (see above), an ambition in the hybrid version
space only needs to be weakly consistent with respect
to the feature part of the rule base:

R f ^a f 6= f alse (16)

Similarly, it is sufficient to require that the feature
part of the choice and the ambition imply each other:

c f) a f (17)

4.5 Versioned File Systems

The product space of our conceptual framework is
formalized by means of several Ecore class diagrams.
In order to provide support for multi-resource mod-
els (see Section 3.3), complete sub-trees of file sys-
tems (e.g., an Eclipse project) will be submitted to
version control. As shown in the class diagram in
Figure 3, files and folders are organized hierarchi-
cally using the composite design pattern. The ab-
stract class VersionedElement provides versioned
elements with an optional visibility.

VersionedElement Visibility

VersionedResource

VersionedFile

+ contentType : String

+ name : String

VersionedFolder

contents

0..1

0..11

*

Figure 3: Ecore class diagram for the meta-model of ver-
sioned file systems in our conceptual framework.

Our conceptual framework supports different file
content types. For each content type, a specific
pair of import/export model transformations needs
to be defined in order to convert the intrinsic multi-
version representation into a single-version file in the
workspace, which may be modified by the user with
his/her favorite editor (in order to ensure tool inde-
pendence, see Section 3.3). As one representative for
file content types, EMF is discussed in the next sub-
section. Similarily, plain text files and XML files will
be supported in the prototype SuperMod.

4.6 Multi-vrsion EMF Models

The meta-model shown in Figure 4 incorporates the
following design decisions with respect to multi-
variant EMF models: (a) unconstrained variability
(see Section 3.3), (b) versioned meta-data, (c) vari-
able object classes, and (d) variable object containers.

Considering the EMF product space meta-model,
all elements of the EMF file content type are variable
(a). Due to (d), an object must be able to have dif-
ferent containers in different versions. Thus, the con-
tainment hierarchy of objects inside a resource is flat-
tened. We assume a unique identifier (uuid) assigned
to each object. Objects may vary in their class (c) and
in the values for their structural features (attributes
and references). Attribute values are represented by
string literals; reference values may be internal, by
defining a link to an existing object, or external, by
specifying a workspace-global object URI.

In order to meet design decision (b), classes and
structural features are divided into the categories in-
ternal and external, too. Internal classes/features de-
fine a reference to a co-versioned meta-object, while
external classes/features are identified by their pack-
age URI and class name, or their feature name, re-
spectively. This way, the conformance relationship
between objects and their corresponding classes is
variable (c). Technically, a multi-version EMF model
represents two modeling layers (model and meta-
model) at the same intrinsic modeling level, which
enables co-versioning of models, meta-models, and
conformance relationships between those.

The import/export transformation pair for the

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

12

VersionedElement

VersionedModel

ObjectClassRef FeatureRef Value

InternalFeatureRef

ExternalClassRef

+ uuid : String

+ uri : String

+ name : StringInternalClassRef

ExternalFeatureRef

+ pkUri : String
+ name : String

AttributeValue

+ literal : String

ExternalRefVal

+ uri : String

InternalRefVal

*

* *

1

1

1

VersionedFile

*

linkTarget

featureObj

classObj

Figure 4: Simplified Ecore class diagram for the meta-model of the multi-version EMF product space.

EMF file content type maps each multi-version ob-
ject of the repository to a corresponding EObject in
the workspace, setting attribute and reference values
accordingly. The flattened containment links are con-
verted back into a hierarchical object tree.

4.7 Multi-version Feature Models

Our conceptual framework controls the evolution of
an additional product space, the feature model which
describes the feature space introduced in Section 4.2
at a higher level of abstraction. The meta-model
shown in Figure 5 assumes that the following modifi-
cations are supported: (a) insertion of a new (manda-
tory or optional, AND or OR) feature below a fixed
parent feature, (b) deletion of an existing feature, and
(c) insertion or (d) deletion of a requires or excludes
relationship. Within the visibilities of elements of
the feature models, only revision options are allowed.
Additionally to their higher-level abstractions, low-
level options and constraints are versioned within the
feature space. This is not shown in the figure, but im-
plied in the example in Section 5.

4.8 The Formalized Editing Model

Below, we finalize our editing model sketched in Sec-
tion 3.2. In contrast to (Westfechtel et al., 2001),
the ambition is specified at commit-time; the decision
whether a change corresponds to the realization of an
existing or a new feature, or to a new revision of the
checked-out product configuration, can be postponed.

Versioned
Element

Feature

Relationship

+ name : String
+ mandatory : Boolean

AndFeature*

Feature
Model

1

*

0..1

parent

children

1

source

target

OrFeature

Requires Excludes

root

Figure 5: Ecore class diagram for the meta-model of multi-
version feature models.

1. The user selects a revision rc from the revision
graph. The derived choice is cr = r0^�� �^ rc.

2. The feature model is filtered by selecting elements
e f which satisfy the revision choice (cr) v(e f))
and are exported into the workspace.

3. The user performs a choice c f on the filtered fea-
ture model by specifying a completely bound fea-
ture configuration. Options for invisible features
fi are automatically negatively bound: bi = : fi.

4. The effective choice c is calculated as the conjunc-
tion c = cr^c f . It must be strongly consistent ac-
cording to the rule base: c) R .

5. The product space is filtered by selecting elements
ep which satisfy the choice (c) v(ep)) and then
are exported into the workspace.

6. Within the workspace, the user applies modifica-
tions to the filtered product space and/or to the fil-
tered feature model. Updates are broken down to
insertions and deletions of element versions. Both
spaces are imported back into their multi-version
representation and merged into the repository.

7. A new revision option rn is added to Or. The con-
straint rn) rc is added to R r.

8. Next, the user specifies an (incomplete) feature
configuration a f that delineates the scope of the
change. The ambition must be weakly consistent
according to the rule base: R 0f ^a f 6= f alse. Fur-
thermore, the ambition must be implied by the
choice: c f) a f . 2

9. The applied modifications are written back under
the effective ambition a. For changes to the feature
model, a = rn; for changes to the product space,
a = rn ^ a f . Each modified (inserted or deleted)
element e is processed as follows:

2For these checks, the modified option set and rule base
O0f and R 0f are taken into account. Furthermore, bindings
for inserted features are omitted from c f , and bindings for
deleted features from a f , respectively.

Towards�the�Integration�of�Model-Driven�Engineering,�Software�Product�Line�Engineering,�and�Software�Configuration
Management

13

� Inserted elements eins are appended to the prod-
uct space (or to the feature model). Their visi-
bility is set to the ambition: v(eins) := a.
� For re-inserted elements ereins, which have not

been visible under c, the visibility is modified
as follows: v(ereins) := vold(ereins)_a.
� Deleted elements edel remain in the multi-

version product space (feature model). Their
visibility is set to v(edel) := vold(edel)^:a.

5 EXAMPLE

We illustrate our approach by means of an example
which refers to an evolving product line of flow dia-
grams. Flow diagrams are connected graphs with a
single start node (no incoming, one outgoing control
flow, cardinality 0/1), multiple activity nodes (1/1),
binary decision nodes (1/2), join nodes (+/1), and end
nodes (1/0). Start and end nodes are represented by
rounded rectangles, decision nodes by diamonds, and
join nodes by circles, respectively. We have chosen
this meta-model as it significantly limits variability
(e.g., multiple successors for an activity) within the
workspace. Within the repository, the unconstrained
multi-version representation (see Section 4.6) is used.

We will develop a product line of flow diagrams
in subsequent steps: In revision 1, the product space
is initialized by performing a global change that only
affects the revision space. Next, two independent
changes are applied that correspond to two mutually
exclusive features. In the last revision, a change is re-
assigned to a new feature, mapping a temporal change
to a logical feature retrospectively.
Initializing the Repository. In the beginning, the

version space consists of a revision graph that

only contains the initial revision r0 and a feature
model with a mandatory root feature R. The prod-
uct space consists of an empty flow diagram.

Step 1. In order to populate our empty product space,
we need to specify a choice. At the moment, there
is only one possibility allowed by the rule base:
c = r0^ fR. Figure 6, step 1, shows the modifica-
tions applied: the insertion of a start node, the ac-
tivity node v and an end node. The change is com-
mitted as a new revision r1, resulting in the ambi-
tion a = r1^ fR. A constraint r1) r0 is added to
R r transparently3.

Step 2. As there is no variability defined in the fea-
ture model yet (the selection of fR is mandatory),
it suffices to select a revision. A selection of re-
vision 1 results in the choice c = r0^ r1^ fR. Af-
ter checkout, v is locally deleted and a sequence
of activity nodes consisting of w and x is inserted
(cf. Figure 6, step 2). Furthermore, an optional
feature A is introduced, which automatically adds
the constraint fA) fR to R f . For the commit, we
specify a feature configuration with A selected, re-
sulting in a= r2^ fR^ fA. Please note that the per-
formed change is not visible for products which
do not include A.

Step 3. Once again, the latest revision is chosen. In
the feature space, A is deselected, which generates
c = r0 ^ r1 ^ r2 ^ fR ^: fA. Thus, the checked-
out product version is not affected by the deletion
of v performed in revision 2. As shown in Fig-
ure 6, step 3, an additional feature B is introduced,
which excludes A due to an OR relationship. This
results in an addition of the constraints fB) fR

3Analogous constraints are inserted for subsequent revi-
sions.

R R

 workspace before workspace after
feature model product feature model product

v

R
v

R

A
w

x

v

z

R

A

R

A B

y

z

R

A B

y

z

R

A B

C

choice
revision feature conf.

ambition
revision feature conf.

0

1

2

3

1

2

3

4

R: selected

R: selected

R: selected
A: deselected

R: selected
A: deselected
B: selected

step

1

2

3

4

R: selected

R: selected
A: selected

R: selected
A: deselected
B: selected

R: selected
A: deselected
B: selected
C: deselected

Figure 6: Specified choices and ambitions as well as local modifications performed during subsequent update/commit cycles.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

14

Table 3: Visibilities of the superimposed feature model and product space after revision 4 (hidden from the user). For the
reasons of clarity and comprehensibility, visibilities of flow edges have been omitted.

Element Visibility Expression
Feature Root feature R, option fR and constraint fR r0
Model Feature A, option fA and constraint fA) fR r2

Feature B, option fB; constraints fB) fR and fA
 fB r3
Feature C, option fC and constraint fC) fB r4

Product Start and end node r1^ fR
Space Activity node v r1^ fR^:(r2^ fA)^:(r3^ fB)

Activity nodes w and x r2^ fR^ fA
Guard y and join node r3^ fR^: fA^ fB^:(r4^: fC)
Activity node z r3^ fR^: fA^ fB

and fA
 fB. Within the workspace, we perform
a corresponding realization: the replacement of v
by a new activity node z guarded by a conditional
node y. Finally, we commit the change under a
feature configuration in which A is deselected but
B is selected: a = r3^ fR^: fA^ fB.

Step 4. After revision 3 has been committed, we
come to the conclusion that the guard y should not
realize feature B, but an optional child feature C.
This retrospective feature assignment can be per-
formed by checking out the latest revision with
feature B included: c = r0 ^ �� � ^ r3 ^ fR ^: fA ^
fB. Then, a feature C is introduced and the guard
as well as the join node are deleted (cf. Figure 6,
step 4). The change is associated with a negation
of C’s feature option: a= r4^ fR^: fA^ fB^: fC.
As a consequence, in revision 4, the guard y is
only visible for products which include C. In case
revision 3 is restored, y’s visibility still only de-
pends on B (immutability).

Results. All modifications have been applied in a
single-version view based on the filtered editing
model defined in Section 4.8. Figure 7 shows the
superimposition of the product space after revi-
sion 4. Table 3 shows visibilities of elements of
both the feature model and the product space. Vis-
ibility changes, which affect elements such as v or
y, are characterized by multiple revision options
inside an expression.

z

y

v
w

x

Figure 7: The superimposed product space in its extrinsic
representation (hidden from the user).

Benefits Revisited. To conclude this example, we
revisit the benefits claimed in Section 3.3.

The extrinsically represented model shown in Fig-
ure 7 could not have been created using a single-
version editor because it violates the constraints im-
posed by the flow diagram meta-model (see above).
Our approach, in contrast, allows for unconstrained
variability. The management of visibilities was fully
automated; we have focused on local modifications
and the definition of the editing scope).

In an unfiltered editing model, the superimposi-
tion as well as the option expressions would have been
necessarily specified manually by the user. In our ex-
ample, all versioning information is created automat-
ically based on the user-specified partial feature con-
figurations for the ambitions (three in total). Thus, the
filtered editing model brings a significant advantage
in terms of reduced cognitive complexity. Within the
workspace, a hypothetical editor for single-version
flow diagrams is employed, which exemplifies the ad-
vantage of tool independence.

Within the last two steps, the uniform representa-
tion of revisions and features has been utilized to map
an initially temporal change to a new feature. Fur-
thermore, we have shown that the update performed
in step 4 is non-destructive.

6 DISCUSSION

A thorough evaluation of our approach will be feasi-
ble as soon as a stable implementation of SuperMod
is available. In advance, we discuss some potential
(conceptual and/or technical) problems, for each of
which we sketch possible solutions.

Limited Awareness of other Versions. An ad-
vantage adopted from UVM is that the user
may operate in a single-version view. On the
downside, filtered editing also reduces awareness
of other versions that are invisible in the local
workspace. The information which variants a
modified element belongs to, i.e., its visibility,

Towards�the�Integration�of�Model-Driven�Engineering,�Software�Product�Line�Engineering,�and�Software�Configuration
Management

15

is hidden from the user. This is in contrast to
MDPLE approaches based on negative variability,
where the whole superimposition is visible (and
editable), including mapping information (i.e.,
visibilities). Thus, the advantage of reduced
complexity is instantaneously linked to the
disadvantage of limited awareness.
Mitigating the restriction of a complete choice
might increase the editable subset of the super-
imposition, but then product consistency control
becomes more important (see below). Further-
more, this does not yet solve the problem of hid-
den visibilities. As a solution, we might provide a
specialized editor to support visibility-aware, par-
tially filtered multi-version editing. Rather than
actually filtering invisible elements, they could be
shaded in gray, as realized in the tool MODPL
(Buchmann and Westfechtel, 2012), and protected
against local modifications. However, this would
remove the benefit of tool independence.

Product Consistency Control. Currently, our con-
ceptual framework does not ensure the consis-
tency of extrinsically represented products. Con-
sidering multi-variant EMF models, consistency
violations might concern referential integrity, the
containment hierarchy, type correctness, or the
cardinality of structural features. Additionally,
each meta-model may define its own context-
sensitive consistency constraints using the Object
Constraint Language (OCL).
In Section 4.1, we have introduced version rules.
Although they ensure that no inconsistent ver-
sions are specified (e.g., mutually exclusive fea-
tures), they cannot make any assertions to an ex-
trinsically represented product version, or a set
thereof. For this purpose, additional product rules
should be enforced before products are converted
into their single-version representation using the
export transformation. In (Westfechtel, 2014),
generic EMF product rules have been investigated
in the context of three-way merging. The tool
FAMILE (Buchmann and Schwägerl, 2012) pro-
vides an OCL extension to check and repair the
consistency of derived products.

Scalability. The representation of the product space
(including visibilities) as a superimposition will
result in a growing memory consumption. Due
to the immutability of revisions, product space
elements will never be effectively deleted from
the repository. Furthermore, the evaluation of the
constantly growing visibilities will be noticeable
in terms of higher commit and update runtimes.
We propose three optimizations.

� Hierarchical Propagation of Visibilities: Prod-
uct space elements are organized hierarchi-
cally. Due to existential dependency, the effec-
tive visibility of an element might be defined by
conjunction with its parent visibility. When a
tree of elements is modified, only its root ele-
ment’s visibility needs to be updated.

� Substitution of Ambition Expressions: The
mechanism of writing back changes using an
ambition results in corresponding option ex-
pressions appearing in the visibility of all af-
fected elements. If these expressions become
too long, they might be substituted by an arti-
ficial option Da. The constraint Da) a is then
added to the rule base once, and the change is
run under Da, with the same effect.

� Global Storage for Visibilities: Visibilities are
directly contained in product space elements,
which will result in duplicates. Storing iden-
tical visibilities within a global data structure,
and caching evaluation results for a given op-
tion binding, might reduce memory consump-
tion and runtime. A technically sound solution
is described in (Munch, 1993, Section 6.6).

Collaborative Editing. One of the greatest advan-
tages of SCM systems is the support for collab-
orative development performed by multiple de-
velopers. In its current state, our editing model
does not explicitly support collaboration. Concur-
rent changes are committed as multiple succes-
sors of a base revision. In order to achieve op-
timistic versioning, it should be permitted to cre-
ate a new revision with several predecessors. This
may be achieved by generalizing step 1 of the edit-
ing model presented in Section 4.8 inasmuch as
a non-empty set of mutually unrelated revisions
may be selected. As soon as mutually unrelated
branches are merged, the corresponding exclusion
constraint (see Table 2) needs to be removed.
In addition to adaptations to the version space
and the editing model, collaborative editing will
require support for three-way merging in the
workspace. Tools and approaches for the detec-
tion and resolution of merge conflicts have been
discussed in Section 2.2.

Added Value for the End User. We have described
the integrated editing model in a very abstract
way, and the pragmatic question arises, how end
users, being SPL developers and SCM users,
might gain advantage of our approach.
For SPL developers, the main advantage is the
mentioned reduction of cognitive complexity,
which may be achieved by (1) the fact that modi-

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

16

fications are performed to filtered versions of the
product line rather than to a multi-variant do-
main model, (2) the concepts of choices and ambi-
tions being expressed in a user-oriented way, mak-
ing manual feature annotations obsolete, and (3)
improved consistency support gained by version
rules, which may avoid product line inconsisten-
cies in advance. The development of an intuitive
user interface will be necessary, especially in or-
der to facilitate the specification of feature con-
figurations, which is a frequent task in the filtered
editing model.
For SCM users, the added value is the possibility
of introducing logical options, i.e., features, in ad-
dition to temporal options (revisions). When com-
pared to the widespread concept of branches, fea-
tures allow for an exponential number of product
versions: n branches represent n variants, while
n features allow for up to 2n variants (this number
may be significantly constrained by the rule base).

7 CONCLUSION

We have explored the conceptual groundwork for
an integrated solution to MDSE, SPLE and SCM.
Our presented approach is purely state-based, has an
extrinsic product space model allowing for uncon-
strained variability, and supports intensional and ex-
tensional versioning uniformly. By providing higher-
level abstractions, version selection is eased signifi-
cantly. In an example, we have shown that this uni-
form handling enables a high level of automation and
a reduction of cognitive complexity.

Although it will be far from trivial to meet the spe-
cific requirements of the three disciplines by a sin-
gle tool, we are convinced that the disciplines can
profit from each other with respect to the way how
tools are used. For instance, the filtered editing model
borrowed from SCM can increase comprehensibility
in MDPLE, while feature models provide a powerful
logical extension to temporal versioning.

In addition to the technical realization of our ap-
proach, we think that in future, the definition of a de-
velopment process would be advantageous in order to
combine the filtered editing model with MDPLE. For
evaluation purposes, we are looking for a case study
of industrial scale, which would allow for a quantita-
tive evaluation against approaches which rely on an
unfiltered editing model.

REFERENCES

Altmanninger, K., Schwinger, W., and Kotsis, G. (2010).
Semantics for accurate conflict detection in SMoVer:
Specification, detection and presentation by example.
International Journal of Enterprise Information Sys-
tems, 6(1):68–84.

Altmanninger, K., Seidl, M., and Wimmer, M. (2009). A
survey on model versioning approaches. Interna-
tional Journal of Web Information Systems (IJWIS),
5(3):271–304.

Brun, C. and Pierantonio, A. (2008). Model differences
in the Eclipse Modelling Framework. UPGRADE,
IX(2):29–34.

Buchmann, T. and Schwägerl, F. (2012). Ensuring well-
formedness of configured domain models in model-
driven product lines based on negative variability.
In Proceedings of the 4th International Workshop
on Feature-Oriented Software Development, FOSD
2012, pages 37–44, New York, NY, USA. ACM.

Buchmann, T. and Schwägerl, F. (2012). FAMILE: tool
support for evolving model-driven product lines. In
Störrle, H., Botterweck, G., Bourdells, M., Kolovos,
D., Paige, R., Roubtsova, E., Rubin, J., and Tolvanen,
J.-P., editors, Joint Proceedings of co-located Events
at the 8th European Conference on Modelling Foun-
dations and Applications, CEUR WS, pages 59–62,
Building 321, DK-2800 Kongens Lyngby. Technical
University of Denmark (DTU).

Buchmann, T. and Westfechtel, B. (2012). Mapping fea-
ture models onto domain models: ensuring consis-
tency of configured domain models. Software and Sys-
tems Modeling.

Chacon, S. (2009). Pro Git. Apress, Berkely, CA, USA, 1st
edition.

Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M.
(2004). Version Control with Subversion. O’Reilly,
Sebastopol, CA.

Conradi, R. and Westfechtel, B. (1998). Version models for
software configuration management. ACM Computing
Surveys, 30(2):232–282.

Czarnecki, K. and Kim, C. H. P. (2005). Cardinality-based
feature modeling and constraints: a progress report.
In International Workshop on Software Factories at
OOPSLA’05, San Diego, California, USA. ACM.

Estublier, J. and Casallas, R. (1994). The Adele configura-
tion manager. In Tichy, W. F., editor, Configuration
Management, volume 2 of Trends in Software, pages
99–134. John Wiley & Sons, Chichester, UK.

Gomaa, H. (2004). Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software Ar-
chitectures. Addison-Wesley, Boston, MA.

Heidenreich, F., Kopcsek, J., and Wende, C. (2008). Fea-
tureMapper: Mapping features to models. In Compan-
ion Proceedings of the 30th International Conference
on Software Engineering (ICSE’08), pages 943–944,
Leipzig, Germany.

Towards�the�Integration�of�Model-Driven�Engineering,�Software�Product�Line�Engineering,�and�Software�Configuration
Management

17

Heider, W., Rabiser, R., and Grünbacher, P. (2012). Facil-
itating the evolution of products in product line engi-
neering by capturing and replaying configuration de-
cisions. International Journal on Software Tools for
Technology Transfer, 14(5):613–630.

Jayaraman, P. K., Whittle, J., Elkhodary, A. M., and Gomaa,
H. (2007). Model composition in product lines and
feature interaction detection using critical pair anal-
ysis. In Proceedings of the 10th International Con-
ference on Model Driven Engineering Languages and
Systems (MoDELS), pages 151–165, Nashville, USA.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
and Peterson, A. S. (1990). Feature-oriented do-
main analysis (FODA) feasibility study. Technical Re-
port CMU/SEI-90-TR-21, Carnegie-Mellon Univer-
sity, Software Engineering Institute.

Kästner, C., Apel, S., Trujillo, S., Kuhlemann, M., and Ba-
tory, D. S. (2009). Guaranteeing syntactic correctness
for all product line variants: A language-independent
approach. In TOOLS (47), pages 175–194.

Koegel, M., Hermannsdoerfer, M., von Wesendonk, O., and
Helming, J. (2010). Operation-based conflict detec-
tion. In Di Ruscio, D. and Kolovos, D. S., editors, Pro-
ceedings of the 1st International Workshop on Model
Comparison in Practice (IWMCP 2010), pages 21–30,
Malaga, Spain.

Koshima, A. and Englebert, V. (2014). Collaborative edit-
ing of EMF / Ecore meta-models and models: Conflict
detection, reconciliation, and merging in DiCoMEF.
In Pires, L. F., Hammoudi, S., Filipe, J., and das
Neves, R. C., editors, Proceedings of the 2nd Interna-
tional Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2014), pages
55–66, Lisbon, Portugal. SCITEPRESS Science and
Technology Publications, Portugal.

Laguna, M. A. and Crespo, Y. (2013). A systematic map-
ping study on software product line evolution: From
legacy system reengineering to product line refactor-
ing. Sci. Comput. Program., 78(8):1010–1034.

Munch, B. P. (1993). Versioning in a Software Engineering
Database — The Change Oriented Way. PhD thesis,
Tekniske Høgskole Trondheim Norges.

Oliveira, H. L. R., Murta, L. G. P., and Werner, C. (2005).
Odyssey-VCS: a flexible version control system for
UML model elements. In SCM, pages 1–16. ACM.

Pohl, K., Böckle, G., and van der Linden, F. (2005). Soft-
ware Product Line Engineering: Foundations, Princi-
ples and Techniques. Berlin, Germany.

Reichenberger, C. (1995). VOODOO - a tool for orthogonal
version management. In Estublier, J., editor, SCM,
volume 1005 of Lecture Notes in Computer Science,
pages 61–79. Springer.

Rochkind, M. J. (1975). The source code control sys-
tem. IEEE Transactions on Software Engineering,
1(4):364–370.

Sarnak, N., Bernstein, R. L., and Kruskal, V. (1988). Cre-
ation and maintenance of multiple versions. In Win-
kler, J. F. H., editor, SCM, volume 30 of Berichte des
German Chapter of the ACM, pages 264–275. Teub-
ner.

Schneider, C., Zündorf, A., and Niere, J. (2004). CoObRA
- a small step for development tools to collaborative
environments. In Workshop on Directions in Soft-
ware Engineering Environments in 26th international
conference on software engineering, Edinburgh, Scot-
land, UK.

Schwägerl, F., Uhrig, S., and Westfechtel, B. (2013).
Model-based tool support for consistent three-way
merging of EMF models. In Proceedings of the work-
shop on ACadeMics Tooling with Eclipse, ACME ’13,
pages 2:1–2:10, New York, NY, USA. ACM.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF Eclipse Modeling Framework. The
Eclipse Series. Addison-Wesley, Upper Saddle River,
NJ, 2nd edition edition.

Taentzer, G., Ermel, C., Langer, P., and Wimmer, M.
(2014). A fundamental approach to model versioning
based on graph modifications: From theory to imple-
mentation. Software & Systems Modeling, 13(1):239–
272.

Vesperman, J. (2006). Essential CVS. O’Reilly, Sebastopol,
CA.

Völter, M. and Groher, I. (2007). Product line implementa-
tion using aspect-oriented and model-driven software
development. In Proceedings of the 11th International
Software Product Line Conference, SPLC ’07, pages
233–242, Washington, DC, USA. IEEE Computer So-
ciety.

Völter, M., Stahl, T., Bettin, J., Haase, A., and Helsen, S.
(2006). Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley &
Sons.

Westfechtel, B. (2014). Merging of EMF models - for-
mal foundations. Software & Systems Modeling,
13(2):757–788.

Westfechtel, B. and Conradi, R. (2009). Multi-variant mod-
eling - concepts, issues and challenges. In Mezini,
M., Beuche, D., and Moreira, A., editors, Proceedings
1st International Workshop on Model-Driven Product
Line Engineering (MDPLE 2009), pages 57–67. CTIT
Proceedings.

Westfechtel, B., Munch, B. P., and Conradi, R. (2001).
A layered architecture for uniform version manage-
ment. IEEE Transactions on Software Engineering,
27(12):1111–1133.

Zeller, A. and Snelting, G. (1997). Unified version-
ing through feature logic. ACM Trans. Softw. Eng.
Methodol., 6(4):398–441.

Ziadi, T. and Jézéquel, J.-M. (2007). PLiBS: an Eclipse-
based tool for software product line behavior engi-
neering. In Proc. of 3rd Workshop on Managing Vari-
ability for Software Product Lines, SPLC 2007, Ky-
oto, Japan.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

18

