
Aggregate Callback
A Design Pattern for Flexible and Robust Runtime Model Building

Gábor Kövesdán, Márk Asztalos and László Lengyel
Department of Automation and Applied Informatics, Budapest University of Technology and Economics,

Budapest, Hungary

Keywords: Modeling, Domain-Specific Modeling, Model Transformation, Code Generation, Design Pattern, Agility.

Abstract: In modern software engineering environments, tools that use Domain-Specific Languages (DSLs) are often
applied. The usual workflow of such tools is that the textual input written in the DSL is parsed and a semantic
model is instantiated. This model is later passed to another software component that processes it, e.g. a model
transformation, a code generator or a simulator. Building the semantic model inside the parser is often a
complex task. The model must be built in such a way that the constraints of the problem domain are enforced
so that the consistency of the output is guaranteed. This paper presents a design pattern, referred as Aggregate
Callback that supports enforcing constraints in the model and thus helps creating correct models. We have
found that the Aggregate Callback pattern is useful for tool developers that build models in their applications.

1 INTRODUCTION

Model-Driven Development (MDD) (Brambilla,
Cabot and Wimmer, 2012) relies on modeling the
problem and using that model through an arbitrary
number of refinement steps, called model transfor-
mations (Syriani and Vangheluwe, 2009). This model
is often used later for code generation. It facilitates
and speeds up software development since the model
does not have to include all of the implementation de-
tails that are added later by the refinement steps. This
approach provides several advantages, e.g. improves
product quality and reusability. As a consequence, de-
velopers can focus on the real problem instead of mo-
notonous coding. However, the resulting software can
only be expected to be correct if the model is con-
structed in the way as expected by the code generator.
To ensure this, modelers first define the metamodel
of the models (Kühne, 2006), also called abstract syn-
tax. The metamodel is a type that defines the possible
structure of model instances that are created from the
metamodel. Apart from this, other requirements that
are not captured in the structure can be added through
constraints. Before the model is processed, a valida-
tion step (Brambilla et al., 2012) is performed, which
checks whether the model is valid, that is, if it con-
forms to the metamodel and to the constraints.

However, validation is purely a passive check. If
the model does not conform to the metamodel or the

constraints, an error is emitted with the location of the
problem and the developers have to manually fix the
model. In Domain-Specific Modeling (DSM) (Fowler
2010) (Kelly and Tolvanen, 2008) tools, validation is
not sufficient for building a robust modeling tool.
When the model is built in the program, for example
as a result of traversing the parse tree of an input
script written in a Domain-Specific Language (DSL)
(Fowler, 2010) (Kelly and Tolvanen, 2008), the pro-
gram must ensure that the created model is valid.
DSLs raise the abstraction level at which problems
are described. This means that DSM tools encompass
domain knowledge. Some interrelations and con-
straints among model objects, such as dependency,
exclusion, calculated attribute, etc. can be inferred
from the nature of the problem domain. These details
do not have to be described by the user of the DSL
but it is the responsibility of the tool to handle such
cases correctly. If the DSL required developers to de-
scribe these inferable details, the language would not
be so concise and we would lose its common ad-
vantages, such as higher abstraction level and quick
development. So in these cases, the tool is responsible
for ensuring some of the constraints of the problem
domain correctly. Validation can point out incon-
sistent models that are the result of a software bug.
However, validation itself does not facilitate organiz-
ing well the source code of the tool so it is desired to
find a way that helps ensuring that the tool produces
valid models.

149Kövesdán G., Asztalos M. and Lengyel L..
Aggregate Callback - A Design Pattern for Flexible and Robust Runtime Model Building.
DOI: 10.5220/0005197901490156
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 149-156
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

In this paper, we present a design pattern, called Ag-
gregate Callback, which helps tool developers to
structure the code in a way that makes the model
building logic more flexible and robust. We believe
that this design pattern will greatly help developers of
modeling tools in designing agile tools that are easier
to maintain and extend. We have used this design so-
lution in earlier tools but the detailed description of
this approach as a reusable design pattern is a new
contribution in this paper.

The rest of this paper is organized as follows. Sec-
tion 2 lists existing work available about the subject.
Section 3 describes the design pattern in a format that
is similar to those that are used in design pattern
catalogs. Section 4 concludes the paper.

2 RELATED WORK

The first well-known work that proposed the reuse of
working solutions to common software engineering
problems and their description in design pattern cata-
log was the one published by Gamma et al. (Gamma
et al., 1995). This work was followed by the Pattern-
Oriented Software Architecture (POSA) series
(Buschmann et al., 1996) (Schmidt et al. 2000)
(Kircher and Jain, 2004) (Buschmann, Henney and
Schmidt, 2007a) (Buschmann, Henney and Schmidt,
2007b). Apart from the design patterns applicable in
general software engineering problems that were de-
scribed in these books, more specific design patterns
have also been published. In the field of DSLs,
(Fowler, 2010) provides a pattern catalog, covering
several different aspects of DSLs and code genera-
tion. This is a rich source of information but it has a
more general view than this paper and does not in-
clude the pattern described herein. Apart from this,
(Nguyen, Ricken and Wong, 2005) provides some
practical uses of general object-oriented design pat-
terns in recursive descent parsers and (Schreiner and
Heliotis, 2001) describes how a parser generator uses
object-oriented design patterns. These are specific
uses of general design patterns and these papers do
not include more specialized patterns specific to mod-
eling. A paper have been published with a pattern cat-
alog (Kövesdán, Asztalos and Lengyel, 2014a) of ar-
chitectural design patterns that can be used in lan-
guage parsers. Another paper (Kövesdán, Asztalos
and Lengyel, 2014b) introduces Polymorphic Tem-
plates, a design pattern that provides a solution for
implementing flexible code generators. An additional
case study (Kövesdán, Asztalos and Lengyel, 2014c)
briefly describes the use of the Aggregate Callback
and the Polymorphic Templates design patterns.

However, the Aggregate Callback design pattern is
only shortly outlined in this earlier paper. It has not
been elaborated at the level of detail as done herein.
Apart from the works cited above, we have not found
other works that provide more specialized design pat-
terns that apply to modeling.

The design pattern is useful on its own but it is
also a part of a longer work that the authors have been
doing. A more extensive method is being elaborated
that helps the development of code generation tools
supported by DSLs.

3 THE AGGREGATE CALLBACK
DESIGN PATTERN

This section describes the design pattern in catalog
format similar to what is used in the POSA series.
Namely, the following sections are applied:

 Example: a concrete use case in which the pat-
tern has been applied.

 Context: the context in which the design pattern
is applicable.

 Problem: the challenges that suggest the appli-
cation of the pattern.

 Solution: the way how the pattern solves or mit-
igates the problems.

 Structure: the main participants and their rela-
tionships and responsibilities in the pattern.

 Dynamics: the interaction of the participants of
the pattern.

 Implementation: techniques and considerations
for implementing the pattern.

 Consequences: advantages and disadvantages
that the application of the pattern implies.

 Example Resolved: the short description of how
the initially presented example has been re-
solved by using the pattern.

 See Also: references to related design patterns.

The Known Uses section is omitted. Describing more
known uses is out of scope of this paper.

3.1 Example

Applications written for the Android platform have
several different component types and artefacts,
namely Activities, Services, Content Providers, In-
tents, Intent Filters etc. Some of them have more spe-
cific subtypes, such as IntentService. In the meta-
model of our component modeling tool, they are or-
ganized into a class hierarchy. The AndroidApplica-
tion model class aggregates an arbitrary number of
Components, regardless of their concrete type.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

150

Certain component types imply some constraints that
must be enforced in order to have a consistent model
that represents a working Android application. For
example, if a GCMBroadcastReceiver is added to the
application to handle Google Cloud Messaging
(GCM) (Google, n.d.) notifications, the main Activity
of the application must initialize the GCM service and
the Manifest file must declare some permissions and
metadata related to message handling. Validation can
detect if the developer did not specify a GCMActivity
but the permissions and the metadata are not de-
scribed in the input text by design. If they were also
described, the DSL would not be as concise as it
should be. These details can be inferred so they must
be added to the model when a GCM-related Compo-
nent is added to AndroidApplication.It seems logical
to handle this in the AndroidApplication class. How-
ever, the code of the class would include too much
information about component types in this way,
which limits the flexibility because of the lack of the
separation of concerns. Extending the solution with
support for other component types would be difficult
since the aggregate class would require modifications
to enforce new constraints.

3.2 Context

The pattern is used in modeling tools that build mod-
els at runtime and must enforce some constraints
among model elements as the model elements are ag-
gregated in the model.

3.3 Problem

When complex models are processed from template
languages a number of challenges arise:

 Limited Functionality. If the constraints are only
validated and are not enforced, constraint viola-
tions can only be detected but it is not possible
to enforce constraints. This requires the DSL
that is used for modeling to describe each detail
of the model, even those that could have been
inferred by the specific characteristics of the
problem domain. Easy to use DSLs should
achieve conciseness by not describing inferable
details of the model.

 High Complexity. If dependency handling and
other constraints are implemented in a central-
ized way – either in the application or in the ag-
gregate model object – the complexity becomes

high. The logic will be implemented as a big
piece of code without proper decomposition.

 Lack of Encapsulation and Separation of Con-
cerns. Such implementation does not encapsu-
late the code that deals with constraints based on
what model class they belong to.

 Poor Readability. Because of the lack of encap-
sulation, the overall effect of the code is hard to
understand.

 Poor Extensibility. Because of the lack of encap-
sulation, several isolated parts of the code must
be modified if a new model class is added to the
metamodel. Not only the model class must be
implemented, but the centralized constraint han-
dling logic must also be updated on a regular ba-
sis. This limits extensibility.

 Error-prone Application. The former problems
lead to an error-prone application because it is
easy to make human errors.

3.4 Solution

Make enforcing constraints a responsibility of the ag-
gregated model objects. When a new model object is
added to the model, a callback method is called on the
object. Through the callback method, the object re-
ceives the reference of the model and by using it, will
be able to walk along other objects already aggre-
gated into the model and apply the changes that are
necessary to enforce constraints.

3.5 Structure

A possible structure of the pattern is depicted in Fig-
ure 1. The nomenclature reflects a dependency con-
straint but the pattern can be used for other kinds of
constraints as well. The pattern has the following el-
ements:

 Application: the main application logic that
creates the Model and its aggregated instances
of ModelClass.

 Model: the model itself that aggregates several
instances of ModelClass.

 ModelClass: abstract class, whose instances
may be added to the Model.

 DependencyModelClass: a concrete subclass
of ModelClass that may be used as a depend-
ency for other instances of ModelClasses.

 DependentModelClass: a concrete subclass of
ModelClass, whose instances depend on in-
stances of DependencyModelClass.

Aggregate�Callback�-�A�Design�Pattern�for�Flexible�and�Robust�Runtime�Model�Building

151

Figure 1: A possible structure of the participants in the Aggregate Callback pattern.

3.6 Dynamics

The dynamics are demonstrated on enforcing a de-
pendency relation. The Application creates the Model
and instantiates the objects that will be added to the
model. Usually, standalone objects are added first that
do not enforce any dependency relations. Later, fur-
ther objects may be added, that depend on other ob-
jects added earlier. If the order in which objects are
added to the model is not guaranteed, the constraint
must be checked and enforced in all objects that are
affected by the particular constraint. If objects are
added in a fixed order, it is sufficient to enforce the
constraint.

Objects are added with the addObject() method of
Model. After adding an object, the Model calls back
its addedToModel() method, passing itself as a pa-
rameter. Concrete ModelClasses use this method to
implement the necessary logic for enforcing con-
straints, such as dependency relations. It is possible to
query other objects from the Model by calling its
getObjects() method, walking on the other objects
and modifying them. When a DependentModelClass
is added, it can traverse ModelClasses and check if a
proper DependencyModelClass exists in the Model.
Such a scenario is depicted in the sequence diagram
of Figure 2. The reference to the dependency class is
stored by calling the setDependency() method.

3.7 Implementation

The following techniques should be considered for
the implementation of the pattern:

 The pattern can be applied to the complete
model or any other subset that contains an ag-
gregate object and associated aggregated ob-
jects.

 In the description of the pattern, aggregation is
mentioned, however, the pattern is also applica-
ble to associations. The concept that is empha-
sized with the name of the pattern is that it works
among objects that together form the model or a
logical set of objects.

 Constraints may be of various types: depend-
ency, exclusion, calculated value etc.

 From the callback method, it is possible to
simply modify attributes of other model objects
or performing more complex operations as well,
such as, adding or removing object or associa-
tions.

 There may be constraints that involve more than
two model objects. The developer should care-
fully consider in which model class to imple-
ment the constraint enforcement. If it is guaran-
teed that they are added to the model in a spe-
cific order, enforcing constraints in the last
model class is a reasonable solution

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

152

Figure 2: The interaction of the participants in the Aggregate Callback pattern.

Otherwise, it is recommended to implement con-
straint check and enforcement in all participants. This
may be done with inheritance to avoid redundancy in
the code. This solution has a performance hit since the
constraint check is performed several times. How-
ever, if the model is used in a code generator, this is
not a problem since it does not affect the performance
of the final (generated or partly generated) software
product.

3.8 Consequences

The pattern achieves the following advantages:
 Separation of Concerns in the Modeling Tool.

Each model class is responsible for checking
and enforcing the related constraints.

 Easy Maintainability and Extensibility. When
adding model classes, new and related con-
straints can be implemented in the callback
method of the new model class. Optionally,
some old model classes that also participate in
new constraints will need to be updated. Apart
from this, the code does not require modifica-
tions.

 Robust Application. Structuring the code in this
way helps to systematically implement con-
straint enforcement and ensure that the tool pro-
duces a valid model.

The application of the pattern also has a disadvantage:
 Hard to See all the Constraints and the Overall

Effects of Callbacks. The constraint enforcing
logics are decomposed based on what model
class they belong to. From a responsibility point
of view, this achieves good separation of con-
cerns since a specific logic is encapsulated into
the model class, which is involved in the spe-
cific constraints. However, if we want to review
constraint enforcing as a whole, we face diffi-
culties since the code is scattered across model
classes. This is a direct consequence of the ap-
plication of the pattern since its main idea was
to decompose constraint enforcement logic.
Therefore, this is not a serious disadvantage. A
possible way to mitigate this problem is to factor
out different constraint checks into methods of a
single class and calling these from the callbacks.
In this way, all of the advantages of the design
pattern apply and the constraint checking code
remains easier to understand.

Aggregate�Callback�-�A�Design�Pattern�for�Flexible�and�Robust�Runtime�Model�Building

153

Figure 3: The metamodel used in the AndroidModeler tool.

3.9 Example Resolved

In the AndroidModeler tool (Kövesdán, Asztalos and
Lengyel, 2014c), the pattern has been successfully ap-
plied. The metamodel has been created with the
Eclipse Modeling Framework (EMF) (Steinberg et al,
2008). The EMF framework leverages round-trip
code generation and allows for defining methods on
model classes in Java. This made it easy to implement
the callback methods on Components. The meta-
model used in the tool is depicted in Figure 3. The
AndroidApplication model class defines an
addComponent() method that can be used to add
Components to the application model. This method
stores the new Component and then calls back the
componentAddedTo() method on the Component,
passing the this reference as a parameter. From this
method, concrete subtypes of the abstract Component
class can traverse and modify other elements of the
model, thus enforcing the constraints. When an An-
droid application uses GCM, some constraints must
be enforced. This could be done from the callback of
any of the three GCM-related components, namely
GCMActivity, GCMBroadcastReceiver or
GCMIntentService. It was chosen to enforce these

constraints in the GCMBroadcastReceiver compo-
nent, since it is the main component that initializes
GCM and it is obligatory in each GCM-enabled ap-
plication. The callback first creates a Metadata model
object with the name com.google.android.gms.
version and the value as the current GCM version
number and adds it to the application. This is required
by the GCM framework. After this, several types of
Permissions are created. Most of these are declared as
used by the application but there is also a Permission
defined by the application. This serves for receiving
GCM messages. Finally, an IntentFilter is set up to
route GCM messages properly.

As outlined earlier, details such as the metadata
on the GMS version or the different kinds of permis-
sions are not part of the textual description. These are
details that can be inferred and are not relevant at the
level of the component modeling. Therefore, these
should be added automatically in the tool. Validation
can be used in a later phase to check whether these
constraints hold but such validation only works as a
test for the software. It does not validate input coming
from the user. Provided that the tool works correctly,
it will always pass. To highlight the difference be-
tween the objectives of the Aggregate Callback des

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

154

ign pattern and validation, we will explain a different
aspect of the tool. The components that are used to
handle GCM messaging are specified in the DSL. A
GCMActivity is always obligatory. It is the main com-
ponent that registers the application to the servers of
Google. Apart from this, a GCMBroadcastReceiver is
also necessary to receive incoming cloud messages. It
is a common practice to dispatch the handling of
Intents in an IntentService. To facilitate such a solu-
tion, a GCMIntentService component type has been
also introduced. This component is optional in GCM-
enabled applications. If added to the application, such
a BroadcastReceiver is generated that dispatches the
event handling to the IntentService. Since these com-
ponents are configured in the textual description, the
generated components depend on the intentions of the
user. Therefore, in this case, validation should be used
to check whether the specified component structure is
valid.

In the AndroidModeler tool, the application of the
pattern achieved good separation of concerns. The
code that handles these constraints was encapsulated
into the GCMActivity class. Other pieces of the code
are not affected by the constraints and the
AndroidApplication class is not polluted by code that
logically belongs to the constraints of individual com-
ponents. The tool is still in an early phase but it will
be easy to add further specialized component types
because the existing code will not require modifica-
tions. Besides, the constraints on these specific model
classes will surely hold in the resulting model since
the tool is written with this in mind. The disadvantage
of the pattern was that it is not straightforward to find
these pieces of code. It may take an effort for devel-
opers unfamiliar with the code to understand the inner
working of the tool. The empty callback method is
defined on the abstract type of the aggregated compo-
nents, that is, Component, but concrete implementa-
tions may freely override it. This requires the devel-
oper to read all the descendants of Component in or-
der to understand the overall effect of the code. Fur-
thermore, as outlined in Section 3.7, constraints that
involve several Components, can be enforced in any
of them. This makes it even more difficult to under-
stand the code. In the AndroidModeler tool, it did not
cause problems because the tool aims to only generate
a skeleton, so it is an inherently simple application. In
more complex code generator tools, this may be a
more serious problem.

3.10 See Also

The Polymorphic Templates design pattern
(Kövesdán et al., 2014b) is related that it is a specific

design pattern for code generators. It reduces the
complexity of long templates by decomposing them
on a per feature per model class basis. It was also ap-
plied in the AndroidModeler tool on the templates of
the Components.

4 CONCLUSIONS

The paper has presented a novel design pattern for
building models in a more robust and flexible way.
This solution has been identified in our DSL-based
tools that build models from textual input. It has been
chosen to publish this solution as a design pattern to
facilitate its reuse. The catalog format enables devel-
opers to easily understand the context of the applica-
tion, the problems that arise in this context and how
the application of the design pattern addresses these
issues. Implementation ideas are also provided. These
help developers to decide, which variant fits better
their needs. An earlier paper (Kövesdán, Asztalos and
Lengyel, 2014c) includes a case study in which the
pattern is applied in a real application.

We believe that the conscious application of the
Aggregate Callback design pattern will greatly help
the development of DSL-based applications. It is a
potential tool for creating agile modeling tools and
thus is highly demanded in modern software environ-
ments. The design pattern is applicable itself but it is
also part of a method being elaborated on building
code generator tools that use DSLs as input. Future
work on the subject includes an extensive description
of the complete method.

ACKNOWLEDGEMENTS

This work was partially supported by the European
Union and the European Social Fund through project
FuturICT.hu (grant no.: TAMOP-4.2.2.C-
11/1/KONV-2012-0013) organized by VIKING Zrt.
Balatonfüred. This work was partially supported by
the Hungarian Government, managed by the National
Development Agency, and financed by the Research
and Technology Innovation Fund (grant no.:
KMR_12-1-2012-0441).

REFERENCES

Brambilla, M., Cabot, J., Wimmer, M., 2012. Model-Driven
Software Engineering in Practice. Morgan and Clay-
pool.

Aggregate�Callback�-�A�Design�Pattern�for�Flexible�and�Robust�Runtime�Model�Building

155

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
Stal, M., 1996. Pattern-Oriented Software Architecture
Volume 1: A System of Patterns. Wiley.

Buschmann, F., Henney, K., Schmidt, D.C., 2007a. Pat-
tern-Oriented Software Architecture Volume 4: A Pat-
tern Language for Distributed Computing. Wiley.

Buschmann, F., Henney, K., Schmidt, D.C., 2007b. Pattern
Oriented Software Architecture Volume 5: On Patterns
and Pattern Languages. Wiley.

Fowler, M., 2010. Domain-Specific Languages. Addison-
Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley.

Google, n.d., Google Cloud Messaging for Android. Avail-
able from: http://developer.android.com/google/gcm/
index.html.

Kelly, S., Tolvanen, J., 2008. Domain-Specific Modeling:
Enabling Full Code Generation. Wiley - IEEE Com-
puter Society Publications.

Kircher, M., Jain, P., 2004. Pattern-Oriented Software Ar-
chitecture Volume 3: Patterns for Resource Manage-
ment. Wiley.

Kövesdán, G., Asztalos, M., Lengyel, L., 2014a. Architec-
tural Design Patterns for Language Parsers, Acta Poly-
technica Hungarica, vol. 11, no. 5, pp. 39–57.

Kövesdán, G., Asztalos, M., Lengyel, L., 2014b. Polymor-
phic Templates. In: XM 2014 Extreme Modeling Work-
shop, In conjunction with MODELS 2014. In press.

Kövesdán, G., Asztalos, M., Lengyel, L., 2014c. Fast An-
droid Application Development with Component Mod-
eling. In: 5th Conference on Cognitive Infocommunica-
tions. Submitted for publication.

Kühne, T., 2006. Matters of (Meta-) Modeling. Journal on
Software and Systems Modeling, vol. 5, no. 4, pp. 369-
385.

Nguyen, D., Ricken, M., Wong, S., 2005. Design Patterns
for Parsing, In: 36th SIGCSE Technical Symposium on
Computer Science Education, pp. 477–48. ACM.

Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F., 2000.
Pattern-oriented Software Architecture Volume 2: Pat-
terns for Concurrent and Networked Objects. John
Wiley and Sons.

Schreiner, A.T., Heliotis, J.E., 2001. Design Patterns in
Parsing, In: 10th IEEE International Symposium on
High Performance Distributed Computing, pp. 181–
184, IEEE Press.

Steinberg D., Budinsky, F., Paternostro, M., Merks, E.,
2008. EMF: Eclipse Modeling Framework. 2nd Edi-
tion, Addison-Wesley Professional.

Syriani, E., Vangheluwe, H., 2009, Matters of model trans-
formation. School of Computer Science, McGill Uni-
versity, SOCS-TR-2009.2.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

156

