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Abstract: In modern software engineering environments, tools that use Domain-Specific Languages (DSLs) are often 
applied. The usual workflow of such tools is that the textual input written in the DSL is parsed and a semantic 
model is instantiated. This model is later passed to another software component that processes it, e.g. a model 
transformation, a code generator or a simulator. Building the semantic model inside the parser is often a 
complex task. The model must be built in such a way that the constraints of the problem domain are enforced 
so that the consistency of the output is guaranteed. This paper presents a design pattern, referred as Aggregate 
Callback that supports enforcing constraints in the model and thus helps creating correct models. We have 
found that the Aggregate Callback pattern is useful for tool developers that build models in their applications. 

1 INTRODUCTION 

Model-Driven Development (MDD) (Brambilla, 
Cabot and Wimmer, 2012) relies on modeling the 
problem and using that model through an arbitrary 
number of refinement steps, called model transfor-
mations (Syriani and Vangheluwe, 2009). This model 
is often used later for code generation. It facilitates 
and speeds up software development since the model 
does not have to include all of the implementation de-
tails that are added later by the refinement steps. This 
approach provides several advantages, e.g. improves 
product quality and reusability. As a consequence, de-
velopers can focus on the real problem instead of mo-
notonous coding. However, the resulting software can 
only be expected to be correct if the model is con-
structed in the way as expected by the code generator. 
To ensure this, modelers first define the metamodel 
of the models (Kühne, 2006), also called abstract syn-
tax. The metamodel is a type that defines the possible 
structure of model instances that are created from the 
metamodel. Apart from this, other requirements that 
are not captured in the structure can be added through 
constraints. Before the model is processed, a valida-
tion step (Brambilla et al., 2012) is performed, which 
checks whether the model is valid, that is, if it con-
forms to the metamodel and to the constraints. 

However, validation is purely a passive check. If 
the model does not conform to the metamodel or the 

constraints, an error is emitted with the location of the 
problem and the developers have to manually fix the 
model. In Domain-Specific Modeling (DSM) (Fowler 
2010) (Kelly and Tolvanen, 2008) tools, validation is 
not sufficient for building a robust modeling tool. 
When the model is built in the program, for example 
as a result of traversing the parse tree of an input 
script written in a Domain-Specific Language (DSL) 
(Fowler, 2010) (Kelly and Tolvanen, 2008), the pro-
gram must ensure that the created model is valid. 
DSLs raise the abstraction level at which problems 
are described. This means that DSM tools encompass 
domain knowledge. Some interrelations and con-
straints among model objects, such as dependency, 
exclusion, calculated attribute, etc. can be inferred 
from the nature of the problem domain. These details 
do not have to be described by the user of the DSL 
but it is the responsibility of the tool to handle such 
cases correctly. If the DSL required developers to de-
scribe these inferable details, the language would not 
be so concise and we would lose its common ad-
vantages, such as higher abstraction level and quick 
development. So in these cases, the tool is responsible 
for ensuring some of the constraints of the problem 
domain correctly. Validation can point out incon-
sistent models that are the result of a software bug. 
However, validation itself does not facilitate organiz-
ing well the source code of the tool so it is desired to 
find a way that helps ensuring that the tool produces 
valid models. 
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In this paper, we present a design pattern, called Ag-
gregate Callback, which helps tool developers to 
structure the code in a way that makes the model 
building logic more flexible and robust. We believe 
that this design pattern will greatly help developers of 
modeling tools in designing agile tools that are easier 
to maintain and extend. We have used this design so-
lution in earlier tools but the detailed description of 
this approach as a reusable design pattern is a new 
contribution in this paper. 

The rest of this paper is organized as follows. Sec-
tion 2 lists existing work available about the subject. 
Section 3 describes the design pattern in a format that 
is similar to those that are used in design pattern 
catalogs. Section 4 concludes the paper. 

2 RELATED WORK 

The first well-known work that proposed the reuse of 
working solutions to common software engineering 
problems and their description in design pattern cata-
log was the one published by Gamma et al. (Gamma 
et al., 1995). This work was followed by the Pattern-
Oriented Software Architecture (POSA) series 
(Buschmann et al., 1996) (Schmidt et al. 2000) 
(Kircher and Jain, 2004) (Buschmann, Henney and 
Schmidt, 2007a) (Buschmann, Henney and Schmidt, 
2007b). Apart from the design patterns applicable in 
general software engineering problems that were de-
scribed in these books, more specific design patterns 
have also been published. In the field of DSLs, 
(Fowler, 2010) provides a pattern catalog, covering 
several different aspects of DSLs and code genera-
tion. This is a rich source of information but it has a 
more general view than this paper and does not in-
clude the pattern described herein. Apart from this, 
(Nguyen, Ricken and Wong, 2005) provides some 
practical uses of general object-oriented design pat-
terns in recursive descent parsers and (Schreiner and 
Heliotis, 2001) describes how a parser generator uses 
object-oriented design patterns. These are specific 
uses of general design patterns and these papers do 
not include more specialized patterns specific to mod-
eling. A paper have been published with a pattern cat-
alog (Kövesdán, Asztalos and Lengyel, 2014a) of ar-
chitectural design patterns that can be used in lan-
guage parsers. Another paper (Kövesdán, Asztalos 
and Lengyel, 2014b) introduces Polymorphic Tem-
plates, a design pattern that provides a solution for 
implementing flexible code generators. An additional 
case study (Kövesdán, Asztalos and Lengyel, 2014c) 
briefly describes the use of the Aggregate Callback 
and the Polymorphic Templates design patterns. 

However, the Aggregate Callback design pattern is 
only shortly outlined in this earlier paper. It has not 
been elaborated at the level of detail as done herein. 
Apart from the works cited above, we have not found 
other works that provide more specialized design pat-
terns that apply to modeling. 

The design pattern is useful on its own but it is 
also a part of a longer work that the authors have been 
doing. A more extensive method is being elaborated 
that helps the development of code generation tools 
supported by DSLs. 

3 THE AGGREGATE CALLBACK 
DESIGN PATTERN 

This section describes the design pattern in catalog 
format similar to what is used in the POSA series. 
Namely, the following sections are applied: 

 Example: a concrete use case in which the pat-
tern has been applied. 

 Context: the context in which the design pattern 
is applicable. 

 Problem: the challenges that suggest the appli-
cation of the pattern. 

 Solution: the way how the pattern solves or mit-
igates the problems. 

 Structure: the main participants and their rela-
tionships and responsibilities in the pattern. 

 Dynamics: the interaction of the participants of 
the pattern. 

 Implementation: techniques and considerations 
for implementing the pattern. 

 Consequences: advantages and disadvantages 
that the application of the pattern implies. 

 Example Resolved: the short description of how 
the initially presented example has been re-
solved by using the pattern. 

 See Also: references to related design patterns. 

The Known Uses section is omitted. Describing more 
known uses is out of scope of this paper. 

3.1 Example 

Applications written for the Android platform have 
several different component types and artefacts, 
namely Activities, Services, Content Providers, In-
tents, Intent Filters etc. Some of them have more spe-
cific subtypes, such as IntentService. In the meta-
model of our component modeling tool, they are or-
ganized into a class hierarchy. The AndroidApplica-
tion model class aggregates an arbitrary number of 
Components, regardless of their concrete type.  
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Certain component types imply some constraints that 
must be enforced in order to have a consistent model 
that represents a working Android application. For 
example, if a GCMBroadcastReceiver is added to the 
application to handle Google Cloud Messaging 
(GCM) (Google, n.d.) notifications, the main Activity 
of the application must initialize the GCM service and 
the Manifest file must declare some permissions and 
metadata related to message handling. Validation can 
detect if the developer did not specify a GCMActivity 
but the permissions and the metadata are not de-
scribed in the input text by design. If they were also 
described, the DSL would not be as concise as it 
should be. These details can be inferred so they must 
be added to the model when a GCM-related Compo-
nent is added to AndroidApplication.It seems logical 
to handle this in the AndroidApplication class. How-
ever, the code of the class would include too much 
information about component types in this way, 
which limits the flexibility because of the lack of the 
separation of concerns. Extending the solution with 
support for other component types would be difficult 
since the aggregate class would require modifications 
to enforce new constraints. 

3.2 Context 

The pattern is used in modeling tools that build mod-
els at runtime and must enforce some constraints 
among model elements as the model elements are ag-
gregated in the model. 

3.3 Problem 

When complex models are processed from template 
languages a number of challenges arise: 

 Limited Functionality. If the constraints are only 
validated and are not enforced, constraint viola-
tions can only be detected but it is not possible 
to enforce constraints. This requires the DSL 
that is used for modeling to describe each detail 
of the model, even those that could have been 
inferred by the specific characteristics of the 
problem domain. Easy to use DSLs should 
achieve conciseness by not describing inferable 
details of the model. 

 High Complexity. If dependency handling and 
other constraints are implemented in a central-
ized way – either in the application or in the ag-
gregate model object – the complexity becomes 

high. The logic will be implemented as a big 
piece of code without proper decomposition. 

 Lack of Encapsulation and Separation of Con-
cerns. Such implementation does not encapsu-
late the code that deals with constraints based on 
what model class they belong to. 

 Poor Readability. Because of the lack of encap-
sulation, the overall effect of the code is hard to 
understand. 

 Poor Extensibility. Because of the lack of encap-
sulation, several isolated parts of the code must 
be modified if a new model class is added to the 
metamodel. Not only the model class must be 
implemented, but the centralized constraint han-
dling logic must also be updated on a regular ba-
sis. This limits extensibility. 

 Error-prone Application. The former problems 
lead to an error-prone application because it is 
easy to make human errors. 

3.4 Solution 

Make enforcing constraints a responsibility of the ag-
gregated model objects. When a new model object is 
added to the model, a callback method is called on the 
object. Through the callback method, the object re-
ceives the reference of the model and by using it, will 
be able to walk along other objects already aggre-
gated into the model and apply the changes that are 
necessary to enforce constraints. 

3.5 Structure 

A possible structure of the pattern is depicted in Fig-
ure 1. The nomenclature reflects a dependency con-
straint but the pattern can be used for other kinds of 
constraints as well. The pattern has the following el-
ements: 

 Application: the main application logic that 
creates the Model and its aggregated instances 
of ModelClass. 

 Model: the model itself that aggregates several 
instances of ModelClass. 

 ModelClass: abstract class, whose instances 
may be added to the Model. 

 DependencyModelClass: a concrete subclass 
of ModelClass that may be used as a depend-
ency for other instances of ModelClasses. 

 DependentModelClass: a concrete subclass of 
ModelClass, whose instances depend on in-
stances of DependencyModelClass. 
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Figure 1: A possible structure of the participants in the Aggregate Callback pattern. 

3.6 Dynamics 

The dynamics are demonstrated on enforcing a de-
pendency relation. The Application creates the Model 
and instantiates the objects that will be added to the 
model. Usually, standalone objects are added first that 
do not enforce any dependency relations. Later, fur-
ther objects may be added, that depend on other ob-
jects added earlier. If the order in which objects are 
added to the model is not guaranteed, the constraint 
must be checked and enforced in all objects that are 
affected by the particular constraint. If objects are 
added in a fixed order, it is sufficient to enforce the 
constraint. 

Objects are added with the addObject() method of 
Model. After adding an object, the Model calls back 
its addedToModel() method, passing itself as a pa-
rameter. Concrete ModelClasses use this method to 
implement the necessary logic for enforcing con-
straints, such as dependency relations. It is possible to 
query other objects from the Model by calling its 
getObjects() method, walking on the other objects 
and modifying them. When a DependentModelClass 
is added, it can traverse ModelClasses and check if a 
proper DependencyModelClass exists in the Model. 
Such a scenario is depicted in the sequence diagram 
of Figure 2. The reference to the dependency class is 
stored by calling the setDependency() method. 

3.7 Implementation 

The following techniques should be considered for 
the implementation of the pattern: 

 The pattern can be applied to the complete 
model or any other subset that contains an ag-
gregate object and associated aggregated ob-
jects. 

 In the description of the pattern, aggregation is 
mentioned, however, the pattern is also applica-
ble to associations. The concept that is empha-
sized with the name of the pattern is that it works 
among objects that together form the model or a 
logical set of objects. 

 Constraints may be of various types: depend-
ency, exclusion, calculated value etc. 

 From the callback method, it is possible to 
simply modify attributes of other model objects 
or performing more complex operations as well, 
such as, adding or removing object or associa-
tions. 

 There may be constraints that involve more than 
two model objects. The developer should care-
fully consider in which model class to imple-
ment the constraint enforcement. If it is guaran-
teed that they are added to the model in a spe-
cific order, enforcing constraints in the last 
model class is a reasonable solution 
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Figure 2: The interaction of the participants in the Aggregate Callback pattern. 

Otherwise, it is recommended to implement con-
straint check and enforcement in all participants. This 
may be done with inheritance to avoid redundancy in 
the code. This solution has a performance hit since the 
constraint check is performed several times. How-
ever, if the model is used in a code generator, this is 
not a problem since it does not affect the performance 
of the final (generated or partly generated) software 
product. 

3.8 Consequences 

The pattern achieves the following advantages: 
 Separation of Concerns in the Modeling Tool. 

Each model class is responsible for checking 
and enforcing the related constraints. 

 Easy Maintainability and Extensibility. When 
adding model classes, new and related con-
straints can be implemented in the callback 
method of the new model class. Optionally, 
some old model classes that also participate in 
new constraints will need to be updated. Apart 
from this, the code does not require modifica-
tions. 

 Robust Application. Structuring the code in this 
way helps to systematically implement con-
straint enforcement and ensure that the tool pro-
duces a valid model. 

The application of the pattern also has a disadvantage: 
 Hard to See all the Constraints and the Overall 

Effects of Callbacks. The constraint enforcing 
logics are decomposed based on what model 
class they belong to. From a responsibility point 
of view, this achieves good separation of con-
cerns since a specific logic is encapsulated into 
the model class, which is involved in the spe-
cific constraints. However, if we want to review 
constraint enforcing as a whole, we face diffi-
culties since the code is scattered across model 
classes. This is a direct consequence of the ap-
plication of the pattern since its main idea was 
to decompose constraint enforcement logic. 
Therefore, this is not a serious disadvantage. A 
possible way to mitigate this problem is to factor 
out different constraint checks into methods of a 
single class and calling these from the callbacks. 
In this way, all of the advantages of the design 
pattern apply and the constraint checking code 
remains easier to understand. 
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Figure 3: The metamodel used in the AndroidModeler tool. 

3.9 Example Resolved 

In the AndroidModeler tool (Kövesdán, Asztalos and 
Lengyel, 2014c), the pattern has been successfully ap-
plied. The metamodel has been created with the 
Eclipse Modeling Framework (EMF) (Steinberg et al, 
2008). The EMF framework leverages round-trip 
code generation and allows for defining methods on 
model classes in Java. This made it easy to implement 
the callback methods on Components. The meta-
model used in the tool is depicted in Figure 3. The 
AndroidApplication model class defines an 
addComponent() method that can be used to add 
Components to the application model. This method 
stores the new Component and then calls back the  
componentAddedTo() method on the Component, 
passing the this reference as a parameter. From this 
method, concrete subtypes of the abstract Component 
class can traverse and modify other elements of the 
model, thus enforcing the constraints. When an An-
droid application uses GCM, some constraints must 
be enforced. This could be done from the callback of 
any of the three GCM-related components, namely 
GCMActivity, GCMBroadcastReceiver or 
GCMIntentService. It was chosen to enforce these 

constraints in the GCMBroadcastReceiver compo-
nent, since it is the main component that initializes 
GCM and it is obligatory in each GCM-enabled ap-
plication. The callback first creates a Metadata model 
object with the name com.google.android.gms. 
version and the value as the current GCM version 
number and adds it to the application. This is required 
by the GCM framework. After this, several types of 
Permissions are created. Most of these are declared as 
used by the application but there is also a Permission 
defined by the application. This serves for receiving 
GCM messages. Finally, an IntentFilter is set up to 
route GCM messages properly. 

As outlined earlier, details such as the metadata 
on the GMS version or the different kinds of permis-
sions are not part of the textual description. These are 
details that can be inferred and are not relevant at the 
level of the component modeling. Therefore, these 
should be added automatically in the tool. Validation 
can be used in a later phase to check whether these 
constraints hold but such validation only works as a 
test for the software. It does not validate input coming 
from the user. Provided that the tool works correctly, 
it will always pass. To highlight the difference be-
tween the objectives of the Aggregate Callback des 
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ign pattern and validation, we will explain a different 
aspect of the tool. The components that are used to 
handle GCM messaging are specified in the DSL. A 
GCMActivity is always obligatory. It is the main com-
ponent that registers the application to the servers of 
Google. Apart from this, a GCMBroadcastReceiver is 
also necessary to receive incoming cloud messages. It 
is a common practice to dispatch the handling of 
Intents in an IntentService. To facilitate such a solu-
tion, a GCMIntentService component type has been 
also introduced. This component is optional in GCM-
enabled applications. If added to the application, such 
a BroadcastReceiver is generated that dispatches the 
event handling to the IntentService. Since these com-
ponents are configured in the textual description, the 
generated components depend on the intentions of the 
user. Therefore, in this case, validation should be used 
to check whether the specified component structure is 
valid. 

In the AndroidModeler tool, the application of the 
pattern achieved good separation of concerns. The 
code that handles these constraints was encapsulated 
into the GCMActivity class. Other pieces of the code 
are not affected by the constraints and the 
AndroidApplication class is not polluted by code that 
logically belongs to the constraints of individual com-
ponents. The tool is still in an early phase but it will 
be easy to add further specialized component types 
because the existing code will not require modifica-
tions. Besides, the constraints on these specific model 
classes will surely hold in the resulting model since 
the tool is written with this in mind. The disadvantage 
of the pattern was that it is not straightforward to find 
these pieces of code. It may take an effort for devel-
opers unfamiliar with the code to understand the inner 
working of the tool. The empty callback method is 
defined on the abstract type of the aggregated compo-
nents, that is, Component, but concrete implementa-
tions may freely override it. This requires the devel-
oper to read all the descendants of Component in or-
der to understand the overall effect of the code. Fur-
thermore, as outlined in Section 3.7, constraints that 
involve several Components, can be enforced in any 
of them. This makes it even more difficult to under-
stand the code. In the AndroidModeler tool, it did not 
cause problems because the tool aims to only generate 
a skeleton, so it is an inherently simple application. In 
more complex code generator tools, this may be a 
more serious problem. 

3.10 See Also 

The Polymorphic Templates design pattern 
(Kövesdán et al., 2014b) is related that it is a specific 

design pattern for code generators. It reduces the 
complexity of long templates by decomposing them 
on a per feature per model class basis. It was also ap-
plied in the AndroidModeler tool on the templates of 
the Components. 

4 CONCLUSIONS 

The paper has presented a novel design pattern for 
building models in a more robust and flexible way. 
This solution has been identified in our DSL-based 
tools that build models from textual input. It has been 
chosen to publish this solution as a design pattern to 
facilitate its reuse. The catalog format enables devel-
opers to easily understand the context of the applica-
tion, the problems that arise in this context and how 
the application of the design pattern addresses these 
issues. Implementation ideas are also provided. These 
help developers to decide, which variant fits better 
their needs. An earlier paper (Kövesdán, Asztalos and 
Lengyel, 2014c) includes a case study in which the 
pattern is applied in a real application. 

We believe that the conscious application of the 
Aggregate Callback design pattern will greatly help 
the development of DSL-based applications. It is a 
potential tool for creating agile modeling tools and 
thus is highly demanded in modern software environ-
ments. The design pattern is applicable itself but it is 
also part of a method being elaborated on building 
code generator tools that use DSLs as input. Future 
work on the subject includes an extensive description 
of the complete method. 
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