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Abstract: A basic problem in the construction of network representations of gene interactions is deciding whether a 
gene is or is not expressed at a time instant. This problem, referred here as the gene expression decision 
problem, has been approached with statistical and numerical algorithms. Numerical methods are based on 
different intuitions on what signals a gene expression threshold and as a consequence, they often return 
different answers. Consequently, the choice of a particular gene expression decision algorithm influences 
the gene interaction model. This article proposes an aggregation methodology for numerical gene 
expression decision algorithms that is based on voting. The result is thus, the expression decision made by 
the majority of the algorithms, provided that that decision is consistent with an underlying logical law 
referred as the doctrine. The proposed method is compared with some non-voting aggregation algorithms. 

1 INTRODUCTION 

Most of the physical and biochemical traits of a 
living being can be traced back to its genetic make-
up through mRNA counts. An mRNA concentration 
is the result of intricate cascades of stochastic 
cellular processes that start with the transcription of 
information stored in the genes. For this reason, 
mRNA counts are referred as gene expressions. 
Although posttranscriptional events may alter the 
correlation between mRNA and their related 
proteins (Greenbaum et al., 2003) gene expression 
data still provide valuable insights on the 
transcriptional process in the cell. Transcription 
networks models such as Boolean and Probabilistic 
Boolean networks, are usually derived from, and 
validated with time series of gene expressions 
(Bornholdt, 2008); (Kim et al., 2013); (Shmulevich 
et al., 2010). 

Gene expression data is normally obtained with 
DNA microarrays (Tarca et al., 2006), quantitative 
polymerase chain reactions (qPCR) (Derveaux et al., 
2010), or next generation sequencing experiments 
(Matsumura et al., 2005); (Yamamoto et al., 2001). 
DNA microarray methods are based on 
hybridization of dyed mRNA samples to probes, and 
the measurements of the intensities of a fluorescent 
signal. The intensities are, in turn, correlated with 
the amount of mRNA in the sample through a 
complex protocol that involves a number of ad-hoc 
decisions on data analysis methods, background 

noise eliminations, and other error pruning 
considerations. Just as microarrays, qPCR methods 
are based on hybridizations and intensity 
measurements of fluorescent signals. But unlike 
microarrays, qPCR detection is made in real-time, 
with each cycle of amplification. Quantitative PCR 
is, in general, faster and more sensitive than 
microarrays, and requires lower amounts of material. 
Both, microarray and qPCR methods quantify only a 
selected number of transcripts. Next generation 
sequencing is capable of quantifying all the mRNA 
in a cell sample. The expression levels returned by 
these methods are basically free of correlation errors 
and background noise elimination, as they do not 
involve the transformation of signal intensities into 
estimations on the number of transcripts.  

Gene expression changes with time and 
biological context. Thus, capturing meaningful 
information requires a sequence of experiments 
whose results are reported in a gene expression 
array (GEA). A GEA with N experiments on a set of 
M genes is a M × N array G = [G(k, j)]. Each row 
corresponds to a gene, and each column to a 
different experiment or condition. The k-th row in G 
is called expression profile of gene k.  

The gene expression decision problem (GEDP) is 
stated as follows: “For each entry G(k, j) in a GEA,  
decide whether gene k is or is not expressed at 
condition j”. 

It is worth remarking that GEDP is much harder 
to solve than the problem of detecting over 
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expressed genes that commonly arises in the search 
for disease biomarkers. GEDP answers are 
presented, in turn, as a M × N array B = [B(k, j)], 
where B(k, j) = 1 if the k-th gene is expressed at 
condition j and B(k, j) = 0, otherwise. Because of the 
currently limited knowledge of the cell inner 
mechanisms and the stochastic nature of the events 
that lead to gene expressions, matrix B is more a 
hypothesis on the states and transitions of the gene 
expressions than a deterministic fact. Nonetheless, 
these hypotheses are often formulated with the help 
of deterministic data analysis algorithms that mine 
each expression profile in G for signals of an 
expression threshold t. Once a threshold t is 
determined for the expression profile of gene k, the 
k-th row of B is produced by assigning 1 to the j-th 
entry if G(k, j) > t, and 0, otherwise.  

Several algorithms based on different data 
mining methodologies and conjectures on the 
features in the data that signal an expression 
threshold, have been designed. Their results are 
often significantly different (Seguel et al., 2013).  

In this article, I propose a wisdom-of-crowds 
methodology for aggregating these algorithmic 
decisions. The methodology is based on a 
mathematical structure that I call multi-algorithm 
aggregation scheme (MAS). MAS is inspired in the 
logic underlying collective decision-making by 
voting. MAS is a true alternative to average, median, 
and other common aggregation formulas, as it 
provides flexibility to select the voting method and a 
decision-making rule, referred as doctrine. This 
flexibility turns the method into an analytical tool; 
capable of testing the data with different decision-
making parameters. As a mathematical structure, 
MAS can be used in applications other than gene 
expression decisions.  

The rest of this article is organized as follows: 
Section 2 is a brief description of the algorithms 
selected for the proposed multi-algorithmic scheme, 
together with some basic time and space complexity 
analysis. Section 3 is a mathematical description of 
MAS and its implementation for solving the gene 
expression decision problem. Section 4 reports the 
results of experiments and comparisons between 
MAS and other aggregation rules, and Section 5 
summarizes some conclusions of this work.  

2 SOME GENE EXPRESSION 
DECISION ALGORITHMS 

The gene expression decision algorithms that are the 
basis of the proposed multi-algorithm method can be 

classified in three main groups. The first group, 
referred as jump-based methods, consists of four 
algorithms that determine the threshold on the basis 
of a jump in the values of the gene expression 
profile. Methods in this group are labelled J1, J2, J3 
and J4. The second group consists of three 
algorithms that determine a threshold on the basis of 
approximations to the gene expression profile by 
one-step functions. These algorithms are denoted S1, 
S2 and S3 and are called one-step methods. The 
threshold returned by one-step methods is the 
midpoint of the steps in the one-step approximation 
mapping whose values are further apart.  

The third group consists of two data clustering 
methods, both based on Lloyd’s algorithm. These 
methods are labelled C1 and C2. Next are high-level 
descriptions of each of these methods. 

2.1 Jump-based Methods 

Algorithm J1 sorts the input expression profile in 
increasing order, and sets as threshold the midpoint 
between the smallest and the highest jump in the 
data. Algorithm J2 is introduced in (Shmulevich et 
al., 2002) The method sorts the expression profile in 
increasing order and computes the average of all 
data jumps. Then, it sets as threshold the first value 
that exceeds the average. Algorithm J3 is a variant 
of Algorithm J2 that replaces the first value that 
exceeds the average data jump with the mean of all 
the values that exceed the average of the data jumps.  

The main advantages of algorithms J1, J2 and J3 
are conceptual and computational simplicity. In fact, 
they all return the M thresholds of a M × N array G 
in O(MN) time, using O(N) space. Algorithm J4 is 
more complex. This method is an implementation of 
the Binarization Across Multiple Scales (BASC) 
algorithm (Hopfensitz et al., 2011). BASC 
approximates the input expression profile sorted in 
increasing order with a sequence of step functions, 
each with a different number of steps. It starts with 
the step function that fits exactly the input data. 
Then, it produces a sequence of step functions, each 
with one less step than the previous one. Dynamic 
programming is used to ensure that each new step 
function minimizes the Euclidian distance to the 
sorted expression profile. For each step function in 
the sequence, the ratio between the highest step 
jump and the Euclidean distance of the step function 
to the input data is computed. A high ratio is 
declared to be a strong discontinuity and its index is 
saved in a vector v. Then, the method computes the 
median m of the indices in v and defines the 
threshold as the average of the data point indexed by 
m and m + 1.  

BIOINFORMATICS�2015�-�International�Conference�on�Bioinformatics�Models,�Methods�and�Algorithms

110



Algorithm J4 returns the M thresholds of a M × 
N input array G in O(MN3) time, using O(MN2) 
space. 

2.2 One-Step Approximations 

The first method in this group, called Algorithm S1 
is inspired on StepMiner (Sahoo et al., 2007). 
StepMiner adjust a one-step or a two-step function 
to the data using linear regression with (3, N – 1) 
degrees of freedom. The least square errors of the 
approximations provide a set of F-statistics, whose 
P-value is used for deciding whether the error is 
significant. StepMiner is not intended to solve 
GEDP. Algorithm S1 adjusts a one-step function to 
the expression profile sorted in increasing order, 
using StepMiner’s methodology, and a preset 
significance of .05. If the subset of one-step 
mappings satisfying this constraint is empty, the 
method returns Not a Number (NaN). Otherwise, the 
method selects the step function whose steps are 
further apart, and sets the midpoint between the 
function’s steps as the threshold.  

Algorithm S2 sorts the input vector in increasing 
order. Then, for each j from 1 to N – 1, computes the 
median of the data points from 1 to j and that the 
data points from j + 1 to N. Then, it finds the index 
m where the difference of the medians is maximal, 
and sets the threshold as the midpoint between the 
data points indexed by m and m + 1. Finally, 
Algorithm S3 does the same as algorithm S2 but 
using the mean instead of the median. All step 
methods return the M thresholds of a M × N input 
array G in O(MN2) time, using O(MN) space.     

2.3 Clustering Methods 

Two methods are in this group. The first classifies a 
expression profile in two clusters using Lloyd’s 
algorithm, also known k-means clustering. The 
algorithmic threshold is implicit, in the sense that the 
method splits the expression profile in two clusters, 
each centred around a different centroid; without 
computing a threshold. Algorithm C1 sets as 
threshold the mid-point between the cluster’s 
centroids. 

Algorithm C2 implements the iterative clustering 
variant of Lloyd’s algorithm proposed in 
(Berestovsky et al., 2013) as a way to smooth data 
oscillations. C2 starts with an application of the 2d-
means cluster algorithm to the input data. Here d is a 
user-defined parameter, whose sole restriction is that 
2d cannot be greater than the length of the expression 
profile. After computing the initial 2d clusters, the 
algorithm replaces each element in a cluster with the 

cluster’s mean, and applies the 2d–1–means cluster 
algorithm to the resulting data. This process is 
repeated until d = 1.  

As in Algorithm C1, the threshold returned by 
Algorithm C2 is the mid-point between the centroids 
of the two clusters at the end of the iterations. 

2.4 Threshold Correlations 

In order to assess similarities and differences in the 
threshold values returned by the above algorithms, 
the thresholds of one thousand random 16-point 
vectors were computed for each algorithm. It was 
observed that the histograms for the threshold values 
presented significantly different shapes, and that the 
correlations among observed threshold values were 
very weak except in the cases of S1 and S3, and C1 
and C2 (Seguel et al., 2014). Scatter plots produced 
with this data confirmed that the threshold values 
returned by the rest of the algorithms do not have 
large correlations. 

2.5 Threshold Displacements 

In time-course data, it is natural to think of the 
expression profile as an N-point sample of a 
continuous gene expression function that takes 
values in a time interval. The size N of the sample 
may alter significantly the value of the expression 
threshold. This dependence of the threshold on N 
can be incorporated in a GEDP method through a 
statistical estimation of the threshold displacement 
as a function of N.  

Table 1: Expected threshold displacements. 

Algorithm 
Expected 

displacement 
Variance 

J1 0.4609 0.0187 
J2 0.7602 0.0516 
J3 0.6709 0.0358 
J4 0.2474 0.0069 
S1 0.1034 0.0122 
S2 0.3004 0.0359 
S3 0.2777 0.0393 
C1 0.1250 0.0001 
C2 0.1552 0.0023 

 

I call threshold displacement the maximum 
distance between the threshold computed with a 
sample of size N = 2n + 1, n > 2; and the set of all 
the thresholds obtained by successively filtering 
each other data point until n = 1. The expected value 
of the threshold displacement for each of the nine 
algorithms was computed with four hundred random 
(2n + 1)-point random vectors, with n = 12 for all 
methods except for J4. Because of space and time 
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limitations, the threshold displacement for algorithm 
J4 was computed with (2n + 1)-point random 
vectors, with n = 8. Table 1 reports the results. 

Each expected displacement defines a threshold 
uncertainty interval. A point in this interval is 
declared to be not decidable. More precisely, if d is 
the expected displacement of an algorithm, and t is 
the threshold returned by the same algorithm on 
input V, then a point G(k, j) in V is not decidable if 

 

d G(k, j ) t  d. (1)
 

Algorithms with lower expected threshold 
displacement will eventually decide a larger number 
of points in the expression profile. 

3 MULTI-ALGORITHMIC 
SCHEMES 

The core concepts in this section are borrowed from 
theories developed in the context of economics, 
jurisprudence and sociology (List, 2012). I define a 
multi algorithmic scheme (MAS) as a quadruple (S, 
A, R, D), where S is a finite set of decision 
algorithms, A is a finite set of logic statements called 
agenda, R is an aggregation rule, and D is a logical 
equivalence describing the fact to be determined in 
terms of the statements in the agenda. D is referred 
as the doctrine. Each algorithm in S decides whether 
each of the statements in A is true or false. The set of 
these decisions is called algorithmic judgment.  

An aggregation rule is a method for determining 
a collective judgment from the set of all algorithmic 
judgments. Some common aggregation rules are 
majority, supermajority, unanimity and dictatorship. 
Under majority rule, the truth-value in the collective 
judgment is the truth-value of at least one half plus 
one of the algorithmic judgments. Under 
supermajority, the collective judgment is the truth-
value of a preset number of algorithmic judgments 
that is greater than half plus one of the algorithms, 
and under unanimity, the truth-value of the 
collective judgment is to be shared by all 
algorithmic judgments. Dictatorship, in turn, 
imposes in the collective judgment the truth-value of 
a fixed, preselected algorithm. Thus, dictatorship is a 
degenerate or trivial aggregation rule. 

A central concept in aggregation theory is 
consistency. In its simplest form, consistency refers 
to the preservation of the rules of logic when a 
doctrine is valuated with the truth-values of the 
collective judgments. The theory of aggregation 
devotes a significant effort to the search for 
conditions in the agenda under which non-trivial 

aggregation rules produce consistent judgments. In 
this work, however, no consistency requirement is 
imposed on the agenda. Instead, MAS interprets 
inconsistent collective judgments as instances of the 
GEDP that are collectively not decidable. 

Not decidable and collectively not decidable 
points add a third option in the binary vector B that 
is denoted NaN (not a number). From the 
perspective of an answer to a GEDP, NaN entries in 
B are normally considered to be noisy data points 
and as such, are usually filtered out in subsequent 
applications of the GEDP solution.   

3.1 A MAS for the GEDP 

Let S be a subset of {J1, J2, J3, J4, S1, S2, S3, C1, C2}, 
the set of gene expression decision algorithms. The 
previous discussion partitions the solution space of 
the GEDP into decidable and not decidable data 
points. Decidable points are further divided into 
points that indicate an expressed gene state and 
points that indicate that the gene is in unexpressed 
state. Let A = {U, N}, where 

 (2)

and 

 (3)

Clearly U is true if and only if G(k, j) signals an 
unexpressed gene, and N is true if G(k, j) is not 
decidable. The doctrine D is set to be 

 (4)

Thus, E is true if and only if G(k, j) corresponds to 
an expressed gene. Finally, R may be majority, a 
super majority or the unanimity rule.  

Table 2 illustrates a collective judgement that is 
inconsistent with doctrine D. 

Table 2: Example of inconsistent collective judgment. 

Algorithm N U E 
A 1 0 0 
B 0 0 1 
C 0 1 0 

Majority 0 0 0 
 

The algorithmic judgments of {N, U} are shown 
in rows A, B and C, together with the valuations of 
E. The forth row is the simple majority of votes on 
each predicate. According with the majority, both 
~N and ~U are true while E is false. This is 
inconsistent with the doctrine as a true conjunction 
is true. a semantic rule of Consequently, the data 
point whose algorithmic and collective judgments 
are shown in Table 2 is not decidable.  

U :"G(k, j )  t | t G(k, j ) |   d"

N :  " | t G(k, j ) |    d".

E  ~U   ~ N.
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4 SOME EXPERIMENTS 

This section compares the resolution capabilities of 
MAS against non-voting aggregation formulas. The 
resolution is measured with a resolution score (RS), 
defined as 

RS(V,X)  1 Z N,  (5)

where Z is the number of points in an N-point 
expression profile V that are not decided by method 
X. The closer RS is to 1, the better the resolution of 
X. All algorithms were implemented in MatlabTM.  

4.1 MAS-GEDP Pseudo Code 

Next is a high-level description of MAS-GEDP. 

On input V (an expression profile)  
1. For each algorithm in S 

Compute the threshold 
2. For each data point in V 

For each algorithm in S 
i. Evaluate N, U and E 
ii. Apply majority rule R  
iii. Check consistency with D 
iv. If inconsistent or N = 1, write NaN 

in B 
v. Else if E = 1, write 1 in B 
vi. Else write 0 in B. 

3. Output B 

4.2 Non-voting Aggregation Formulas 

I consider three non-voting aggregation formulas. 
The first two use the average (AVG), and the 
median (MED) of the thresholds, respectively. These 
formulas decide all points. The third aggregation 
formula decides that a point that is below the lowest 
threshold returned by the algorithms in S is 
unexpressed; a point that is above the highest 
threshold of all algorithms in S is expressed, and a 
point in between the lowest and highest thresholds is 
not decidable. I refer to this method as below 
minimum and above maximum (BMAM). Clearly, 
0 ≤ RS(V, X) ≤ 1 whenever X is a MAS-GEDP or 
BMAM.  

Although BMAM is not a traditional aggregation 
rule, it is a natural and simple way to aggregate the 
algorithmic decisions. 

4.3 Results 

In this subsection I report the results returned by 
AVGi, MEDi, BMAMi, and MASi, I = 1 or 2. Here 
the label 1 indicates that the subset of algorithms is 

1 { 4,  1,  3,  1,  2}S J S S C C . (6)
 

These are algorithms whose expected threshold 
displacement is less than 0.3. Methods labelled 2 use 
the nine gene expression threshold algorithms. 
MAS1 uses simple majority while MAS1

+ uses a 
supermajority of four or more votes. Similarly, 
MAS2 uses simple majority while MAS2

+ uses a 
supermajority of six or more votes. 

Table 3: Synthetic expression profile 1. 

V 0.080 0.029 0.160 0.960 0.858 0.808 
AVG1 0 0 0 1 1 1 
AVG2 0 0 0 1 1 1 
MED1 0 0 0 1 1 1 
MED2 0 0 0 1 1 1 

BMAM1 0 0 0 1 1 1 
BMAM2 0 0 NaN 1 NaN NaN 
MAS1 0 0 0 1 1 1 
MAS1

+ 0 0 0 1 1 1 
MAS2 0 0 0 1 1 1 
MAS2

+ 0 0 0 1 1 1 

Table 4: Synthetic expression profile 2. 

V 0.452 0.402 0.502 0.622 0.770 0.809 
AVG1 0 0 0 1 1 1 
AVG2 0 0 0 1 1 1 
MED1 0 0 0 1 1 1 
MED2 0 0 0 1 1 1 

BMAM1 0 0 0 1 1 1 
BMAM2 0 0 0 NaN NaN 1 
MAS1 NaN 0 NaN NaN 1 1 
MAS1

+ NaN 0 NaN NaN NaN 1 
MAS2 NaN NaN NaN NaN NaN NaN 
MAS2

+ NaN NaN NaN NaN NaN NaN 

Table 5: Synthetic expression profile 3. 

V 0.143 0.279 0.459 0.654 0.813 0.906 
AVG1 0 0 0 1 1 1 
AVG2 0 0 0 1 1 1 
MED1 0 0 0 1 1 1 
MED2 0 0 0 1 1 1 

BMAM1 0 0 0 1 1 1 
BMAM2 0 0 0 1 1 1 
MAS1 0 0 NaN NaN 1 1 
MAS1

+ 0 0 NaN NaN 1 1 
MAS2 0 NaN NaN NaN NaN 1 
MAS2

+ 0 NaN NaN NaN NaN 1 
 

The synthetic expression profile 1 approximates 
a one-step function with rather distant steps; 
synthetic expression profile 2 also approximates a 
one-step function but with closer steps. Finally, 
synthetic expression profile 3 approximates a 
straight line with slope 1. 

4.4 Some Statistics  

The expected value of the resolution score of 
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BMAM and MAS methods were computed with 400 
randomly generated 16-point expression profiles. 
The expected resolution scores (5) and their variance 
are shown in Table 6. 

Table 6: Expected resolution scores. 

Method Expected RS Variance 
BMAM1 0.7104 0.0335 
BMAM2 0.4935 0.0345 

MAS1 0.7112 0.0160 
MAS1

+ 0.5334 0.0188 
MAS2 0.4792 0.0226 
MAS2

+ 0.2924 0.0204 
 

The percentage of coincident decisions in the 
outputs of BMAM1 and MAS1, and those of 
BMAM2 and MAS2 were measured in the same 
experiment. The results are shown in Table 7. 

Table 7: Percentage of coincidences BMAM1 – MAS1. 

 MAS1 (1) MAS1 (0) MAS1 (NaN) 
BMAM1 (1) 32.02   
BMAM1 (0)  32.70  

BMAM1(NaN)   20.90 

Table 8: Percentage of coincidences BMAM2 – MAS2. 

 MAS2 (1) MAS2 (0) MAS2 (NaN) 
BMAM2 (1) 23.34   
BMAM2 (0)  15.25  

BMAM2(NaN)   40.44 
 

According to the tables, BMAM1 and MAS1 
coincide about 86% of times in their decisions, while 
BMAM2 and MAS2 coincide only about 79% of 
times. 

5 CONCLUSIONS 

Because of the stochastic nature of gene expression, 
formulating a hypothesis on the state of a gene at a 
particular time instant is not a deterministic problem. 
Nonetheless, deterministic algorithms based on 
intuitive models and different data mining 
methodologies provide insights on the gene 
expression state. Aggregating their solutions is a 
way around determinism. In this article I introduce 
MAS, an aggregation method that regards each 
deterministic answer as a vote and makes a decision 
on the basis of a majority rule. Points whose 
aggregated decision contradicts the doctrine, and 
points that fall within a threshold uncertainty 
interval, are declared to be not decidable and 
discarded as noisy data. 

There is not a significant agreement between 

BMAM1 and MAS1 in the identification of noisy 
points. In general, as shown in Table 6, methods 
BMAMi and MASi, i = 1, 2; have comparable scores 
of resolution when simple majority is used. 
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