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Abstract: Visual Saliency of a video sequence can be computed by combining spatial and temporal features that 
attract a user’s attention to a group of pixels. We present a method that computes video saliency by 
integrating these features: color dissimilarity, objectness measure, motion difference, and boundary score. 
We use temporal clusters of pixels, or temporal superpixels, to simulate attention associated with a group of 
moving pixels in a video sequence. The features are combined using weights learned by a linear support 
vector machine in an online fashion. The temporal linkage for superpixels is then used to find the saliency 
flow across the image frames. We experimentally demonstrate the efficacy of the proposed method and that 
the method has better performance when compared to state-of-the-art methods. 

1 INTRODUCTION 

Finding what attracts a viewer’s attention in video 
data has many applications in video analysis and 
pattern recognition, such as video summarization, 
video object recognition, surveillance, and 
compression. In these applications, it is paramount 
to find the salient object in the video. A majority of 
work in predicting video saliency focuses on eye 
tracking where the aim is to mimic human vision. 
The major problem associated with eye-tracking 
saliency maps is that they do not scale well with 
higher level applications (Cheng et al., 2011), such 
as object detection. In this paper we propose a new 
method to detect salient objects in a video sequence 
using feature integration theory. 

Treisman and Gelade (1980) in their seminal 
work described feature integration theory in which 
visual attention is derived from many features in 
parallel. These features are combined together 
linearly to focus where the attention is at a salient 
location.  The weights in the combination step rank 
the features according to their relative importance. 

Building on this biological principle we propose 
to use four features which attract attention in 
parallel.  These features are: (i) color contrast, which 
is the most discriminant feature to differentiate a 
salient vs non-salient region; (ii) motion difference, 
which captures the change in the location of a salient 
object; (iii) notion of objectness, which gives the 

probability of occurrence of a generic object; and 
(iv) boundary score, which is a measure of  the 
existence of boundary.  In our method, the feature 
combination step is achieved by learning the weights 
using a linear support vector machine.  

In a dynamic scene depicted in a video sequence, 
the focus of attention tends to occur in clusters 
(Mital et al., 2011) rather than at the pixel level. 
Clustering of pixels into meaningful homogeneous 
regions forms what are referred to as superpixels.  
Temporal coherence between superpixels so that the 
same superpixel belongs to same object across the 
frames is accomplished by using temporal 
superpixels (Chang et al., 2013). 

The feature integration technique described 
above finds the fixation in a single frame and in 
principle we could just find attention separately for 
every frame.  Saliency detection for a single image 
(frame) differs from that for video in that the viewer 
has no continuous or prior information when 
viewing a single image, so that there is no gaze 
transition. In video saliency detection prior 
information is essential to facilitate the gradual 
transition of attention from one region of importance 
to another over several frames. Transition from a 
single frame to video is modeled by online learning 
of weights and by using prior saliency information 
from the previous frames to update the current frame 
via a saliency flow framework. 
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Figure 1: Flow diagram for detecting video saliency. 

2 RELATED WORK 

Itti and Baldi (2005) use the feature integration 
theory to combine local cues of intensity, color, 
orientation, motion in parallel using a center 
surround map. A surprising change to a distribution 
is captured by maximizing the posterior probability 
of the combination map. Mahadevan and 
Vasconcelos (2010) use a biologically inspired 
discriminant center surround saliency hypothesis for 
video where each pixel is represented by a spatio-
temporal patches which is contrasted with the center 
to find saliency.  Using rare or abnormal motion to 
detect saliency in a video is proposed by Mancas et 
al. (2011) where only dynamic features are used and 
no static features such as color or contrast are 
incorporated. Fukuchi et al. (2009) use a stochastic 
representation of saliency map using Kalman filters. 

Rudoy et al. (2013) present a method to predict 
the gaze location given the previous frame fixation 
map. They generate three sets of candidate maps as 
static, semantic and motion maps. A random forest 
classifier is trained to predict the location of the gaze 
in the next frame. Our method extends their work in 
that we use a learning-based feature integration 
along with a Gaussian process-based superpixel 
linkage (Chang et al., 2013) to generate video 
saliency. 

3 VIDEO SALIENCY  

3.1 Temporal Superpixels 

As fixation occurs in clusters it is useful to group 
pixels together into regions. The so-called 

superpixels are one way to do this grouping. Ren 
and Malik (2003) use Gestalt principles for grouping 
pixels into superpixels where a good grouping meant 
that each group confirms to proximity, similarity and 
homogeneity. Extension to video requires solving 
that superpixel correspondence (Figure 2) that 
entails ensuring a superpixel’s boundary remains 
constant in subsequent frames under the constraints 
of change in intensity, occlusion, camera movement 
and deformation. 

 
Figure 2: Temporal Superpixel Representation showing 
superpixel correspondence. 

There are existing methods for solving the 
superpixel correspondence problem. Xu and Carso 
(2012) provide an excellent review for supervoxels 
based methods that extend superpixels to 
supervoxels in video frames. A supervoxel can be 
generated using the mean shift method (Paris and 
Durand 2007), a graph based method (Grundmann et 
al., 2010), segmentation by weighted aggregation 
(Sharon et al., 2006), an energy optimization 
framework  (Veksler  et  al.,  2010),  or   superpixels 
rates for color histogram (Van den Bergh et al., 
2013). Supervoxels are over-segmented but not 
regular sized so that the boundaries do not remain 
the same.  

Video Temporal 
superpixel 

Salient 
Features 

SVM 
Weights 

Saliency 
Flow 

Final 
map 

 ܋ܟ

 ܗܟ

 ܕܟ

 ܊ܟ

Max 
Peak

Frame 1        Frame N 

Superpixel 
correspondence 

ICPRAM�2015�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

202



 

Figure 3: Feature Maps. Rows indicates features map associated with color, motion, objectness and boundary while column 
shows input; intermediate level details (for color it is average color, for motion it is optical flow, for objectness it is 
bounding box and for boundary it is edge map); pixel-level details; superpixel-level details; and ground truth. 

To extend superpixels in its basic form for videos, 
temporally consistent superpixels create a global 
color space and superpixels are assigned to the color 
space depending on an energy function and the 
mutability of the sliding window frame (Reso et al., 
2013). In temporal superpixel, a temporally linked 
superpixel is created in each frame by building a 
generative graphical model using topological 
constraints (Chang et al., 2013). We use temporal 
superpixels as it gives regular shaped compact 
superpixels with intact boundaries across frames.  

3.2 Salient Features 

Salient features are those which attract attention. In 
our work, they are color dissimilarity, motion 
difference, objectness, and boundary score. Figure 3 
shows the feature maps computation at different 
stages. 

3.2.1 Color Dissimilarity 

Color dissimilarity is measured by comparing the 
color difference between superpixels. A group of 
pixels is dissimilar with respect to other pixel groups 
if it stands out (Goferman et al., 2010). The 
dissimilarity for a pair of superpixels is given by 
Singh et al.  (2014) as 

݀൫݌ݏ௜, ௝൯݌ݏ ൌ 	
,௜݌ݏ൫ݎ݋݈݋ܿ݀ ௝൯݌ݏ

1 ൅ ,௜݌ݏ൫݊݋݅ݐ݅ݏ݋݌݀	 ௝൯݌ݏ
 (1) 

 
where ݀ܿݎ݋݈݋൫݌ݏ௜,  ௝൯ is the color difference݌ݏ
between superpixels computed as the distance 
between two average colors in the CIE L*a*b* color 
space and ݀݊݋݅ݐ݅ݏ݋݌൫݌ݏ௜,  ௝൯ is the position݌ݏ

difference between superpixel centers. The CIE 
L*a*b* color space is used because it supports 
chromatic double opponency. Further, we aggregate 
the individual dissimilarities as follows, 

௜݌ݏܩ ൌ
1
݊
෍݀൫݌ݏ௜, ௝൯݌ݏ

௡

௝ୀଵ

 (2) 

where ݌ݏܩ௜	is the global dissimilarity measure for 
superpixel i, n is the number of superpixels and  
݀൫݌ݏ௜,   ௝൯ is the local dissimilarity measure from݌ݏ
Equation 1. The global dissimilarity measure is 
mapped to the saliency feature so that the higher the 
global dissimilarity measure, the closer the saliency 
is to 1.  In our work, the color dissimilarity map is 
given by colori = 1 – exp(–Gspi). 

3.2.2 Motion Difference   

A change in motion attracts attention; to capture this 
change we compute motion difference between 
frames. At frame t, we first compute the optical flow 
(Sun et al., 2010) to obtain at each pixel location the 
horizontal and vertical velocity components denoted, 
respectively, ),( yxut and ),( yxvt .  We compute the 

changes in velocity components as 21   ttt uuu

and 21   ttt vvv .  The frame motion difference 

is determined in terms of these changes: 

   22 ),(),(),( yxvyxuyxf ttt  . (3) 

The motion difference for superpixel r is given by 

௥݊݋݅ݐ݋݉ ൌ
1
ܬ
෍ ௥݂,௧൫ݔ௝, ௝൯ݕ

௃

௝ୀଵ

 (4) 

where J is the total number of pixels in the
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Figure 4: Individual features and integrated results (“Combined”) compared to Ground Truths. 

superpixel and ௥݂,௧  are pixels in superpixel r at 
frame ݐ. The motion difference ensures only fast 
moving pixels which generate strong cues have a 
stronger contribution towards saliency detection.  

3.2.3 Objectness Measure   

Human eyes are most tuned to be fixated on an 
object in a scene. There can be one or many salient 
objects in an image that can be anywhere in the 
scene. The objectness map of an image is the 
probability of occurrence of an object in a window 
(Alexe et al., 2012).  Sampling for object windows 
gives the notion of objectness (Sun and Ling, 2013), 
which ensures a higher probability value for the 
occurrence of an object. Objectness for a superpixel 
is computed by finding the average objectness of 
underlying pixels in a superpixel as follows: 

௥ݏݏ݁݊ݐ݆ܾܿ݁݋ ൌ 	
1
ܬ
	෍ܾܲ݋௥൫ݔ௝, ௝൯ݕ

௃

௝ୀଵ

 (5) 

where ݏݏ݁݊ݐ݆ܾܿ݁݋௥ is the objectness for superpixel 
r, J is the total pixels in superpixel r, ܾܲ݋௥ is the 
probability of occurrence of an object in objectness 
map (Sun and Ling 2013), and  ݔ௝,  ௝ is the locationݕ
of the jth pixel. 

3.2.4 Boundary Score 

Boundaries encompass both edges and corners in a 
way that is more natural to human perception.  Not 
all edges attract attention but those pixels that do 
attract attention often lie on a boundary. We 
calculate a boundary score as a measure of how 
likely a pixel is a boundary pixel. For boundary 
detection we use the learned sparse code gradients 
(Ren and Bo 2012).  The boundary score of 
superpixel r is given by  

௥ݕݎܽ݀݊ݑ݋ܾ ൌ
1
ܬ
෍݃ܲܤ௥൫ݔ௝, ௝൯ݕ

௃

௝ୀଵ

 (6) 

where J is the total pixels in superpixel r, ݃ܲܤ௥ is 
the boundary map of the image (Ren and Bo, 2012), 
and  ݔ௝,  .௝ is the location of the jth pixelݕ

 

Figure 5: Online update of weights. 

3.3 Feature Integration using SVM 

The value of superpixel r in a saliency map, denoted

rS , is formed by a linear combination of the salient 

features: 

rbrm

rorcr

boundarywmotionw

objectnesswcolorwS




        
 (7) 

where the weights ݓ௖,ݓ௢	,  ௕ are found by theݓ,௠ݓ
linear support vector machines (SVM) (Chang and 
Lin, 2008).  In the following, when we compute the 
saliency value in a video sequence, we refer to the 
saliency value for the r th superpixel in the  th 
frame as ,rS . 

A linear SVM when given a training set 
ሺݔ௜, ݈௜ሻ, ௜ݔ	 	 ∈ 	ܴ௡, ݈௜ 	 ∈ ሼ1, െ1ሽ, ݅ ൌ 1,… ,ܰ,  solves 
the following unconstrained problem: 

min
௪,௕

1
2
ݓ்ݓ ൅ ,ݓሺߦ෍ܥ ܾ;

ே

௜ୀଵ

,௜ݔ ݈௜ሻ (8) 
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Figure 6: Combination map generated using feature integration (labeled “svm”) gives better performance over individual 
maps. 

where ݓ is the weight vector, ݔ௜, ݈௜ are, respectively, 
the data and label of instance i, ܥ is the penalty 
parameter, and ߦሺݓ, ܾ; ,௜ݔ ݈௜ሻ is the loss function. 
These weights give the importance of each feature 
and they can be viewed as activation functions 
which enhance certain features and inhibit others. 
Figure 4 shows the feature integration results. 

Learning and updating the weights at each frame 
using online gradient descent (Karampatziakis and 
Langford, 2010) is as follows  

௧ାଵݓ ൌ ௧ݓ	 െ  ௧݈௧ሻ (9)ݔ௧ݓሺߘ	

where ݓ௧ାଵ is the weight vector for next frame, ݓ௧ is 
the weight for the current frame and ߘሺݓ௧ݔ௧݈௧ሻ is the 
loss function. Here the data ݔ௧ is the combination 
map and ݈௧	is the ground truth. Figure 5 shows the 
process of updating weights. 

3.4 Saliency Flow  

Video is rich in redundancy in the context of 
saliency information.  Human gaze lasts nearly 5 to 
10 frames before shifting in a video (Koffka, 1955). 
Inter-frame saliency dependence is strong so that a 
salient superpixel in a current frame is most likely to 
be salient in the previous frame. This gives us a 
chain like structure between superpixels (“old 
superpixels”) that exists in a previous frame. An old 
superpixel may change its size due to perspective 
change but its boundary remains the same. If a 
superpixel pops up in the current frame it is called a 
“new superpixel.” 

There are many centers of activation in an image 
which can influence saliency. We extend it to video 
by finding the center of activation in T previous 
frames; in our work, we set 5T corresponding to 
the lower end of the human gaze duration. For an old 
superpixel, the activation center is found by finding 
the most salient superpixel in T  previous frames. 

For a new superpixel we find the closest nearest 
neighbor which can influence its saliency. A 
superpixel feature is given by the feature vector 
,ݔ̅〉 ഥ,ݕ ,തܮ തܽ, ܾ,ഥ  ,consisting of the average location  〈ݔ݁ݐ
CIE L*a*b* color channel values, and texture 
information. This feature vector is used for a nearest 
neighbor search. Figure 7b shows a pictorial 
reference to this search process. Temporal 
superpixels give the temporal linkage from which 
we find the center of activation from a set of 
previous frames that has the maximum influence on 
the current superpixel r:  


















NewSPrS

OldSPrS
mv

ktr
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ktr
Tk

r
,

,,1

,
,,1

ˆmax

max




 (10) 

where ܵ௥, is the saliency from Equation 7 for the 
same superpixel in frame , መܵ ௥,

೟∈೅
 is the value from 

Equation 7 for the closest superpixel in frame	,   = 
t–1,…, t–T. The current frame’s saliency for 
superpixl r is updated from the previous frames by 

௥ݓ݋݈ܨ݈ܽܵ ൌ ሺܵ௥ ൅	݉ݒ௥ሻ 2⁄  (11) 

where ݉ݒ௥ is activation center’s saliency value 
found for superpixel ݎ and ܵ௥ is the saliency value 
for the current superpixel ݎ. 

4 EXPERIMENTS 

Algorithm 1 shows the steps for computing saliency 
map. Training was done using 10-fold cross valida-
tion which resulted in an accuracy of 92.7%. The 
importance of features found using SVM weight 
vector is in the following order: objectness, color 
dissimilarity, boundary score, and motion difference. 
We test our algorithm on the Segtrack and Fukuchi 
data sets. Segtrack (Tsai et al., 2012) is widely used  

                     a: ROC curve.                                         b: Precision Recall curve.                 c: Area under curve (AUC) and F-Measure. 
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Figure 7a: Saliency Flow improves results over individual frames. “GT” refers to ground truth. 

 

 Figure 7b: Search for activation center (Saliency Flow).         Figure 7c: ROC curve        Figure 7d: Precision Recall Curve. 

Algorithm 1: Video Saliency Detection 
1. Compute temporal superpixels for each frame 

a. for each superpixel do 
1) Compute color dissimilarity  Eq. 2; 
2) Compute motion difference Eq. 4; 
3) Compute objectness Eq. 5; 
4) Compute boundary score Eq. 6;  

2. Learn weights using linear SVM 
a. update weights using online gradient decent 
b. Generate combination map using learned 

weights Eq. 7; 
3. Compute saliency flow to account for temporal 

consistency  Eq. 10 ; 
4. Generate final map. 

for figure-ground segmentation and tracking. It has 
16 videos with a total of 976 frames with one or 
more objects along with such characteristics as 
motion blur, appearance change, complex 
deformation, occlusion, slow motion and interacting 
objects. The Fukuchi et al. (2009) dataset has 10 
natural scenes videos consisting of 936 frames with 
one object.  

We perform quantitative evaluations to show (i) 
that feature combination maps out performs 
individual features, (ii) that saliency flow generates 
a better saliency map than single frame maps, and 
(iii) that our method outperforms other state-of-the-
art methods.  

Evaluation metrics are consistent for all three sets 
of experiment. We use the benchmark code by Borji 
et al. (2012) to ensure standard evaluations results. 
We compute the area under the ROC curve.  This 
area shows how well the saliency algorithm predicts 
against the ground truth.  Precision is defined as the 

ratio of salient object to ground truth, so that the 
higher the precision the more the saliency map 
overlaps with the ground truth. The recall measure 
quantifies the amount of ground truth detected. The 
weighted harmonic mean measure or F-Measure 
(Cheng et al., 2011) of precision and recall is given 
as  

ܨ ൌ
ሺ1 ൅ ଶሻߚ ∙ ݊݋݅ݏ݅ܿ݁ݎ݌ ∙ ݈݈ܽܿ݁ݎ
ଶߚ ∙ ሺ݊݋݅ݏ݅ܿ݁ݎ݌ ൅ ሻ݈݈ܽܿ݁ݎ

 (12) 

where ߚଶ	is set at 0.3. The data set used for 
evaluation is a combination of the Segtrack and 
Fukuchi data sets. We also perform qualitatively 
evaluation using example images. 

Feature Combination Evaluation: We compute 
four feature maps and the final integrated map learnt 
using SVM weights. Figure 6a shows the average 
ROC curve; Figure 6b shows precision-recall curve; 
Figure 6c shows the area under curve and the F-
Measure.  From these plots, we can see that the 
integrated map out-performs all other feature maps.  

Saliency Flow Evaluation: The ROC curve in 
Figure 7c and the precision-recall curve in Figure 7d 
as well as the visual comparison in Figure 7a show 
that saliency flow improves saliency detection.  

Comparison to State-of-the-art Methods: In order 
to compare our work we use ROC curve (Figure 8a), 
precision-recall curve (Figure 8b) and visual 
comparison (Figure 9) with other saliency detection 
methods (Table 1). 
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Figure 8: Comparisons of our method (“ours”) with other state of art methods (see Table 1) using the ROC and the 
Precision Recall curves. 

 

 

 

 
Figure 9: Visual comparisons of our results (“ours”) with other state-of-the-art methods. See Table 1 for method references. 

Table 1: Saliency detection methods for comparison. 

Method Reference 
IT (Itti and Baldi, 2005) 
RR (Mancas et al., 2011) 
JP (Fukuchi et al., 2009) 
RT (Rahtu et al., 2010) 
CA (Goferman et al., 2010) 
CB (Jiang et al., 2011) 
GB (Harel et al., 2007) 

Methods IT, RR, JP and RT are video saliency 
algorithms while CA, CB are among the best 
methods that find salient objects (Borji et al., 2012); 
GB has the best performance among eye-tracking 
methods. We use the authors’ implementations to 
generate video saliency map for the Fukuchi and 
Segtrack data sets. From the comparison result we 
can quantitatively establish that our methods out-
perform other methods.  

                    a: ROC curve.                                                                                 b: Precision Recall curve.                    
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5 CONCLUSIONS 

We proposed a video saliency detection method 
based on using SVM to learn weights for combining 
features represented by superpixel clusters.  The 
process of combining features in the new algorithm 
performs better than any individual feature.  The 
saliency flow from a video sequence generates a 
better saliency map than single frame maps.  We 
compared our new method to other state-of-the-art 
methods using publically available data sets and 
showed that the new method has better performance.  
The reported result is the first known application of 
temporal superpixels for video saliency detection.  
Our ongoing work is in visual tracking, in which we 
find the most salient object along with temporal 
linkage. The saliency map with salient objects can 
also be used to guide video segmentation.   
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