Reactive Recovery from Machine Breakdown in Production Schauling
with Temporal Distance and Resource Constraints

Roman Bartak and Marek VIk
Charles University in Prague, Faculty of Mathematics and Physics, Malostranské nam. 25, 118 00 Praha 1, Czech Republic

Keywords: Schedule Updates, Rescheduling, Predictive-reactive Scheduling, Constraint Satisfaction, Resource Failure.

Abstract: One of the classical problems of real-life production scheduling is dynamics of manufacturing environ-
ments with new production demands coming and breaking machines during the schedule execution. Simple
rescheduling from scratch in response to unexpected events occurring on the shop floor may require exces-
sive computation time. Moreover, the recovered schedule may be deviated prohibitively from the ongoing
schedule. This paper studies two methods how to modify a schedule in response to a resource failure: right-
shift of affected activities and simple temporal network recovery. The importance is put on the speed of the
rescheduling procedures as well as on the minimum deviation from the original schedule. The scheduling
model is motivated by the FlowOpt project, which is based on Temporal Networks with Alternatives and
supports simple temporal constraints between the activities.

1 INTRODUCTION is the on-line nature and associated real-time execu-
tion requirements. The schedule update must be ac-

Scheduling is a decision-making process of which the complished before the running schedule becomes in-
aim is to allocate limited resources to activities so as valid, and this time window may be very small in a
to optimize certain objectives. In manufacturing en- COmplex manufacturing environment.
vironment, developing a detailed schedule of the ac- In this work we take the scheduling model from
tivities to be performed helps maintain efficiency and the FlowOpt project (Bartak et al., 2012). Simply
control of operations. said, a schedule consists of activities, resources and
In the real world, however, manufacturing systems constraints. Activities require resources to process
face uncertainty due to unexpected events occurringthem and all resources may perform at most one ac-
on the shop floor. Machines break down, operations tivity at a time. Possible positions of activities in time
take longer than anticipated, personnel do not perform are restricted by simple temporal constraints.
as expected, urgent orders arrive, others are cancelled, The aim of this work is to propose a technique
etc. These disturbances render the ongoing scheduldo recover a schedule from machine breakdown. The
infeasible. In such case, a simple approach is to col- intention is to find a feasible schedule as similar to
lect the data from the shop floor when the disruption the original one as possible, and as fast as possible.
occurs and to generate a new schedule from scratch.The paper proposes two methods. The Right Shift Af-
Gathering the information and total rescheduling in- fected algorithm reallocates activities from the failed
volve excessive amount of time which may lead to resource to available resources and then it keeps re-
failure of the scheduling mechanism and thus have pairing violated constraints until the feasible schedule
far-reaching consequences. is obtained. The STN-Recovery algorithm retracts a
For these reasons, reactive scheduling, which maycertain subset of activities from resources and then it
be understood as the continuous correction of pre- allocates one activity after another in suitable order in
computed predictive schedules, is becoming more andsuch a way that no constraints are violated. The major
more important. On the one hand, reactive schedulinginnovation is support for simple temporal constraints
has certain things in common with some predictive (Dechter, Meiri and Pearl, 1991) rather than assuming
scheduling approaches, such as iterative improvementrecedence constraints only.
of some initial schedule. On the other hand, the major ~ We first survey briefly the closely related works
difference between reactive and predictive scheduling on which our approaches are based on. Section 3 then

Bartak R. and VIk M.. 119
Reactive Recovery from Machine Breakdown in Production Scheduling with Temporal Distance and Resource Constraints.

DOI: 10.5220/0005215701190130

In Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART-2015), pages 119-130

ISBN: 978-989-758-074-1

Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)

ICAART 2015 - International Conference on Agents and Artificial Intelligence

explains the problem tackled in this work. The sug- ble correction exists, the algorithm tries to find the
gested methods are described in sections 4 and 5. Thenost similar schedule to the initial one through only
experimental results are given in section 6, and the shifting activities in time. Since the Repair-DTP al-

final part points out possible future work. gorithm does not try changes in resource selection,
it cannot be used to deal with machine failure. More-
over, the main shortcoming of the algorithm is search-
ing through disjunctions, introduced by hierarchical
nature of the model and by resource unarity. This
leads to excessive (exponentially growing) amount of

The field of rescheduling (predictive-reactive emporal networks that are inspected, which requires
scheduling) has been addressed in a number Ofunacceptable amount of time.

works, as surveyed for instance in (Raheja and In the methods proposed further, apart from

Subramaniam, 2002), (Vieira et al., 2003), and gTN and IFPC algorithm, some widely used search
(Ouelhadj and Petrovic, 2009). ~ However, the echniques from the field ofonstraint Satisfaction
algorithms discussed in the scheduling literature (Brailsford, Potts and Smith, 1999) are employed

deal with schedulling proplgms that do no_t cons_ider namely Conflict-Directed Backjumping with Back-
temporal constraints (minimal and maximal time marking(Kondrak and Beek, 1997).

lags) but usually only precedences. To the best of
our knowledge, there is no algorithm that could be
straightforwardly used for the problem with simple
temporal constraints studied in this paper. Hence,
we suggest to exploit and to integrate some known
techniques to tackle this type of problem. 3.1 Scheduling Problem

The fundamental inspiration comes from
heuristic-basedapproaches, which do not guarantee Scheduling problemP is a triplet of three sets:
to find an optimal solution, but respond in a short Activities Constraints andResources
time. The simplest schedule repair technique is the ¢ Activities= {all activities inP}
right shift rescheduling(Abumaizar et al., 1997).
This technique shifts the operations globally to
the right on the time axis in order to cope with
disruptions. When it arises from machine breakdown, Each activity A is specified by its start time

the method introduces gaps in the schedule, duringStart(A) and end timeEnd(A), which we will look
which the machines are idle. It is obvious that this for, and fixed duratiorDuration(A), which is part
approach results in schedules of bad quality, and of the problem specification. All these numbers are
can be_ used only for environments involving minor nonnegative integers. Since we do not allow pre-
disruptions. emptions (interruptibility of activities)Start(A) +
The shortcomings of total rescheduling and right Duration(A) = End(A) holds.
shift rescheduling gave rise to another approaadh:
fected operation reschedulinglso referred to as par-
tial schedule repair (Smith, 1994). The idea of this al-
gorithm is to reschedule only the operations directly
and indirectly affected by the disruption in order to
minimize the deviation from the initial schedule.
TheRepair-DTPalgorithm proposed in (Skalicky,
2011) tackles a problem very similar to ours, however,
it is designed to correct violated constraints in manu- Start(Aj) — Start(A)) <w 1)
ally edited schedules. The model involves precedence Now, some terminology from the graph theory de-
constraints and synchronization constraints, but ex- serves to be clarified in terms of the scheduling model.
cludes minimum and maximum time lags. Nonethe- Activities A; andA; are callecadjacentf there exists
less, in order to reduce searching space, the Repair-a constraintA;, Aj,w) or (Aj, A, w) for anyw € Z.
DTP algorithm employsSimple Temporal Networks Two activitiesA; andA; areconnectedf there ex-

2 RELATED WORKS

3 PROBLEM DEFINITION

e Constraints= {all temporal constraints iR}
e Resources- {all available resources iR}

Temporal Constraints

Constraints determine mutual position in time of two
distinct activities. Constrain€ € Constraintsis a
triplet (A, Aj,w), whereA,A; € Activities w € Z,
and the semantics is following.

(STN) (Dechter, Meiri and Pearl, 1991) anrd-
cremental Full Path ConsistencffFPC) algorithm
(Planken, 2008), which incrementally maintains the
All Pairs Shortest PatfAPSP) property. If a feasi-

120

ists a sequence of activiti#s, Ai1,...,Aj_1,A;j such
thatA; andA; 1 are adjacenty 1 andA;;» are adja-
cent, ...,Aj_1 andA; are adjacent. Aonnected com-
ponentis a maximal (in terms of inclusion) subset of

Reactive Recovery from Machine Breakdown in Production Scheduling with Temporal Distance and Resource Constraints

activities such that all activities from the subset are tivities in time and on resources. Allocation of activ-
connected. Each activity as well as each constraintities in time means assigning particular values to the

belongs to exactly one connected component. variablesStart(A) for eachA € Activities Allocation
) of activities on resources means selecting a particu-
Resource Constraints lar resource$electedResourt®)) from the resource

o group Resource@)) of each activityA € Activities
Let A € Activities then the set of resources that may To make a schedulzasible the allocation must
process activityA is denotedResource@®). The set pe conducted in such a way that all the temporal con-

Resource@) is often referred to as a resource group. straints (1) as well as all the resource constraints (2)
Each activity needs to be allocated to exactly one i the model are satisfied.

resource from its resource group. L&E Activities

then a resourc® € Resource@) is selectedif re- 3.3 Rescheduling Problem
sourceR is scheduled to process actividy which we

denoteSelectedResourtd) = R. The problem we generally deal with is that we are
Each activity must have a selected resource to given a particular instance of the scheduling prob-
make a schedule feasible. Formally: lem along with a feasible schedule, and also with a
change in the problem specification. The aim is to

VA € Activities: SelectedResour(&) 7 null find another schedule that is feasible in terms of the

All resources in a schedule are unary, which NéW problem definition. The feasible schedule we are

means that they cannot execute more activities simul- 9Iven is referred to as an original schedule or an on-

taneously. Therefore, in a feasible schedule for all 90ing schedule. L
activitiesA; # A, the following holds. The machine breakdown, which is also referred

to as a machine or resource failure, may happen in
the manufacturing system at any point in time, say
SelectedResourth) = SelectedResourt) and means that a particular resource cannot be used
= End(Aj) < Start(Aj) vVEnd(Aj) < Start(A)) (2) anymore, i.e., for all > t;. This makes further ques-
tions arise, e.g., whether the activities that were being
processed at timg are devastated and thus must be

, .) . performed from the beginning, whether their prede-
Real-life scheduling problems are usually designed in ces5ors must be also re-executed if there are only so-

such a way that there are subsets of resources thaf,ns yiolating temporal constraints, and many oth-
share certain capabilities and which then constitute oo

resource groups of activities. This observation may For the sake of simplicity, let us assume that a re-

make some models easier to solve.) source fails at the beginning of the time horizon (at
The resource groups of a scheduling problem g hoing — 0), i.e., right before the schedule execu-
are equivalentif one and only one of the follow- iqn hegins. The resource that fails is in what follows
ing conditions holds for any two resource groups gisq referred to as a forbidden resource. Formally,
Resourced1) andResource@y) of two distinct ac- let S, be the schedule to be executed atdbe the

tivities A andAy. failed resource; the aim is to find a feasible schedule

A Special Case

e Resource@\) is equal toResource@,) S, such thaRs is not used at any point in tinte> 0.
(Resource@;) = Resource@y)) S, is referred to as a recovered schedule. The inten-

o Resource@) andResource@y) do not overlap tion is to fln(_jsl as fast as p055|_ble_z and, regardless of
(Resource@;) N Resourcedy) = 0) the initial objectives, the more similar &, the better.

_ For this purpose we need to evaluate the modification
If the resource groups are not equivalent, they are gistance.
calledarbitrary. Let us denoteStari(A) the start time of activity

Motivated by the nature of real-life scheduling A in schedules. In what follows we distinguish the
problems and their need for speed, the proposed algo+o|iowing distance functions.

rithms anticipate that the resource groups are equiva-

lent. fi= z |Stark, (A) — Stark,(A)]
AcActivities
3.2 Schedule fo = |{A € Activities| Stark, (A) # Stark,(A)}|

A scheduleS (sometimes referred to as a resulting fs= max |Stark,(A) — Stark,(A)|
schedule or a solution) is acquired by allocating ac- AcActivities

121

ICAART 2015 - International Conference on Agents and Artificial Intelligence

4 RIGHT SHIFT AFFECTED

The Right Shift Affected algorithm is a greedy al- = I | I |
gorithm to tackle the machine breakdown disrup-
tion. For eachA € Activities it is assumed through- « | | |
out that the forbidden resource is deleted from the «] | []
resource group of activityh, i.e., Resource®) =
Resource@) \ {ForbiddenResourge t t Duration()

The algorithm is aimed at moving as few activi- Figure 1: lllustration for ESSLPE rule.
ties as possible, i.e., optimizing the distance function
fo. The idea is to reallocate activities from the forbid-) Jin o
den resource and then keep reallocating activities that |MmpedimentaryA, R t) = {A"| A" € Activities\
violate some constraint until the schedule is feasible. R = SelectedResourt®) A (t < End(A') <

How to move (reallocate) the activities, how to re- - / :
. . . . t+ Duration(A) vt < Start(A') < t+ Duration(A
pair the constraints, and in what order to pick the ac- (A)VE< (") (A)}

tivities to repair the constraints is described next. Now we can define a set of resources where activ-
ity A can be allocated at tinteas such:

4.1 Reallocating Activities
AvailableResourcés. t) = {R| R € Resource@)

Activities are reallocated as follows. Suppose the al- Almpedimentar§A R t) = 0}
gorithm wants to repair a constraint in such a way that

an activity A should be reallocated to a time point Another question is which resource the algorithm
The natural idea was to reallocate the activitex- should select if there are more resources available.

actly to the time point even if there is no resource Since the resource groups in the model are expected

available for the require®uration(A). Then, when to be equivalent, it seems useful to pick the resource

a repair function verifies constraints, it would have on which the activity best fits in terms of surrounding

to verify the resource constraints too and then repair gaps. Therefore, the following heuristic is used.

according to the resource constraint violation. Unfor-

tunately, there always turned out to be a model for Earliest Succeeding Start Latest Previous End

which this method gets stuck in an infinite loop, re- (ESSLPE) Rule

gardless of the way the constraints are repaired and

the sequence of activities to be repaired.
Consequently, the algorithm always allocates ac-

tivity A in such a way that it does not violate any

resource constraint. This is achieved through seek-

ing a time point* (which is greater or equal to time

pointt) where activityA can be allocated without vi-

olating the resource constraints. Formally, when the

algorithm desires to allocate activifyto time pointt,

then activityA is allocated to time poirtt*, such that

t* >t andvt’ :t' > t At < t* activity A cannot be al-

located int” without overlapping some other activity

on any resource frorResource@).

Suppose activityA is about to be allocated at time
(see figure 1). The algorithm picks the resource with
the earliest (closest) occupied time after the time point
t + Duration(A) (= earliest succeeding start), which
holds for the resources number 3 and 4 in the figure 1.
Like in this case, when there are more resources with
the same earliest succeeding start, then the algorithm
picks the resource with the latest (closest) occupied
time before the time poirt (= latest previous end),
which is met by the resource number 4 in the figure
1. (If there are still ties, they may be broken arbitrar-
ily.) Consequently, a resource that has at least some
activity to process is always preferred to an empty re-

Checking Resource Availability source

In order to express whether or not a resource is
free at a specified time interval, let us first define
ImpedimentaryA, R t) as the set of activities that

preclude activityA from being allocated on resource The procedur&eal | ocat eActivity (see algorithm
R at timet. 1) obtains two parameters: an activity to allocai (

and a time point where it is desired to allocate the
activity (t). Seeking for an available resource starts
at timet, but the activity is ultimately allocated to the
time pointt*, where an available resource is found.

Reallocation

122

Reactive Recovery from Machine Breakdown in Production Scheduling with Temporal Distance and Resource Constraints

Algorithm 1: Reallocating an activity. Algorithm 2: Right Shift Affected.
function REALLOCATEACTIVITY (Activity A, function RIGHTSHIFTAFEECTED
TimePointt) af fected— 0
gtelet((:,tangeS%urm) < null for all A e Activitiesdo
art(A) < nu - .
/ . if SelectedResour(&) = ForbiddenResource
t* + miny>{t’ | AvailableResourcés,t’) = 0} then o8

Start(A) « t* REALLOCATEACTIVITY (A, Start(A
SelectedResourk) < by ESSLPE rule from af fectede af fected) ’([A’} ar(A)
AvailableResourcés, t*) end if

end function end for

while af fected# 0 do
A+ PopFron{af fected

4.2 Constraint Repair while (A1, Az, w) € ViolatedConstraint&A) do
REALLOCATEACTIVITY (Ay, Start(Ay) —w)
if A1 #Athen

The violated constraints are repaired as follows. af fected— af fectedJ {A;}

When a temporal constraint between activitlgsand end if

A; of weightw is violated, it means that the distance end while

betweenStart(A;) and Start(Ay) is greater than al- end while

lowed. Then the algorithm seeks for possible alloca- __&nd function

tion of A, from the minimal time point that satisfies any constraint, the algorithm proceeds to another one
the constraint rightwards. fro af fected
Here is where the title of the algorithm comes As far as the order of taking activities from
from. It repairs temporal constraints via moving ac- af fecteds concerned, the best heuristic with respect
tivities to the right, which, of course, may cause viola- to all conceivable performance measures turned out to
tion of other temporal constraints. Animportant prop- be picking the rightmost activity, i.e., the activity with
erty is that when the algorithm picks an activity to be the maximunStart(A). The explanation is that shift-
repaired, then it iterates over all temporal constraints ing the rightmost activities rightwards makes consec-
associated with the activity being repaired until the utively free space for shifting the activities allocated
activity does not violate any associated constraint. more on the left, which would otherwise have to creep
Regardless of the order, in which the ac- overone another.
tivities are selected to be repaired, the entire o
Right ShiftAffected algorithm works as follows ~ Termination
(see algorithm 2). First, it goes through all activities] .
in the model and checks whether the activity uses the The algorithm successfully found a feasible sched-
forbidden resource. In the positive case, the activity Ul recovery for all input models that were assuredly
is reallocated through tHeeal | ocat eActivi ty pro- ~ Solvable (which is guaranteed when there are more
cedure (seeking for available resources starts at the'€sources in each resource group than the number of
original start time of the activity), and the activity is activities in one connected component). However, the
added to the setf fected Now, none of the activities ~ duestion whether the algorithm always ends and finds
uses the forbidden resource and theeddtectedcon- the solution, provided the schedule is recoverable, is
tains activities that have been reallocated and there-Still open.)
fore must be checked for temporal constraint viola- If there is no feasible schedule recovery, the al-
tion. gorithm keeps repairing and never terminates. This
Next, the algorithm takes an activity from the set 1S OPviously the main shortcoming of the algorithm.
af fectedand proceeds to repair all violated tempo- On€ Possible way to detect unrecoverability of the
ral constraints associated with the activity in question. Schedule is by passing and checking a time limit. An-
It repairs the constraints, as described, through mov-Other way is to check where an activity is being allo-
ing activities to the right, so that if another activity ¢&t€d, and if the activity is allocated at a time point
is moved, it is added into the saff fectedbecause exceeding a certain threshold, it may be considered as
it must be then checked for constraint violation. Re- &0 unsuccessful finding of a schedule.
call thatReal | ocat eActivity procedure always al-
locates an activity such that it does not violate any
resource constraint, so that only temporal constraints5 STN-RECOVERY
are checked here. If the activity has been successfully
healed, which means that the activity does not violate The STN-Recovery is a bit more sophisticated algo-

123

ICAART 2015 - International Conference on Agents and Artificial Intelligence

rithm to tackle the machine breakdown. This algo-
rithm anticipates that moving a large number of activ-
ities by small time is preferable to moving activities
alot in time. The basic idea is to deallocate some set
of already scheduled activities and then allocate them

back again. This is whatis now meant by reallocation. 3

The point of the algorithm is to allocate connected
components one after another through Conflict-
Directed Backjumping. The allocation of an activity
is carried out such that the start time of an activity is
continuously incremented until an available resource
at that time is found, or until the maximal possible
value of the start time (which is determined with re-
spect to the start times of already allocated activities)
is exceeded. In the former case the algorithm pro-
ceeds to allocate the next activity, in the latter case
the algorithm goes back to reallocate some previous
activity. Since this allocation process might involve
excessive computational burden, it is useful to prune

the search space based on the fact that a resource fail-5.

ure leads only to deterioration of the schedule in the
original optimization objective. Moreover, the group
of resources where the broken down resource belongs
is now likely to make a bottleneck. This assumption
is used in such a way that the activities are reallocated
from the broken down resource to available resources
and then the activities are shifted so as they do not
overlap each another —thus the minimal potential start
times for allocation are obtained — and then the real-
location process can begin.

Firstly, the skeleton of the algorithm is given, and

1) shift the activities that overlap (to the right) so
as they do not overlap, and add them into the set
af fected Include inaf fectedalso activities that
were not actually shifted but are allocated on the
right of those shifted.

For the sake of pruning the search space of the
forthcoming reallocation, add STN constraints be-
tween the global predecessor and each activity in
af fectedso as to enforce that they can only start
at the time they are currently allocated or later.

. For each activitA in af fected acquire the con-

nected component the activiy belongs to, and
for all activities in all acquired connected compo-
nents compute the values from which the alloca-
tion of the activity in the last step will begin (=
MinStart), which is the maximum of (i) its cur-
rent start time and (ii) its minimal distance from
the global predecessor resulting from the STN.

Deallocate all activities in all connected compo-
nents acquired in step 4.

6. Take the leftmost (according to thinStart val-

ues) non-allocated componedtand allocate all
activities inC starting with its leftmost activity
using Conflict-Directed Backjumping with Back-
marking. The activities within a connected com-
ponent are allocated in the increasing order of
their MinStart values. Repeat this step until all
connected components are allocated.

The skeleton of the algorithm is depicted in algo-

next, its particular steps are described in more details. fithm 3.

5.1 Skeleton of STN-Recovery

Algorithm 3: STN-Recovery.

Require: The STN with the APSP property

The STN (including the global predecessor) with the
APSP property is supposed to have already been com-
puted from the temporal constraints in the model;
the resource constraints are not involved in the STN.
Recall that the APSP property of the STN provides
us the two-dimensional array, of which the val-
ues say thasStart(A;) — Start(Aj) < w[i, j|, where
A, Aj € Activities

A sketch of the STN-Recovery algorithm decom-
posed into 6 steps follows.

1. Find activities allocated to the forbidden resource
and change their resource selection from the for-
bidden resource to an available resource, picking
the resource with the lowest usage. Now some ac-
tivities allocated on the same resource may over-
lap.

function STN-RECOVERY

for all A € Activitiesdo
if SelectedResourt®&) = ForbiddenResource
then
SWAPFORBIDDENSELECTION(A)
end if
end for
af fected« SHIFTONRESOURCES
for all A; € af fecteddo
IFPC(, 0, —Start(A)))
end for
components— ACQUIRECOMPONENTYaf fected
DEALLOCATECOMPONENTYcCOmMponents
while componentst 0 do
C < GETLEFTMOSTCOMPONENT(COM ponents
ALLOCATECOMPONENT(C)
components— component§{C}
end while
end function

2. In order to find out which activities should be re-
allocated, do the following. For each resource
(to which some activity has been added in step

124

Reactive Recovery from Machine Breakdown in Production Scheduling with Temporal Distance and Resource Constraints

5.2 Swapping Resource Selections beginR) « min {Start(A)
AcResourceActivitigi)

In the first step, the algorithm goes through all ac- | 3B € ResourceActivitidR),B #£ A,

tivities in the model and checks whether the ac- Start(A) < Start(B) < End(A)}

tivity is scheduled to be processed on the forbid-
den resource. In the positive case, the function Further, let us denot® thei-th earliest activity
SwapFor bi ddenSel ection(Activity A) changes allocated on resourd® which means that the follow-
resource selection of activitk to some allowed re- ing holds.
source.

It is not important which resource is selected be- 1 < < j < |ResourceActivitigR)|
cause the activity is most likely going to be reallo- i i
cated in the Iaterysteps. Neve?;hgelesgs, the algorithm = Starf(R) < Start(R!)
picks the resource with the lowest usage, which is the The activities on resourc® are consecutively
sum of the durations of the activities that are allocated (from the leftmost activity) shifted such that:
to the resource in question. . _ _

Formally, let us first denote the set of activities Start(R) « max{Start(R),End(R 1)}

that use resourdg as such. . I
Finally, the activities are added to the adtf ected

ResourceActivitigR) = {A € Activities i
| SelectedResourtk) = R} af fected— {A € Activities
The usage of resourdecan be written as follows. | Start(A) > beginSelected Resourt)) }
UsagéR) = Duration(A) This shifting may violate a large number of tem-
AcResourceActivitigi) poral constraints. The activities in the setfected

are going to be reallocated in the forthcoming steps.
The reason why the setf fectedincludes the activ-
ities that have not been shifted, but are allocated on

Then picking the resource with the lowest usage
means this:

ReResource) otherwise preclude other activities from allocation.
At this time being, some activities may violate re- .
source constraints. 5.4 Updating STN
5.3 Shifting Activities In this step, the constraints determining the minimal

distance of an activity from the global predecessor are

In the second step, the algorithm repairs the violated added to the STN so as to modify thknStartvalues
resource constraints. It visits the resources one af-0f activities to be reallocated, according to the start
ter another and shifts activities that overlap to the time values setin the previous shifting step. The IFPC
right. Since the original schedule is supposed to have algorithm is used because modifying the minimal start
been feasible, only the resources where some activi-time of an activity affects the minimal start times of
ties were added should be revised. other activities from the same connected component.

ProcedureShi f t nResour ces sweeps over the Precisely, for eachA; € affected add to
activities and conducts the shifting as follows. If ac- the STN via IFPC algorithm the constraint
tivity Ag overlaps activity; on a resource, the activ- (A, Ao, —Start(A;)), where Ay denotes the global
ity with the later start time, saf, is set its start time ~ predecessor.
to the end time ofAg. This shift may cause activity The point of adding this constraints is to rea-
A1 to overlap next activity, which is then set to start at sonably maintain similarity to the original schedule,
the end of activityA; and so forth. The order of activ- along with adequate pruning of the search space of
ities on the resource is preserved. All activities from the upcoming reallocation process.
the first activity that has been shifted up to the last ac-
tivity (in terms of start times), even if some have not 5.5 Components Acquirement
been shifted, are added to the aéf ected

Formally, letbeginR) be the start time of the first There is still a question which and in what order
(earliest) activity that overlaps with another activity the activities should be reallocated. Because shifting
on resourcdR. one activity is likely to violate temporal constraints

125

ICAART 2015 - International Conference on Agents and Artificial Intelligence

emanating from or to the activity, it is necessary to activity being allocated, the conflict set for each ac-
reallocate the entire connected component. There-tivity is remembered. For this purposs]i] is a set of
fore, procedureAcquireConponent s(af f ect ed) activities conflicting withA;.

acquires the connected component that each activ- The activities are going to be allocated in the in-
ity A € af fectedbelongs to, and the acquired con- creasing order of their indexes that are determined ac-
nected component is added to the semponents cording to theiMinStart values. Thus we can antic-

After this step,components- {Cy,...Ck}, whereC; ipate that the connected component to be allocated,
forz=1,...,kis a connected component. which is passed as a parameter, consists of activities
In addition, for each activity, th#inStart value, A1,...,An. When two activities are compared, i.e.,

which is the maximum of the current start time and of A; < A;, it means that their indexes are compared
the minimal potential start time following from the (j <i).

STN (computed via IFPC in the previous step), is There are two possible causes why an activity can-
computed. Precisely, for ea€lh € componentsind not be allocated: a temporal conflict and a resource
for eachA; € C,, assign: conflict.

MinStart(A;)) = Max{Start(A;), —w[i, 0]} Temporal Conflicts

As to the order for upcoming allocation, it s suit- Temporal conflicts are handled in procedure
able to allocate activities in the increasing order of the Updat eBounds(Activity A) (see algorithm 5)

MinStartvalues. The activity in a connected COMpo- \ynich is called before activitylj is going to be
nent with the lowesMinStartvalue is referred to as 5gcated (line 6). In this procedure, the bounds of

the leftmost activity. The leftmost connected com- ,qssiple time allocation for activioy are computed
ponent is the connected component of which the left- according to the STN and start times of already
most activity has the lowedtinStartvalueamong all 5qcated activities.

connected components. The algorithm always selects Thg jower bound of an activity is initially set to the
for allocation the leftmost component that has notyet ysinstart value acquired in the previous steps. Then

been allocated. the procedure goes through the already allocated ac-
. tivities within the connected component in the same

5.6 Deallocation order as they have been allocated and updates bounds
]] o of A;. Precisely, for eack < i, if Start(Ay) + "min-

Since the best way for allocating activities turned jmal distance fronBtart(Ay) to Start(A)” is greater

out to be the way without violating resource con- than the current lower bound, then increase the lower

straints, it is necessary to deallocate all activ- pound, and add\ to the conflict set of\. Similarly,

ities in the connected components acquired in j Start(A,) + "maximal distance fronStart(A,) to

the previous step. Otherwise they would pre- start(A)” is smaller than the current upper bound,

Clude Other aCtiVitieS from a||0cati0n. Proce- then decrease the upper bound' andm the con-

dure Deal | ocat eConponent (conponents) deallo- flict set of A;. The reason why activitpy is added
cates activities from each connected compoi®at tg the conflict set is that changing the start time of
components which means that for eaci € C: A creates (straight away or after a number of steps)
Start(A) =null andSelected ReSOUI‘CQ) =null. Af- some new possib'e start time fAr

ter this (fifth) step, all activities fromomponentsare

deallocated. Resource Conflicts

5.7 Allocation As far as resource conflicts are concerned, recall

that ImpedimentargAi, R t), which has been for-
Allocating an activity again means searching for the mally introduced in section 4.1, is a set of ac-
time point when there is an available resource for the tivities that preclude activityy; from selecting re-
required duration. The resources are selected accordsourceR at timet. To make it possible to allo-
ing to the ESSLPE rule described in 4.1. cate activity Ay on resourcer at timet, all activi-

In order to allocate a connected component, ties from the setmpedimentarA;, R t) would have
Conflict-Directed Backjumping with Backmarking is to be reallocated. Hence, among the activities in
used (see algorithm 4). When an activity cannot be ImpedimentargA;, R t), the activity that has been the
successfully allocated, it is necessary to jump back to least recently allocated (from the connected compo-
the activity that is causing the conflict. For keeping nent being allocated) is added to the conflict set of
the information which activity is conflicting with the activity A;. But if there is an activity in

126

Reactive Recovery from Machine Breakdown in Production Scheduling with Temporal Distance and Resource Constraints

Algorithm 4: Allocating entire connected component.

1

10:

11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:

22:

23:
24:

51:

2
3
4
5:
6
7
8
9

function ALLOCATECOMPONENT(ACtivities Ay, ..., An)
i1
whilei <ndo
newVal«— newValg|
if newVal= 0then
UPDATEBOUNDS(A)
newVal« LowerBoundA;)
end if
while SelectedResourt®) = null & newVal<
U pperBoundA;) do
if
newVale KeygMark]i]) & Max(Mark[i][newVa]) <
BackTdi|[newVal then
cgli] + cdi] UMark(i][newVal
newVal— newVal+ 1
continue
end if
BackTdi][newVa] + A;
newCon flicts— 0
for all R e Resource@) do
newCon flicts—
newCon flictsJ Min* (ImpedimentargA;, R, newVal)
end for
if AvailableResourc¢s;,newVal # 0then
SelectedResourth) «+ by ESSLPE
rule from AvailableResourcésy,newVal)
Start(A) < newVal
> newValcan be tried again

> initially O

KeygMark(i]) < KeygMark(i]) \ {newVal
else

KeygMark(i]) <+ KeygMark]i]) U {newVal
Mark[i][newVa] «<— newConflicts
end if
cgli] + cdi]unewConflicts
newVal+ newVak 1
end while
if SelectedResourp) = null then
Aj «— Max(cdi])
osj] + csjUcsii]\ {A}}
for k< j+1tondo
for all keye KeygBackTdk]) do

BackTdk][key < Min(BackTdk][key,A;)
end for
end for
while i > j do
newValdi] < 0
i—i—-1
SelectedResourt) < null
Start(A) < null
end while
else
newValdi] < newVal
i—i+1
end if
end while
end function

> jump back toj

Algorithm 5: Updating lower and upper bounds.

function UPDATEBOUNDS(Activitiy A;)
cdi]«+ 0 > clear conflict set
LowerBoundA;) < MinStart(A;)

U pperBoundA) « o
for k- 1toi—1do
newValue— Start(Ay) — wli, K]
if LowerBoundA;) < newValuethen
LowerBoundA;) < newValue
csi] « csfi] U {A}
end if
newValue— Start(Ay) + W[k, i]
if U pperBoundA;) > newValuethen
U pperBoundA) < newValue
csji] + csfi] U{A}
end if
end for
end function

ImpedimentargA,R,t) from another connected
component, which means it cannot be deallocated,
then no activity is added to the conflict set.

This is exactly whaMin* does (at line 18). For-
mally, letC be the connected component being allo-
cated. IfimpedimentaryA;, R t) C C, then:

Min*(ImpedimentargA;, R 1))
=arg min

AcelmpedimentargA; R it)
OtherwiseMin*(ImpedimentargA;, R t)) = 0.

For illustration, when the algorithm is allocating
activity A7 and there are activities, A4, andAg in-
hibiting on a resource, then activifp is added to the
conflict set. If there is an activity from different, al-
ready allocated component, then no activity is added
to the conflict set.

Further, recalAvailableResourcés,t) is a sub-
set of available resources from which the resource ac-
cording to the ESSLPE rule is selected. Regardless of
the result of the search for an available resource, the
conflicting activities are merged into the conflict set
of the activity being allocated (line 29).

{k}

Backjump

When the algorithm is about to conduct a backjump
(starting at line 32), which happens when all possi-
ble start times oA have been tried, the most recently
allocated activity from the conflict set & is found
(line 33). Let us denote this activity #5. Next, be-
fore deallocating activities that are jumped over, the
activities from the conflict set ok except activityA;

are added to the conflict set Af.

127

ICAART 2015 - International Conference on Agents and Artificial Intelligence

Backmarking

The backmarking technique is implemented as fol-
lows. Firstly, the time horizon is infinite so that
the structureBackToand Mark cannot be simple
two-dimensional arrays but arrays of dictionaries.
Precisely,BackTois an array of sizen, BackTdi]
is a dictionary, where keys are the (attempted)
start times of the activity, and values are activities,
i.e., BackTdi][newVa] is the lowest-indexed activity
whose instantiation has changed since actifjtyas
last tried to be allocated at tinteewVal

As to the structuréark, there is one difference.
Notice that when the algorithm cannot find an avail-
able resource for activitgy at timenewVal not only
one, but a number of activities may be added to the
conflict set ofA;. ConsequentiMark]i][newVa] is
a set of activities, of which at least one must be
reallocated in order to make activit allocatable
at time newVal Therefore, when valueBackTo
and Mark are to be compared, it is firstly checked,
whether there isiewValamong the keys oMark(i],
and in the positive caséflax(Mark[i][newVa]) and
BackTdi][newVal are compared (see line 10).

If Max(Mark[i][newVa]) < BackTdi][newVa], it

means that none of the conflicting activities has been
re-instantiated and thus it makes no sense to look for
an available resource. However, before proceeding to

the next value ohewVal it is necessary to merge the
conflicting activities to the current conflict set (line

11) as if the search for an available resource was con-

ducted — this is the reason wMark|i][newVa] must

store the set of activities (and not just the most recent

activity).

Oppositely, if newVal is not presented among
the keys of Mark[i] or Max(Mark[i][newva]) >
BackTdi][newVa], the algorithm does look for an
available resource. If activityy is successfully allo-
cated, the keyewValis removed fronMark(i] (line
24), otherwiseMark|i][newVa] stores the conflicting
activities (line 27).

Termination

Notice that the algorithm does not check for the re-
coverability of the disrupted ongoing schedule, which

6 EXPERIMENTAL RESULTS

The STN-Recovery algorithm is designed to move a
lot of activities by a small amount of time, which
means that it should not be used when minimizing
the number of shifted activities (objectifg). On the
other hand, the algorithm should perform well in min-
imizing the biggest shift of an activity (objectivg).

On the contrary, the Right Shift Affected algorithm
intents to affect only the necessary subset of activities,
making it better when minimizing the objectivie.
Oppositely, if the alternative resources for the broken-
down resource make a bottleneck, the affected activi-
ties (and subsequently all connected components with
them) are moved to the end of the schedule horizon.
This is expected to yield a poor performance in the
objective f3, which is unacceptable when the origi-
nal schedule objective is related to lateness or tardi-
ness. The distance functiofisand f3 are expected to
grow linearly with increasing number of activities in
the model for both algorithms.

To support the ‘above hypotheses we performed
experiments with randomly generated problems com-
posed of 20 resources in one group. Each connected
component consists of 8 activities and up to 28 tem-
poral constraints (some may be redundant). Having
more resources in a group than the number of activi-
ties in a component ensures recoverability from a re-
source failure. We also included a total reschedul-
ing algorithm (rescheduling from scratch) in the com-
parison to justify the claims from the introduction.
The algorithms were running on Intel(R) Core(TM)
i7-2600K CPU @ 3.40GHz, 3701 Mhz, kernels: 4,
logical processors: 8; RAM: 8,00 GB.

Briefly speaking, the experimental results con-
firmed the hypotheses. As depicted in figure 2, the
Right Shift Affected algorithm is far better when
optimizing the distance functiorip, but the STN-
Recovery algorithm is significantly better when op-
timizing the distance functioffiz, as shown in figure
3. As far as functionf; is concerned (which is the
total sum of shifts), the STN-Recovery algorithm out-
performs the Right Shift Affected, but the difference
is negligible.

The Right Shift Affected algorithm is somewhat

means that if there is no feasible solution, the proce- faster than STN-Recovery (see figure 4), however,
dureAl | ocat eConponent (Conponent C) neverter- STN-Recovery has the following advantage. The al-
minates. This can be solved by giving it a limited gorithm always allocates the leftmost connected com-
time (cut-off limit), or by detecting that the method ponent that has not been allocated yet, therefore,
got stuck in a loop, which may be proven for exam- when the algorithm is allocating the connected com-
ple when it tries to allocate an activity in time greater ponentwith the leftmost activity that has thenStart
than the maximal estimate of makespan (which may valuet, the schedule is not going to be modified be-
be the sum of the durations of all activities and of all fore time pointt. This allows the system to keep ex-

minimal distances in the model). ecuting an ongoing schedule even if it has not been

128

Reactive Recovery from Machine Breakdown in Production Scheduling with Temporal Distance and Resource Constraints

2500 50000

45000

uuuuu

35000

1500

30000

—RSA 25000 —RsA
—STN —STN
w | 2w R

runtime [ms]

1000

number of moved activities

l
|
S A

10305 7 9 111315 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 6
activities in one component

500

5000

Figure 2. The number of shifted activities for Right Shift Figure 5: Run times for Right Shift Affected, STN-
Affected, STN-Recovery, and Total Rescheduling. Recovery, and Total Rescheduling, dependent on the num-
ber of activities in.one component.

1200

s00

//M“ﬁ -l

maximum time shift
=
7
>
—

—CBJ
—CBIBM

L}

4
runtime [ms]
/<_
sk |

. AN T

o Q&M@W&
o

6 9 1215 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 £l B4 & 0 93 9 9

activities

resources

Figure 3: The biggest shift of an activity for Right Shift
Affected, STN-Recovery, and Total Rescheduling. Figure 6: Run times for Conflict-Directed Backjumping and
Conflict-Directed Backjumping with Backmarking.

000

As far as the backmarking technique is concerned,
it brought some saving of time as expected, because
i determining availability of a resource is carried outin

logarithmic time in the number of activities on the re-
i - source. On the other hand, as the number of resources
i in the model decreases below a certain number, one
might expect backmarking to become counterproduc-
tive owing to the overhead costs. Nevertheless, ac-
cording to figure 6, backmarking pays regardless of
the number of resources in the model.

runtime [ms]

activities

Figure 4: Run times for Right Shift Affected, STN-
Recovery, and Total Rescheduling.

7 CONCLUSIONS

completely recovered yet.

The dependencies on the density of constraints This paper proposed two different methods to han-
showed no tendency. However, one might wonder dle a resource failure, i.e., a disruption when a re-
how the algorithms perform as the size of connected source suddenly cannot be used anymore by any ac-
components increases. As depicted in figure 5, theretivity, which may occur during a schedule execution.
are alarmingly longer run-times of STN-Recovery for The first method takes the activities that were to be
some models, but exponential growth is not apparent, processed on a broken machine, reallocates them, and
unlike in the case of total rescheduling, which turned then it keeps repairing violated constraints until it gets
out to be useless by the component size of 33. a feasible schedule. This approach is suitable when

129

ICAART 2015 - International Conference on Agents and Artificial Intelligence

it is desired to move as few activities as possible; Ouelhadj, D. - Petrovic, S. (2009)A survey of dy-
however, the question whether the algorithm always namic scheduling in manufacturing systemdsurnal
ends is still open. The second method deallocates a ©f Scheduling, v.12 n.4, p.417-431.

subset of activities and then it allocates them back Planken, L. R. (2008]New Algorithms for the Simple Tem-
through Conflict-Directed Backjumping with Back- fhog;ls?ggllffﬂﬁ\‘fg&fgi?‘.ﬁéﬂﬁﬂ?&%ﬁ/’_ 75 p. Master's
marking. This approach is useful when the intention

. ? o . . Raheja, A. S. - Subramaniam, V. (200Reactive recovery
is to shift activities by a short time distance, regard- of job shop schedules — a revielmternational Jour-

less of the number of moved activities. nal of Advanced Manufacturing Technology, 19, 756-
The main shortcoming is that if there is no feasi- 763.

ble recovery of the ongoing schedule, neither of the Skalicky, T. (2011).Interactive Scheduling and Visualisa-

methods is able to quickly and securely report it. In tion. Prague, 95 p. Master’s thesis, Charles University

real-life environments, however, the schedule recov- in Prague.

erability from the breakdown of any particular ma- Smith, S.F. (1994)Reactive Scheduling Systenis. D.
chine is often known (for instance the minimum re- grown and W. Scherer (eds.), Intelligent Scheduling
quired number of available resources of each resource, . .- yalems,

. a, G. - Herrmann, J. - Lin, E. (2003Rescheduling
group may be obvious) or can be computed before the manufacturing systems: a framework of strategies,

schedule execution begins.) policies, and methodslournal of Scheduling 6: 39-
Both suggested algorithms may be easily adapted 62, Kluwer Acad. Publishers.

to handle the models with arbitrary resource groups, vik, M. (2014). Dynamic SchedulingPrague, 72 p. Mas-
and also to cope with another disturbance — hot order ter's thesis, Charles University in Prague.
arrival (Vlk, 2014).
Further investigation is needed for determining
the conditions under which a schedule is recoverable.
Next, it may be of interest to generalize the algorithms
for models that involve for example interruptibility of
activities, various speeds of resources, setup times of
resources or calendars of availabilities of resources.

ACKNOWLEDGEMENTS

Research is supported by the Czech Science Foun-
dation under the project P103/10/1287 and by the
Charles University in Prague, project GA UK No.
178915.

REFERENCES

Abumaizar, R. J. - Svestka, J. A. (199Rescheduling Job
Shops under Random Disruptioristernational Jour-
nal of Production Research, 35(7), 2065-2082.

Bartak, R. - Ja3ka, M. - Novak, L. - Rovensky, V. - Skalick
T. - Cully, M. - Sheahan, C. - Thanh-Tung, D. (2012).
FlowOpt: Bridging the Gap Between Optimization
Technology and Manufacturing PlannerProceed-
ings of ECAI 2012, pp. 1003-1004, 10S Press.

Brailsford, S.C. - Potts, Ch.N. - Smith, B. M. (1999on-
straint satisfaction problems: Algorithms and appli-
cations. European Journal of Operational Research
119, 557-581.

Dechter, R. - Meiri, I. - Pearl, J. (199Iemporal constraint
networks Artificial Intelligence 49(1-3), 61-95.

Kondrak, G. - Beek, P. van (1997A Theoretical Evalu-
ation of Selected Backtracking Algorithnstificial
Intelligence 89, 365-387.

130

