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Abstract: Clinical practice guidelines are widely used to support physicians, but only on individual pathologies. The 
treatment of patients affected by multiple diseases (comorbid patients) requires the development of new 
approaches, supporting physicians in the detection of interactions between guidelines. We propose a new 
methodology, supporting flexible and physician-driven search and detection. In particular, we provide a 
flexible and interactive mechanism to navigate guidelines and our ontology of interactions (between drugs, 
or between actions’ goals) at multiple levels of detail, focusing on specific parts of it (e.g., on a specific pair 
of actions, or of drugs) to look for interactions. We introduce the notion of “navigation tree”, as the basic 
data structure to support multiple-level interaction analysis, and describe navigation and focusing algorithms 
operating on it. We also introduce a visualization tool that is based on the “navigation tree”, and further 
enhances the user-friendliness of our approach. 

1 INTRODUCTION 

Clinical practice guidelines (CPGs) are defined as 
“systematically developed statements to assist 
practitioner and patient decisions about appropriate 
healthcare for specific clinical circumstances” 
(Committee to Advise the Public Health Service on 
Clinical Practice Guidelines, Institute of Medicine 
1990).  

CPGs exploitation is meant to improve the 
quality and to reduce the cost of healthcare, putting 
evidence based medicine into practice, and is 
progressively spreading in several countries. As a 
matter of fact, a lot of national and international 
institutions have recently been engaged in 
developing and disseminating CPGs. Thousands of 
CPGs have been devised in the last years. For 
instance, the Guideline International Network 
(Guidelines International Network n.d.) groups 100 
organizations of 48 countries, and provides a library 
of more than 6500 CPGs. CPGs aim to reduce 
errors, unjustified practice variation and wasteful 
commitment of resources, and encourage best 
practices and accountability in medicine.  

Moreover, the medical community has started to 
recognize that a computer-based management of 

CPGs can further increase CPG advantages, 
providing relevant benefits (e.g. automatic 
connection to the patient databases, and decision 
making support) to care providers and patients.  

In recent years, the research about computerized 
guidelines has reached a relevant role within the 
Medical Informatics community, and many different 
approaches and projects have been developed to 
create domain-independent computer-assisted tools 
for managing, acquiring, representing and executing 
computer-interpretable clinical guidelines 
(henceforth CIGs). See e.g. the collections (Gordon 
and Christensen 1995; Fridsma 2001; Ten Teije et 
al. 2008; Peleg 2013)). 

By definition, clinical guidelines address specific 
clinical circumstances (i.e., specific diseases). 
However, unfortunately, specific patients may be 
affected by more than one disease. The treatment of 
patient affected by multiple diseases (comorbid 
patients) is one of the main challenges for the 
modern healthcare, also due to the aging of 
population, and the consequent increase of chronic 
diseases. This sets up the urgent need of developing 
ways of merging multiple single-disease 
interventions to provide professionals’ assistance to 
comorbid patients (Riaño and Collado 2013). 
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However, though some CPGs covering frequently 
occurring comorbidities might be devised, there is a 
need for formal methodologies to support physicians 
in the detection and resolution of interactions 
between guidelines, and, ultimately, in the process 
of merging two or more guidelines. As a result, in 
the very last years some computer-based approaches 
have started to face this problem (see the discussion 
in Section 5).  

 In this paper, we focus on one central issue in 
the management of multiple CIGs, namely the 
development of a methodology addressing 
interaction detection. In a recent work (Piovesan et 
al. 2014), we have identified three different 
knowledge levels at which interactions might occur: 
(i) level of the intentions of the CIG actions, (ii) 
level of the effects of the drug categories 
(recommended by the pharmaceutical actions in the 
CIGs), and (iii) level of drugs. We have also pointed 
out that, in turn, levels (i) and (ii) may be structured 
at different levels of abstraction. Indeed, though a 
large variety of representation formalisms exists 
(Ten Teije et al. 2008), most CIG formalism support 
a hierarchical decomposition of guidelines at 
multiple levels of detail, in which composite actions 
may be represented, and then refined (possibly at 
different levels of abstraction) into their 
components. At the finest level of detail therapeutic 
pharmaceutical actions in the guideline may 
recommend, depending on the accuracy, the use of 
drugs or drugs categories, or active principles (thus, 
also the interactions between drug categories must 
be considered). In turn, drug categories are usually 
structured in a hierarchy representing different levels 
of detail (see, e.g., ATC (WHO Collaborating Centre 
for Drug Statistics Methodology n.d.)). In (Piovesan 
et al. 2014), we have also proposed an ontological 
representation for the interactions at the different 
levels, as well as an algorithm that, given two 
actions (or drugs), automatically queries the 
ontology to detect interactions between them. 

The main goal of this paper is that of extending 
the approach in (Piovesan et al. 2014) to provide 
user physicians with a flexible support to navigation 
and focusing  (considering both CIGs and ontology, 
at the different levels of detail), in order to 
interactively identify actions/drugs on which 
interaction analysis should be performed. 

2 PROBLEMS AND 
METHODOLOGY 

The treatment of interactions between CIGs is a very

challenging one, involving difficult problems both at 
the knowledge and at the process level.  

At the knowledge level, two main limitations 
have to be faced:  

(K1) defining and acquiring “a priori” a new 
guideline for any possible co-morbidity (i.e., for any 
possible combination of two or more CIGs) is not 
realistic in practice;  

(K2) defining and acquiring, for each possible 
pair of CIGs G1 and G2, and for each possible pair 
of actions (a1G1, a2G2) the interactions between 
them is practically unfeasible, too. 

At the process level, an automatic process that, 
considering two input CIGs G1 and G2, provides as 
output the possible interactions between each 
possible pair of actions (a1G1, a2G2) is 
technically feasible, but practically useless for user 
physicians, since the problem is combinatorial, and 
too many interactions would be provided to the users 
(consider, in particular, the usual dimensions of real-
world CIGs, and the number of alternative paths 
they contain). 

In this paper, we propose a methodology that 
overcomes the above problems. 

At the knowledge level, we (K1) consider CIGs 
developed for single diseases, and (K2) employ an 
ontology in which possible interactions between 
actions (or, better, between their goals and 
intentions) are modelled independently of the 
specific CIGs.  

At the process level, we propose a mixed-
initiative algorithm for the detection of interactions 
which, taking in input two CIGs, (i) allows user 
physicians to integrate their knowledge in order to 
focus such detection on relevant sets of actions, and 
(ii) exploits the (guideline independent) ontological 
knowledge to find and analyse the interactions 
between such focused parts. 

Notice that the navigation and focusing phase is 
interactive and physician-driven, and may be 
facilitated by a user-friendly graphical interface. On 
the other hand, the interactions between the focused 
parts of the CIGs can be automatically provided by 
the system (the navigation on the ontology and the 
inferences on it are hidden to user-physicians). A 
distinguishing feature of our approach is also 
flexibility: it supports the navigation and selection of 
the focus at different levels of abstraction. 

The goal of this paper is to propose a system-
independent methodology. We only assume that (i) 
CIGs can be structured at different levels of detail, 
as a hierarchical graph, (ii) CIGs contain, besides 
composite actions, also actions prescribing the 
administration of drug categories (or, possibly, even 
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specific drugs). Specifically, in the following, we 
exemplify our approach considering the following 
representation (used in GLARE): each action has a 
type attribute, which is link to an ontological 
concept, and at least one aimsTo attribute, linking it 
to its relative intentions in the ontology. 
Additionally, pharmaceutical actions have a 
substance attribute, linking them to a drug category 
or to a specific drug in the ontology.  

Our implementation  is based on the new version 
of GLARE built within the GINSENG project 
(Terenziani et al. 2014; Terenziani et al. 2013).  

3 ONTOLOGY OF 
INTERACTIONS 

In (Piovesan et al. 2014), we fully detailed an 
ontology of interactions, which is grounded on the 
concepts of action goals, called intentions and of 
administered drugs, which represent the main 
sources of interactions between CIGs.  

Before describing the knowledge representation, 
it is worth stressing that our long-term goal is to 
develop a decision support system highly 
collaborative with the user. Following this 
desideratum, the knowledge representation and the 
inferences made on it should be human-friendly 
enough to be understood by the user physician, as a 
sort of “second opinion”. Indeed, in the medical 
field, physician cannot trust “black box” tools that 
simply output suggestions without explain to the 
user (in an “understandable” way) how such 
conclusions have been reached.  

In our approach, action intentions are modelled 
as desired variations, with certain modalities 
(increasing, decreasing, stability), of some 
parameters of the patient status (attributes). 
Intentions are also organized along an ISA and 
PART-OF taxonomy. 

Like intentions, drugs are organized along a 
taxonomy of drug categories, exhibiting, at the 
bottom level, specific drugs. For such hierarchy, we 
exploit existing classifications, such as the 
consensus ATC (WHO Collaborating Centre for 
Drug Statistics Methodology n.d.). Each drug (or 
drug category) is related with effects it causes, 
which are modelled as variations of patient’s status 
attributes, just as the intentions. 

As mentioned in the introduction, interactions 
may occur at each level of abstraction (i.e., each 
level of the two taxonomies), and the ontology 
supports the representation of interactions at all the 
levels. 

An Intention interaction is an interaction 
between two intentions, and it is described by a type. 
We identified three basic types: independence 
(intentions do not interact), concordance (intentions 
reinforce each other), and discordance (intentions 
negatively interact with each other). However, more 
“sharp” types of interactions can also be added. For 
instance, the opposite type (as subtype of 
discordance) could be added to cope with intentions 
focusing on the same attribute, with opposite 
modalities. 

Drug interactions occur between two drugs or 
drug categories. A drug interaction is characterized 
by the modality of the variation that it causes in an 
effect of the two drugs it involves. 

Both types of interactions can be annotated by 
links to the literature showing their evidence. 

It is worth stressing that the interactions we 
model are action and guideline independent because 
they involve (action) intentions and drugs, which are 
general concepts. Thus, differently from some other 
approaches, when modelling a new CIG it is not 
needed to specify all the interactions between the 
new CIG and the existing ones because they are 
autonomously recognized following the relations 
between the actions and their intentions and drugs 
prescribed (for pharmaceutical ones). 

In the following, Figure 1 shows a glimpse of 
part of the interaction ontology, focusing on the 
modelling of interactions. At the moment, the 
ontology has been validate using  parts of guidelines 
(see examples in this paper and in (Piovesan et al. 
2014)). However, it is scheduled to be integrated in 
METAGLARE (Terenziani et al. 2014), recently 
developed. 

4 A FLEXIBLE USER-DRIVEN 
ALGORITHM FOR 
INTERACTION DETECTION 
AT MULTIPLE LEVELS OF 
ABSTRACTION 

4.1 Background 

In this section, we describe our mixed-initiative 
approach to the interaction detection between CIGs. 
It is worth stressing that our main goal is to integrate 
three fundamental knowledge sources: 

(i) Knowledge deriving from the CIGs 
structure, such as the decomposition of high 
level actions in lower level ones, and the 
sequence of actions to be executed 
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(ii) Knowledge about intentions, drugs, and 
their interactions. We detailed how we 
organized such a basic medical knowledge 
in the previous section 

(iii) User physician knowledge about the context 
and relevant parts of CIGs for the specific 
case 

In particular, given the high number of 
alternative paths and actions for each CIGs, the 
physician’s knowledge regarding the context is of 
fundamental importance. Indeed, without 
considering such an information, the output of an 
autonomous tool could be not useful for the user: it 
would contain too many non-organized information, 
and most of them would be irrelevant for the specific 
case. Exploiting out tool, the user physician can a 
priori discard uninteresting parts of CIGs and focus 
only on the relevant ones, obtaining, in addition, a 
well-structured, easy-to-use and easy-to-analyse 
output. In order to accomplish such a result, we aim 
at devising a flexible and interactive detection tool 
allowing physicians to navigate through the different 
abstraction levels, thus supporting the natural 
methodology they adopt to cope with CIG analysis. 
For instance, at the highest level, a physician may 
want to start to consider only the interactions 
between the intentions of the high-level actions of 

the guidelines. Then, focusing on a specific part of 
the guideline, (s)he may want to move down to a 
more detailed analysis, considering the 
decomposition of composite action into its parts, 
and/or the specific drugs category considered in 
order to reach the high-level intentions. In general, 
our approach will provide physicians with the 
possibility of moving in both directions, i.e., going 
down from a general to a more specific analysis, or 
moving up, from a specific analysis to a higher level 
of abstraction. 

Another important contribution of our approach 
is the possibility of extending CIGs with the 
knowledge in the ontology. For instance, many 
guidelines only recommend drug categories. 
However, at the very end, a specific drug of that 
category must be prescribed to the specific patient, 
but there are many cases in which, while two drug 
categories do not interact, specific drugs of the two 
categories do interact. Such interactions can only be 
detected in case the CIG knowledge is expanded 
with the knowledge in the ontology. 

4.2 Data Structures 

To provide a flexible support, our algorithm must 
rely on suitable data structures. In particular, such 

 

Figure 1: Ontology of Intentions, Drugs and Interactions between them. 
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structures should support the following desiderata: 

(i) Maintain the history of the focusing 
process, supporting both the addition of 
new CIG focuses, and the rollback to upper 
focuses 

(ii) Maintain the association between CIG 
focuses and interactions 

As regards specifically the representation of 
interactions, the data structure must also 

(iii) Support the fact that interactions occur 
between pair of actions in the two CIG 
focuses 

(iv) Support the fact that multiple interactions 
may occur between each pair of actions 
(since actions may have multiple intentions, 
and drugs may have multiple effects) 

To store the history, a tree structure is adopted. 
Each node of the tree represents a “status” of the 
analysis. It consists of three elements: (i) the focused 
part of the first CPG (at the chosen abstraction 
level), (ii), the focused part of the second CPG (at 
the chosen abstraction level), and (iii) the list of 
action interactions (found at the chosen level). In 
turn, each “focused part” of a CPG simply consists 
of a selection of nodes from the CPG itself.  

Actions interactions derive from intention or 
drug interactions. In particular, the list contains 
(when filled by the algorithm) an interaction of two 
actions a1 and a2 for each pair of intentions i1 
(related to a1) and i2 (related to a2) that interact. In 
addition, if a1 and a2 are pharmaceutical actions, the 
list contains an interaction for each pair of drugs (or 
drug categories) d1 (substance of a1) and d2 
(substance of a2) that interact. The list maintains the 
link to the ontological concepts, in order to allow the 
user to examine the reasons of such conclusions.  

Initially, the root of the tree contains the two 
input CIGs (at the highest abstraction level) and the 
list of interactions is empty. Then, the tree structure 
expands to explicitly model (the results of) the 
operations performed in a session of work (see, e.g., 
the graphical representation in Figures 2 and 3). 

 
Navigation tree: tree of Views 
View: <<CIG1,Focus1>,<CIG2,Focus2>, 
ActionInteractions> 
CIGi: a (possibly expanded) CIG, at the 
abstraction level chosen by the user-
physician 
Focusi: a subset of the action nodes in 
CIGi 
ActionInteractions: {<actioni, actionj, 
{Interactions}}  
 

4.3 The Interaction Detection Tool 

Our INTERACTION-DETECTION algorithms 
support user-driven navigation over a navigation 
tree, starting from a given node of the tree (i.e., from 
the current view).  

At the beginning of a session of work, 
considering two guidelines CIG1 and CIG2, the tree 
is initialized with just the root node, consisting of 
the view <<CIG1,{}>,<CIG2,{}>, {}> (i.e., at the 
beginning, no focuses and no interactions are 
identified), which is set as the current view. 

 At each step, the algorithm allows the user to 
choose between four alternative actions: 
STOP_ANALYSIS (which simply closes the session 
of work), REFINE, ROLL-UP, and DETECT. 

REFINE add a new view to the navigation tree (a 
child of the current view), which becomes the new 
current view. Such a new view is initialized as a 
copy of the current view, but it is then refined by 
refining actions and/or identifying focuses, through 
the ZoomandSelect procedure (see below). On the 
other hand, ROLL-UP moves up along the 
navigation tree, setting the mother of the current 
view as the new current view. Finally, DETECT add 
the interactions between the focused actions to the 
current view. The DETECT operation exploits the 
links between the guideline action description and 
the ontology and navigates the ontology in order to 
find the modality of the interactions. A full 
description of such an operation is reported in 
(Piovesan et al. 2014).   

Through the ZoomandSelect procedure, users 
can iteratively refine a view, by changing the 
focuses and/or expanding some of the actions they 
contain. Four options are possible. 
STOP_FOCUSING simply ends up the procedure. 
ADD_TO_FOCUS add some actions in a CIG into 
its focus, while REMOVE_FROM_FOCUS remove 
actions from the focuses. EXPAND supports the 
expansion of some of the actions in the focuses. 
First, the user chooses the actions to expand 
(variable actions_to_refine) then, while 
actions_to_refine is not empty, each action a in it is 
independently refined. The REFINEMENT 
operation takes in input a view (v) and an action a in 
it, and performs one step of refinement. The way in 
which such a refinement is obtained depend on the 
type of a. If a is a composite action in v, its 
expansion is simply the sub-guideline constituted by 
the actions composing it. On the other hand, if a is a 
pharmaceutical action, the representation of a 
contains the attribute substance, whose value is a 
link to the ontological entity representing drug 
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category to be administered (say DrugCatx). Thus, a 
is expanded as a new piece of guideline, consisting 
of several alternative pharmacological actions, one 
for each one of the direct descendants of DrugCatx in 
the ontology. 

The REPLACE operation simply substitutes a 
with the newly identified refinements into v.  

 Whenever a new refinement is added, we allow 
users to update actions_to_refine, adding actions of 
the new refinement to it. In such a way, we provide 
users with the possibility of going on with this 
process until the desired level of detail is reached. 

algorithm INTERACTION-DETECTION  
 (nt: navigation_tree,  current_view: 
 view)  
let current_view be <<CIG

1
, F

1
>, 

<CIG
2
, F

2
>, {I}>  

begin 
 user_act  the user chooses an 
action; 
 while user_act • STOP_ANALYSIS do 
 begin 
  if user_act = “REFINE” then 
  begin    
   New_View  generate_view(); 
   New_View  copy(current_view); 
   Append_child(New_View, 
    current_view); 
   ZoomandSelect(New_View); 
   current_view  New_View; 
  end  
  if user_act = “ROLL-UP” then  
     current_view  
    mother_of(current_view); 
  if user_act = “DETECT” then 
    begin   
   current_view  <<CIG1, F1>, 
    <CIG2, F2>,  
    ANALYSE_INTERACTIONS(F1,F2)>;  
    end 
  user_act  the user chooses an  
   action; 
 end while 
end 

4.4 Graphical Interface 

In the following, we explain how we integrated our 
algorithms with a graphical interface, in order to 
support users in the detection and analysis of 
interactions at different levels of detail. The 
graphical interface provides a user-friendly 
interaction to physicians. In Figures 2 and 3, we 
show how the navigation tree is displayed by the 
graphical interface, considering as an example a 
session of work. In particular, we compare a 
simplified part of a CIG for the postoperative 
management (PM), with a simplified part of a CIG 
for the treatment of acute otitis media (AOM). 

Each node in the navigation tree is represented by 
three boxes: the first two show the guideline views 
at the respective status of expansion, while the third 
box contains the interactions detected between 
actions contained in the views, when available. 

At the beginning of the detection, the interface 
only contains the root of the tree, with the guideline 
views at the highest level of abstraction.  

algorithm ZoomandSelect (v: view)  
let v be <<CIG1, F1>, <CIG2, F2>, 
{I}>  
begin 
 user_act  the user chooses an  
  action; 
 while user_act • STOP_FOCUSING do 
 begin 
  if user_act = “EXPAND” then 
  begin  
     actions_to_refine  the user  
    selects the action(s)to expand 
    from F1 and F2;   
     while actions_to_refine  {} do 
   begin 
    a  take an action from  
     actions_to_refine and  
     remove it;  
       refinement  REFINE(v, a); 
     REPLACE(a,refinement, v); 
     actions_to_refine     

     actions_to_refine   
     user selection of actions 
from       refinement; 
   end 
  end  
  if user_act = “ADD_TO_FOCUS” then  
    begin 
      F’  the user selects 
action(s)       to focus on from 
CIG1;  
    F”  the user selects 
action(s)  
     to focus on from CIG2; 
      F1  F1  F’; 
      F2  F2  F”; 
  end 
  if user_act = “REMOVE_FROM_FOCUS” 
   
   then  
     begin 
      F’  the user selects 
action(s)  
     to remove from F1;  
    F”  the user selects 
action(s)  
     to remove from F2; 
      F1  F1 - F’; 
      F2  F2 - F”; 
   end 
 end while 
end 

For the sake of simplicity, in our example we 
suppose that the initial situation (with the guidelines  
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Figure 2: Graphical interface for the INTERACTION DETECTION process. Each node of the tree represents a level of 
expansion of the guidelines and may contain the detected interactions. The simulation continues in Figure 3. 

at the highest level of abstraction) is represented as 
shown in Figure 2. 

In such a situation (part (1)), the physician may 
want to compare the composite action “thrombosis 
prevention” of the PM CIG with the “antibiotic 
treatment” of the AOM one. In that case, (s)he 
selects to refine the current node. The 
ZoomandSelect procedure window, not shown in 
this paper for the sake of brevity, allows her/him to 
add the two actions to the focus and expand them. 
We briefly explain how it works. First, considering 
the PM CIG, the physician applies the 
“ADD_TO_FOCUS” and “EXPAND” procedures to 
the “thrombosis prevention” action. The result is the 
expansion of such action. Among the other actions, 
the composite action “thrombosis prevention” 
recommends the administration of an antithrombotic 
agent. Then, the physician decides to focus on such 
action, and in particular, among the available 
antithrombotic agents, on the administration of a 
Vitamin K antagonist (repeating the procedures 
“ADD_TO_FOCUS” and “EXPAND”). Now, 
supposing that the guideline does not specify the 
level of specific drugs, such expansion cannot be 
performed using the CIG knowledge only. Then, the 
system uses the knowledge in the ATC classification 
in order to build the expansion of the selected action, 
returning a decision between the administrations of 
all the possible Vitamin K antagonists (e.g., 
dicoumarol, warfarin, etc.), which is the expansion 
shown in Figure 3. At this point, the physician has 
reached the desired level of abstraction and a similar 
procedure is performed to expand the “antibiotic 
treatment” node for the AOM CIG. When the 
refinement is complete, the physician selects the 

action STOP_FOCUSING and the node on the left 
part of Figure 3 is created. 

In the part (2) of Figure 3, we can see a 
simplified expansion of the two selected actions. 
Notice that the current expansion has been added to 
the navigation  tree as a child of the first one. At this 
time, the third box of the node does not contain any 
interaction. If the user performs a DETECT action, 
interactions between the focused actions in the two 
expansions of the guidelines are automatically 
detected navigating the ontology and inserted in the 
third box of the node (part (3) of Figure 3). An 
interaction is detected between the administrations 
of warfarin and erythromycin, which causes an 
increase in the anticoagulant effect of the warfarin. 
Now, we suppose that the physician is satisfied in 
the exploration of this direction, and decide to 
explore other possible interactions: (s)he perform a 
ROLL-UP action, in order to set the root of the tree 
as the current view (the node in 2 is however 
maintained; see the part (4) in Figure 3). In the 
example, we suppose that the user selects for the 
new refinement the same action (“antibiotic 
treatment”) for the AOM guideline, but another one, 
“antibiotic prophylaxis” for the PM one.  

The ZoomandSelect procedure at this time 
produces the node in right part (5) of Figure 3, and 
the navigation can go on until the desired level of 
detail is reached, and the actions to be focused on 
are decided. At this point, DETECT can be invoked 
again, and so on. Obviously, the navigation tree can 
expand at any depth, and there is no limit for the 
possible alternative branches at any level, since (in 
principle) all alternative expansions, at all levels, can 
be explored and maintained in the navigation tree. 
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Figure 3: Second part of the simulation. 

5 RELATED WORK AND 
DISCUSSION 

The development of software tools and metho-
dologies to support interaction detection is gaining 
an increasing attention in the last years. For instance, 
several current tools provide online access to 
pharmacological databases (Robert Wood Johnson 
Foundation and Partnership for Solutions 2004), or 
alerting systems that detect and inform about 
interactions (Medscape, Drugs.com, etc.). However, 
such tools mostly focus on drug-drug interactions 
only. Unfortunately, this is only a very limited 
support, when a physician has to detect and analyse 
the interactions between two or more guidelines. 

To overcome such a limitation, several research 
approaches have been proposed in the very last 
years. As regards ontologies, GLINDA (Musen et al. 
2011) proposes a wide ontology of cross-guideline 
interactions.  

On the other hand, several other approaches have 
focused their attention on methodologies to “merge” 
two or more CIGs, “solving” their interactions. 
Sánchez-Garzón (Sánchez-Garzón et al. 2013), for 
example, attempts to capture the collaborative aspect 

of the merging: each guideline is considered as a 
physician expert in the treatment of a single disease, 
and represented by an agent with hierarchical 
planning capabilities. The result is obtained through 
the coordination of all the agents, and respects the 
recommendations of each guideline. Another 
interesting approach, presented in (Michalowski et 
al. 2013) and (Wilk et al. 2013), uses constraint 
logic programming to identify and address adverse 
interactions. In this solution, a constraint logic 
programming (CLP) model is derived from the 
combination of logical models that represent each 
CIG, then a mitigation algorithm is applied to detect 
and mitigate interactions. Among rule-based 
systems, (López-Vallverdú et al. 2013) represents 
guidelines as sets of clinical actions that are 
modelled into an ontology. To combine two 
treatments, first they are unified in a unique 
treatment, then a set of “combination rules” is 
applied to detect and avoid possible interactions. A 
model-based combination of CIGs is purposed in 
(Riaño and Collado 2013), in which guidelines 
expressed in a particular formalism can be 
automatically merged through a combining operator. 
Jafarpour (2013) uses semantic-web rules and an 
ontology for the merging criteria. Given these, an 
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Execution Engine dynamically merges several CIGs 
according to merge criteria.  

On the other hand, the approach in this paper 
focuses on interaction detection, rather than on 
guideline merge. In this sense, our approach is 
largely complementary with respect to the above 
approaches in the literature, and can be integrated 
with them. However, two main advantages of the 
approach in this paper are (i) the fact that it is 
flexible, interactive and user-driven: instead or 
proposing “black-box solutions” to physicians, we 
aim at providing them with user-friendly 
investigation and decision supports; (2) the fact that 
is allows the analysis at different levels of detail. 

The approach in this paper is based on (Piovesan 
et al., 2014). Indeed, as discussed in Section 2, an 
automatic process that provides as output the 
possible interactions between each possible pair of 
actions between two CIGs is practically useless for 
user-physicians, since the problem is combinatorial, 
and too many interactions would be provided as 
output. Thus, we suggest to split interaction analysis 
into two phases, which can be iteratively repeated in 
an interactive and physician-driven process: (1) 
focus on specific actions/drugs (at a specific level of 
detail), and (2) detect interactions on them. While 
the work in (Piovesan et al., 2014) mainly focuses 
on the second phase, in this paper we extend it to 
cope with the first one. To achieve such a goal, this 
paper presents three major original contributions: (1) 
analysis of the requirements for the data structures, 
and their definition (see the navigation tree, in 
Section 4.2); (2) definition of a flexible and 
interactive focusing algorithm (Section 4.3); (3) 
definition of a user-friendly graphical interface 
(Section 4.4).  The main limitation of the current 
approach is, in our opinion, the fact that it has only 
undergone a limited experimental evaluation. Up to 
now, it has been tested only on simplified guidelines 
or part of them, such as the ones described in the 
Section 4, by two physicians of Azienda Ospedaliera 
San Giovanni Battista (“Molinette” Hospital) in 
Turin. Though the test has been quite successful, a 
more systematic and intensive experimental 
evaluation should be required, and this is the goal of 
our future work. 

6 CONCLUSIONS 

The treatment of patients affected by multiple 
diseases (comorbid patients) is one of the main 
challenges for the modern healthcare, also due to the 
aging of population, and to the increase of chronic 

diseases. Recent studies demonstrates that various 
types of interactions must be taken into account 
when merging two (or more) CIGs, and propose and 
ontology of interactions (Piovesan et al. 2014; 
Musen et al. 2011). However, to the best of our 
knowledge, our approach is the first one that, having 
identified different levels of abstractions in the 
analysis of interactions, supports user-driven and 
interactive interaction detection over them.  

Our flexible approach to interaction detection, 
operating at different levels of abstractions, may 
support expert physicians to analyse “abstractly” 
(i.e., just considering the CIGs, with no reference to 
a specific patient) the interactions between two or 
more CIGs that are commonly used together (e.g., to 
provide some “partial merge” between them). In 
such a case, the possibility of reasoning about “high-
level” actions is certainly crucial. Moreover, our 
approach can also support a physician treating a 
specific comorbid patient. In such a context, though 
the abstraction facilities are certainly helpful, the 
possibility of moving from the “general” actions in 
the guidelines to study of the interactions of specific 
drug categories (and drugs) can play a crucial role. 

In our short-term future work, we aim at 
proposing a more extensive experimental evaluation 
of the current approach, and at extending it to cope 
also with “patient-guideline action” interactions and 
“patient-drug” interactions, and with the temporal 
issues (e.g., not all interactions between CIGs are 
possible, due to the temporal constraints between 
guideline actions). In our long-term future work, we 
will support physicians also in the interaction 
solving, and, finally, in merging multiple guidelines 
in the treatment of a specific patient.  
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