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Abstract: Communication latency still hinders the adoption of Cloud computing paradigms in medical imaging 
environments where it could serve as a reliable technology to support repository outsourcing solutions or 
inter-institutional workflows, for instance. One way to overcome this is by implementing cache repositories 
and prefetching mechanisms. Nevertheless, such solutions are usually based on static rules that may 
inefficiently manage the cache storage capacity. For that reason, this paper compares a pattern recognition 
system using incremental learning versus batch learning, in order to assess which one could be more 
appropriately used in a medical imaging cache mechanism. 

1 INTRODUCTION 

Medical imaging is an important tool in medical 
practice, giving physicians valuable information for 
better diagnosis and treatment (Sylva, 2010, Rengier 
et al., 2010). Many medical imaging processes are 
supported by Picture Archiving and Communication 
Systems (PACS) (Huang, 2011), an umbrella term 
that embraces a set of technologies for acquisition, 
visualization, storage and distribution of medical 
imaging data (Valente et al., 2012). In order to do 
so, these systems rely on large IT infrastructures, 
comprising application servers, archives acquisition 
equipment (i.e. modality equipment) and network 
equipment, communicating through the Digital 
Imaging and Communications in Medicine 
(DICOM) standard (ACR-NEMA, 2011b).  

Traditional PACS solutions are hosted in the 
healthcare institution and all equipment is connected 
in the physical layer by a Local Area Network 
(LAN). Nevertheless, with the proliferation of high-
speed Internet connections, the PACS concept has 
broadened its horizons, embracing:  
 Infrastructure outsourcing (Philbin et al., 

2011, Chen and Sion, 2011), i.e. the moving of 
IT infrastructure from indoors to outdoors, 
reducing maintenance costs. 

 Institutional collaboration (Marques Godinho 
et al., 2014, Sutton, 2011, Silva et al., 2013b), 

facilitating the remote access to examinations 
and reports  (Costa et al., 2009) in response to 
the dispersion of patient’s data that arises from 
their mobility between different institutions 
(Viana-Ferreira and Costa, 2014a). 

In both cases, communication latency is a critical 
issue, because it is typically higher than in intra-
institutional processes (Viana-Ferreira and Costa, 
2014a). 

This is emphasized by the nature of the data, 
since medical imaging examinations may reach 
volumes of hundreds of megabytes for some 
modalities (Yakami et al., 2011). To minimize this 
problem, there are two possible solutions: (1) cache, 
i.e. a small but fast repository hosted near the final 
consumer that stores a portion of the main repository 
data; and (2) prefetching, which consists in 
requesting images before users request them. 
However, the effectiveness of these solutions is 
highly dependent on their capability of predicting 
which data will be needed next. Most current 
solutions are based on static rules over specific 
parameters (Huang, 2011, Bui et al., 2001), 
considering the specific workflow of each 
institution. This tailoring constitutes a drawback of 
these solutions, as they may not be suitable for more 
dynamic scenarios, leading to a degradation of 
service quality or even denial of service in particular 
sets of conditions. 

For these reasons, a pattern recognition solution 
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that could automatically adapt itself to user’s 
behaviours and institutional workflows, while also 
giving special attention to situations that may 
become critical for the overall performance of the 
system, would be desirable. In this setting, this paper 
presents a comparison between incremental learning 
and batch training for such pattern recognition 
approach. 

2 MEDICAL IMAGING 
LABORATORIES 

Most medical imaging services, from acquisition and 
storage, to transmission and visualization of medical 
imaging data are manage by Picture Archiving and 
Communication Systems (PACS) (Huang, 2011). 
Most systems of this kind are intrinsically complex, 
as they are responsible for handling all medical 
imaging data of a healthcare institution. Figure 1 
shows an example of a PACS instance, composed by 
several modalities (i.e. image acquisition devices), 
the repository, a PACS server, workstations, printers 
and a Radiology Information System (RIS), all 
linked by a Local Area Network (LAN). 

2.1 Digital Imaging 
and Communications in Medicine 
(DICOM) 

Currently in version 3, the DICOM standard (ACR-
NEMA, 2011b)  is composed of twenty parts, 
defining a wide set of processes related to medical 
imaging, such as: network communication layers, 
service commands, encoding and data structures and 
visualization processes (Pianykh, 2011). The wide 
range of processes and its versatility made DICOM a 
well-accepted standard, being currently followed by 
virtually all medical imaging equipment. For this 
work, the most important aspect of the standard is 
related to the DICOM services (ACR-NEMA, 
2011a), including: 

 C-Store service is used to push DICOM objects 
into the repository. 

 C-Get is for requesting objects by their 
identifiers from an archive. 

 C-Move service is for copying an object from 
one repository into another. 

 C-Find is used to query an archive about objects 
that match a query. 

 

Figure 1: Typical PACS instance architecture (Viana-
Ferreira and Costa, 2014a). 

2.2 Federation of Healthcare 
Institutions 

With the spread of fast Internet connections, the 
PACS concept has reached different settings. One 
example of this is the PACS described in (Silva et 
al., 2013a).  

This PACS serves two healthcare institutions at 
the same time: Institution A and Institution B. While 
both institutions have image acquisition devices, 
only Institution A has a repository that stores all 
produced images. This strategy allowed the 
institutions to reduce costs with IT infrastructure, 
while promoting medical cooperation. However, the 
main drawback of this architecture is related to the 
quality of the service provided to Institution B. 
While Institution A accesses data via a fast LAN, 
Institution B must rely on an Internet connection, 
which is significantly slower than the LAN of 
Institution A, to access the repository. This means 
that any object exchange between the institutions 
will be limited by the upstream bandwidth, which in 
this case is 12 megabits per second. Although this is 
already able to provide a satisfactory quality of 
service, it cannot compete with the quality of service 
provided by traditional indoor solutions (Philbin et 
al., 2011), hindering the adoption of these federated 
approaches. 

One way to reduce this problem is to endow 
Institution B with a cache and a prefetching 
mechanism that populated the cache with 
examinations that will be needed in a close future. 

3 CACHE AND PREFETCHING 

Cache is a small and fast repository that is used to 
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hide the impact of communication latency, by 
temporarily storing objects that more likely will be 
needed soon. The population of this mechanism can 
be carried out in two ways: (1) in a passive mode, in 
which the cache is populated with the last used 
objects; (2) in a more active way, recurring to 
prefetching, i.e. predicting the objects that will be 
needed and requesting them before the users do. 
Either way, caches have a limited capacity, which 
leads to the need of discarding some stored objects 
when they are full. For this reason, one characteristic 
of cache repositories is their replacement policy, 
which discards the objects that are less probable of 
being needed (Smith, 1982). There are numerous 
cache replacement policies, the most traditional ones 
being: Least Recently Used (LRU) (Ali et al., 2011), 
by size (Williams et al.), First In First Out, by 
predicting when they will be needed and discarding 
the last ones (Jaleel et al., 2010), Least Frequently 
Used (LFU) (Podlipnig and Boszormenyi, 2003), by 
a decision function (Cao and Irani, 1997) and 
randomized (Psounis and Prabhakar, 2001). 

Healthcare institutions may store such huge 
amounts of medical imaging data that it becomes 
financially unfeasible to make all data accessible at 
the best quality of service. For that reason, as 
depicted in Figure 1, they store all data in long-term 
repositories and only data that is more likely to be 
needed is replicated in faster repositories, i.e. mid-
term and short-term repositories (Huang, 2011). 

In this environment, prefetching is traditionally 
carried out through static rules over predefined 
parameters (Huang, 2011). Nevertheless, such 
solutions are usually especially designed for each 
situation or are too generic, causing the prefetching 
of too many objects and overloading the network 
with useless traffic. As an example, in (Bui et al., 
2001), a prefetching mechanism with static rules 
based on multiple information sources is describes. 
The tests carried out by the authors indicated a recall 
of 100%, but only 50% of precision. This means 
that, although all needed data was prefetched, only 
half of the prefetch data were relevant. 

The authors believe that machine learning and 
pattern recognition can lead to more effective cache 
and prefetching mechanisms. Nevertheless, it is a 
relatively unexplored field, with only residual 
references found in the literature. An example is the 
work described in (Liu Sheng et al., 2000), in which 
neural networks and decision trees were tested to 
predict which patient’s images would be needed. 
However, we did not find any solution that took into 
account distinct usage patterns. 

 

4 PATTERN RECOGNITION 

Pattern recognition has been an active research field 
for the last decades (Pal and Pal, 2001) and it 
consists on the development of algorithms for 
automatic decision-making processes (Maji and Pal, 
2011), using data to infer patterns (Yegnanarayana, 
2009, Duda et al., 2012). This has been applied in a 
wide range of scenarios, such as: rivers bio-
assessment (Feio et al., 2013), computer-aided 
diagnosis (Ramírez et al., 2013), content based 
image retrieval (Valente et al., 2013), stock market 
index prediction (Guresen et al., 2011) and computer 
vision (Chen et al., 2010). 

Pattern recognition embraces a set of tasks, such  
as: pattern association, pattern classification, pattern 
mapping, pattern grouping, and feature mapping, 
among others (Yegnanarayana, 2009). In this article, 
we are focused in the pattern classification problem 
that consists on the use of a set of patterns and their 
labels and finding the distinctions between patterns 
of distinct labels (Duda et al., 2012). 

4.1 Artificial Neural Networks 

One of the most well-known machine learning 
methods for pattern classification is the artificial 
neural networks (ANN) (Yegnanarayana, 2009). 
Due to its versatility, its ability to detect nonlinear 
relationships between variables and because of being 
able to update with new samples, the algorithm used 
in this work is based on ANN. 

Basically, it consists on a group of processing 
units (or neurons) that are linked in a determined 
way. One of the possible topologies is the multilayer 
perceptron (MLP), where the processing units are 
organized in layers, and usually each one of them 
receives the output of all processing units of the 
previous layer. For example, Figure 2 shows a 
representation of a MLP that receives 4 inputs and 
returns 2 outputs, having one hidden layer with 5 
neurons. 

 

Figure 2: Representation of a multilayer perceptron. 
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4.2 Models, Classes and Features 

For this work, the authors applied a previously 
developed algorithm that predicts which class of 
objects will be needed, considering the C-Finds sent 
to the PACS server. This algorithm considers four 
distinct usage pattern classes: 
 Pattern revising (class 1): user is revising 

multiple studies of a single patient, for instance 
in a patient’s appointment or when a clinician is 
evaluating the history of a patient. 

 Modality revising (class 2): user is revising 
studies of a specific modality in a time window. 

 Inconsequent query (class 3): this pattern class 
is for some queries which do not result in C-
Move requests. One example of this is when a 
user erroneously introduces the search 
parameter. Another example is produced by 
some DICOM viewers that repeatedly send C-
Find requests to refresh the interface. 

 “Other usage” (class 4): this usage pattern is 
for all usage patterns that do not relate directly 
to the healthcare provision service itself in 
healthcare institutions, for instance, a data 
auditing. 
 

The algorithm taken as the basis of this work 
uses five MLPs for each workstation in the PACS: 
 Four MLPs, one for each class, with 26 input 

perceptrons, 250 perceptrons in the hidden layer 
and 1 output perceptron. As features, these 
MLPs uses three kinds of features: (1) time 
features that describe the pattern according to its 
temporal location; (2) history features that 
describe the pattern according to the user 
history until the moment of the C-Find of this 
pattern; and (3) the type of query. 

 One MLP with 4 input perceptrons, 20 
perceptrons in the hidden layer and 4 output 
perceptrons. Since the other four MLPs are 
trained independently, this MLP is used to take 
into account the outputs of the others and reach 
a conclusion about the actual class. 

5 EXPERIMENTAL PROCEDURE 

In this work, we compared the use of incremental 
learning to the use of a previously trained model (i.e. 
batch learning) when classifying the usage pattern 
when a C-Find request is detected. The objective of 
this pattern recognition step is to help infer which set 
of objects will more likely be requested afterwards, 
which in turn would allow developing and 

improving cache replacement and prefetching 
mechanisms. 

5.1 Oracle 

The oracle is a module that provides the 
classification of previous usage patterns, based on 
information about C-Move requests produced after 
the C-Find requests. This is a key component of the 
system, since it gives the actual classification of the 
patterns, to be used in training and updating the 
models that will then be applied online. 

The labelling of the patterns is carried out in the 
following way: 
 If there is only one C-Move between two C-

Finds, it uses also the previous and the next 
patterns. 

 If no studies were requested between two C-
Finds, this patter is classified as “Inconsequent 
query” (class 3). 

 If (almost) all requested studies are from the 
same patient, then the pattern is assigned as 
“Patient revising” (class 1). 

 If it does not pass the previous test and (almost) 
all requested studies are of the same modality, 
then the pattern is assigned as “Modality 
revising” (class 2). 

 In case a pattern seems ambiguous, i.e. if 
considering only the first C-Move requests the 
pattern would be assigned as one class, but if 
considering only the last C-Move requests the 
pattern would be assigned as other class, then 
the oracle will only consider the first C-Move 
requests. 

 If the pattern failed all previous evaluations then 
the pattern is assigned as class 3. 

5.2 Real-world Dataset 

The real-world datasets is divided in two parts: a 
XML file and an index. The XML file contains 
anonymized information about 5186 DICOM 
messages that were sent to and from the PACS 
server in a period of roughly 3 months, while the 
index has data about the studies stored in the clinics’ 
database. In both parts of the dataset, data was 
anonymized using hash functions to guarantee 
patient’s privacy, while enabling the reproduction of 
the queries and their respective results. 

After processing the messages with the oracle, 
we concluded that the real-world dataset consists of 
17% patterns of class 1; 4% patterns of class 2; 29% 
patterns of class 3; and 50% patterns of class 4. 
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5.3 Synthesized Dataset 

Ideally, we would use only real-world data for the 
tests, nevertheless, due to bureaucratic and ethical 
issues real-world datasets are not easy to obtain. 
Moreover, even when they are obtained, the range of 
distinct situations is usually limited.  

In order to complement the results obtained with 
the real-world dataset, we have used a synthesizer of 
DICOM traffic based on behaviour profiles (Viana-
Ferreira and Costa, 2014b). With this tool we have 
simulated the behaviour of three workstations in a 
one-year period: 
 Workstation A has a regular behaviour along 

the experiment. 
 Workstation B is most exclusively used to 

review studies of a given modality in the first 
six months, but in the following six months is 
used also for patient appointments. 

 Workstation C behaves without a notion of 
timetable, being used indistinctly along time. 
This represents a workstation in a volatile 
scenario. 
 

Table 1 shows the distribution in percentage of 
the samples among the 4 classes in the three 
simulated workstations. It also includes the 
distribution of the whole dataset with the three 
workstations combined.  

Table 1: Distribution of the samples among the distinct 
classes (1 – Patient revising, 2 – Modality revising, 3 – 
Inconsequent query and 4 – Other usages) in the 3 
synthetized workstations (A, B and C).and in the whole 
synthesized dataset (Combined). 

Class Workstation A Workstation B Workstation C Combined 
1 20.7 % 12.3 % 63.5 % 37.5 % 
2 4.5 % 72.7 % 24.3 % 42.3 % 
3 7.2 % 3.8 % 4.1 % 4.3 % 
4 67.6 % 11.2 % 8.1 % 15.9 % 

5.4 Experimental Tests and Discussion 

The experimental tests were done with the two 
datasets: real-world and synthesized ones. Each one 
was tested under 4 distinct scenarios: 
 Train 25: batch learning with the 25% oldest 

samples of the dataset, while the other 75% of 
the dataset is used to test them. 

 Train 50: the 50% oldest samples were used to 
train the models, while the others were used to 
test them. 

 Train 75: 75% oldest sample were used to train 
the models while the others 25% were used to 
test the models. 

 Incremental Learning: only the first week was 
used to train the models. From then on, the 
samples of each week were used, firstly, to test 
the models and, secondly, to update the model. 
 

Each test condition was executed ten times and 
the results averaged to mitigate the noise caused by 
random initialization of MLPs. In order to compare 
the performance of each learning method we chose 
two measures: (1) the accuracy which is a ratio 
between the number of times the prediction was 
right and the total number of samples; and (2) the F-
Measure of each class which is calculated as shown 
in equation 1. 

ܨ െ݁ݎݑݏܽ݁ܯሺܥሻ ൌ
ܥܶ	2

2 ൈ ܥܶ	 ൅ ܥܨ ൅ ܥ̅ܨ
 (1)

In equation 1, F-Measure(C) is the F-Measure of 
class C, TC is the number of times the method 
predicted the class C correctly, FC is the number of 
times the method wrongly predicted the sample 
belonged to class C, and ܥ̅ܨ is the number of times 
the method wrongly labeled the sample as not 
belonging to class C. 

6 RESULTS 

In this section, the results of the experiments are 
presented, divided in real-world and synthesized 
datasets.  

6.1 Real-world Dataset 

Figure 3 is a graph with the accuracy and the f-
measures for each class, in each testing condition 
with the real-world dataset. 

From the analysis of the graph, we can conclude 
that the algorithm behaved worse for the least 
representative class, i.e. class 2, in every condition. 
Nevertheless, it must be highlighted that this is a 
consequence   of   very  few  data  about   that  usage  

 
Figure 3: Graph with accuracy and F-measures for the real 
dataset. 
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pattern class, only 4% of class representation in the 
dataset. Besides that, there are no evident differences 
between the different testing conditions, i.e. Train 
25, Train 50, Train 75 and Incremental learning. 
This can be explained by the limited time window 
represented by the dataset that did not include 
situations like changes of medical staff in the 
institution. 

6.2 Synthesized Dataset 

Figure 4 contains graphs of the f-measures for each 
class and the overall accuracy. The first three 
graphs, i.e. (a), (b) and (c), show the evaluation 
measures for each workstation of the synthesized 
dataset, while the last one, i.e. (d), shows the 
evaluation measures for the whole synthesized 
dataset. 

From the analysis of the graphs, emphasis to the 
f-measure for class 1 in workstation B, where all 
training/testing scenarios had less than 15%, while 
the incremental learning achieved more than 50%. 
This can be explained by the nature of the 
synthesized data for this workstation, with a change 
in behavior during the experiment. The results 
clearly show that the incremental learning was the 
only training method capable of adapting the 
classifiers for this situation. Moreover, we can 
conclude that incremental learning was only worse 
than the batch learning conditions in workstation C 

which represents a very volatile scenario.  

6.3 Overall Discussion 

For what concerns accuracies, all testing conditions 
demonstrated to achieve roughly the same accuracy. 
Nevertheless, the Train 75 scenario was slightly 
better for the synthesized dataset, while the 
Incremental Learning was the best for the real-world 
dataset. 

Concerning f-measures, incremental learning has 
proven to be more effective in classes with less 
representation in the dataset, while only slightly 
worse for classes with more representation in the 
dataset. 

Nevertheless, it must be highlighted that the 
results of the incremental learning includes all 
predictions of the model, starting from the second 
week of data, when the models were in a very 
immature state. This means that with only a slight 
degradation of performance, we could launch the 
solution with only one week of data, instead of 3 
months, which is represented by the Train 25 
condition in the synthesized dataset. 

7 CONCLUSIONS 

In this paper, we tested a pattern recognition system 
that is based on  machine learning  for  classification 

 
Figure 4: Graphs with the accuracy and F-measures for each synthesized workstation and for the combined dataset: (a) 
workstation A; (b) workstation B; (c) workstation C; (d) combined. 
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of users’ behaviours. 
The tested aimed to compare incremental 

learning with batch learning conditions, to assess if 
incremental learning is advantageous or not for this 
scenario. 

We have concluded that despite of a minor 
degradation of the results in some cases, incremental 
learning is advantageous for pattern recognition 
since it has a smaller length of time for deployment. 
Besides, even the slight degradation of performance 
may be explained with the premature start of result 
extraction from the incremental learning testing 
condition. 

Based on these results, as future work the authors 
will use incremental learning for the pattern 
recognition algorithm that aims at giving 
information to prefetching and cache replacement 
agents about which subset of images will be 
probably needed in a close future. 
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