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Abstract: Measuring the degree of conflict of a knowledge base can help us to deal with inconsistencies. Several seman-
tic and syntax based approaches have been proposed separately. In this paper, we use logical argumentation as
a field to compute the inconsistency measure for propositional formulae. We show using the complete argu-
mentation tree that our family of measures is able to express finely the inconsistency of a formula following
their context and allows us to distinguish between formulae. We extend our measure to quantify the degree
of inconsistency of set of formulae and give a general formulation of the inconsistency using some logical
properties.

1 INTRODUCTION

Inconsistencies arise naturally when working with
logic-based knowledge bases; they can come from on-
tology learning, merging of several knowledge bases,
decisions making, multi-agent system, or belief revi-
sion.

The need for handling inconsistencies in knowl-
edge bases has been well recognized in recent years.
Recently, the field of inconsistency measurement has
gained some attention for knowledge representation
formalisms. Therefore, reasoning under inconsis-
tency is an important field in Computer Science
(Bertossi et al., 2005) and in Artificial Intelligence in
particular and there are many logic-based proposals
for analysing inconsistent information. Then, inter-
est in quantifying inconsistency for knowledge bases
has grown rapidly in last years. This is because it
has been shown that measuring inconsistency is help-
ful to compare different knowledge bases and evalu-
ate their quality of information. For instance, if given
the opportunity to choose between different knowl-
edge bases, we may try to choose the one that is
least inconsistent. Already, measuring inconsistency
has been seen to be useful and attractive in diverse
applications including e-commerce protocols (Chen
et al., 2004), software specifications (Martinez et al.,
2004), belief merging (Qi et al., 2005), news reports
(Hunter, 2006), requirements engineering (Hunter
and Konieczny, 2006), integrity constraints (Grant
and Hunter, 2006), databases (Martinez et al., 2007),
ontologies (Zhou et al., 2009), semantic web (Zhou

et al., 2009), network intrusion detection (McAreavey
et al., 2011), and multi-agent systems (Hunter et al.,
2014).

To tackle this problem, a range of logic-based pro-
posals for analyzing and measuring the amount of in-
consistency of knowledge base have been presented
in literature, including the maximal n-consistency
(Knight, 2002), measures based on variables or via
multi-valued models (Grant, 1978; Hunter, 2002;
Oller, 2004; Hunter, 2006; Grant and Hunter, 2008;
Ma et al., 2010; Xiao et al., 2010; Ma et al.,
2011), n-consistency and n-probability (Doder et al.,
2010), measures based on minimal inconsistent sub-
sets (Hunter and Konieczny, 2008; Mu et al., 2011a;
Mu et al., 2012; Xiao and Ma, 2012), the Shapley
inconsistency value (Hunter and Konieczny, 2010),
inconsistency measurement based on minimal proofs
(Jabbour and Raddaoui, 2013), partitioning based in-
consistency measures (Jabbour et al., 2014a), and re-
cently inconsistency characterization using prime im-
plicates (Jabbour et al., 2014c; Jabbour et al., 2014b).

These proposals for measuring inconsistency can
be roughly divided into the two following fundamen-
tally categories. The complete comparison of them is
challenging. The first one, calledsemantic measures,
aims to compute the proportion of language that is af-
fected by the inconsistencies. The measures belong-
ing to this first class are often based on some paracon-
sistent semantics because we can still find paracon-
sistent models for inconsistent knowledge bases. The
second approach, calledsyntactic measures, involves
counting the minimal number of formulae which are
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responsible for the conflict. Viewing minimal incon-
sistent subsets as the purest form of inconsistency, it is
natural to derive syntax sensitive inconsistency mea-
sures for a knowledge base from the minimal incon-
sistent subsets of that base. The inconsistency mea-
sures considered in this work are defined in terms of
minimal inconsistent subsets and belong to the second
class.

In this paper, we consider an argumentation-based
framework that uses classical logic as the underlying
formalism, which offers a more reasoned way to com-
pute the degree of inconsistency in knowledge bases.
Argumentation is an important cognitive process for
dealing with conflicting information by generating al-
ternative sets of arguments. It has been established as
an Artificial Intelligence keyword for the last fifteen
years, especially for handling inconsistency in knowl-
edge bases. There are several approaches to formalize
argumentation. Among them is the so-called abstract
argumentation system by Dung (Dung, 1995), which
consists of a set of arguments and a binary relation
between them. A second approach is the deductive
or logic-based argumentation (Besnard and Hunter,
2001). We consider here the latter approach in which
an argument is a pair (support-conclusion) where the
support is a minimal consistent set of formulae that
entails the claim. Logical argumentation theory has
been exploited as a way to support the comparison
and selection of statements. Statements are repre-
sented as arguments and argumentation frameworks
support the reasoning on their acceptability.

The remainder of this paper is structured as fol-
lows: Section 2 introduces the argumentation ap-
proach for classical propositional logic, as proposed
by (Besnard and Hunter, 2001). Then, we recall sev-
eral inconsistency measures based on minimal incon-
sistent subsets and maximal consistent subsets. In
section 3, our new framework for measuring inconsis-
tency based on complete argumentation trees is pre-
sented. Next, we provide a generalization of our ap-
proach to evaluate the inconsistency of a subset of for-
mulae. Then, we study the logical properties of the
proposed measures. Finally, we conclude and give
some perspectives of this work.

2 FORMAL PRELIMINARIES

2.1 Propositional Logic

We assume a propositional languageL built from a
finite set of propositional symbolsP under the con-
ventional Boolean operators{¬,∧,∨,→,↔}, as well
as the truth constants⊤ (for truth) and⊥ (for falsity).

We will use lower case Roman lettersa andb to de-
note propositional variables. We use Greek lettersα
andβ for propositional formulae andΦ andΨ for sets
of formulae.

A knowledge base Kis a finite set of propositional
formulae. We further assume a distinguished enumer-
ation for every subset ofK, its canonical enumera-
tion. Importantly, it only serves to provide the total
order in which the formulae of any subset ofK are to
be conjoined to yield a formula logically equivalent to
this subset. Therefore, no other constraint is imposed
on K, particularlyK is not expected to be consistent.
It needs not even be the case that individual formulae
in K are consistent. We let⊢ denote the classical con-
sequence relation. We writeK ⊢⊥ to denote thatK is
inconsistent.

If K is inconsistent, then one can define the notion
of minimal inconsistent subsetas an unsatisfiable set
of formulaeM in K that is such that any of its subsets
is satisfiable, i.e.:

Definition 1. Let K be a knowledge base and M⊆
K. M is a minimal unsatisfiable (inconsistent) subset
(MUS) of K iff:

1. M⊢ ⊥

2. ∀M′ ( M, M′ 0⊥

Therefore, the set of all minimal inconsistent
subsets ofK, denoted asMUSes(K), is defined as
MUSes(K) = {M ⊆ K | M is a MUS o f K}.

A formula α that is not involved in anyMUS of
K is calledfree formula. The class of free formulae
of K is written f ree(K) = {α | ∄M ∈ MUSes(K), α ∈
M}. When a MUS is singleton, the single formula in
it is called a self-contradictory formula. We denote by
Sel fC(K) the set of self-contradictory formulae inK.

2.2 Logical Argumentation

In the present subsection, we focus on the logical ar-
gumentative model developed by Besnard and Hunter
(Besnard and Hunter, 2001). This framework adopts a
very common intuitive notion of an argument. Essen-
tially, an argument is a set of relevant formulae that
can be used to classically prove some point, together
with that point. Each point is represented by a for-
mula.

Definition 2. An argument A is a pair〈Φ,α〉 s.t.:

1. Φ ⊆ K

2. Φ 6⊢ ⊥

3. Φ ⊢ α
4. ∀Φ′ ⊂ Φ, Φ′ 6⊢ α
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A is said to be an argument forα. The setsΦ
andα denote thesupport, i.e. Sup(A) = Φ, and the
conclusionof A, i.e.Conc(A) = α, respectively.

An argumentA is said to be anatomic argument
if its support is rooted by only one formula, i.e.,
Sup(A) = α.

Example 1. Let K = {a → b,¬b∨ c,a,¬a∨¬c,b∧
d}. In view of K, some arguments are:

〈{a,a→ b,¬b∨c},c〉
〈{a,¬a∨¬c},¬c〉
〈{b∧d},c→ d〉
〈{a,a→ b},a∧b〉

〈{¬b∨c},¬(b∧¬c)〉.

Also,〈{b∧d},c→ d〉, and〈{¬b∨c},¬(b∧¬c)〉
are examples of atomic arguments.

Proposition 1. Let K be a knowledge base andΦ ⊆
K. 〈Φ,α〉 is an argument iffΦ∪{¬α} is a MUS of
K ∪{¬α}.

Definition 3. Let K be a knowledge base. We say
that 〈Φ,α〉 is a free argument if and only ifΦ ⊆ K \

⋃

S∈MUSes(K)
S.

Proposition 2. Let K be a knowledge base.α ∈
f ree(K) if and only if there exists a free argument
〈Φ,β〉 s.t. Φ ⊆ K andα ∈ Φ.

Arguments are not independent in the sense that
an argument can implicitly contain another. The fol-
lowing definition introduces a notion of subsumption
among arguments.

Definition 4. An argument〈Φ,α〉 is more conserva-
tive than an argument〈Ψ,β〉 if and only ifΦ ⊂ Ψ and
β ⊢ α.

That is if 〈Φ,α〉 is an atomic argument, then there
exists no argument〈Ψ,β〉 s.t. 〈Ψ,β〉 is more conser-
vative than〈Φ,α〉, unlessΨ = /0 andβ =⊤.

Example 2. The argument〈{a},a∨b〉 is more con-
servative than the argument〈{a,a→ b},a∧b〉.

It may happen that some arguments directly op-
pose the support of other arguments. This leads to
the notion of attacks, a major component of an ar-
gumentation system. In (Besnard and Hunter, 2001),
Besnard and Hunter capture a relation of attack be-
tween arguments as stated by the following definition.

Definition 5. Anundercutof an argument〈Φ,α〉 is an
argument〈Ψ,¬(β1∧ . . .∧βn)〉 s.t.{β1, . . . ,βn} ⊆ Φ.

Example 3. Let K = {a,¬a∨ b,c,¬c∨¬a}. Then,
〈{c,¬c∨ ¬a},¬(a∧ (¬a∨ b))〉 is an undercut for
〈{a,¬a∨ b},b〉. A less conservative undercut for
〈{a,¬a∨b},b〉 is 〈{c,¬c∨¬a},¬a〉.

Definition 6. 〈Ψ,β〉 is a maximal conservative un-
dercutof an argument〈Φ,α〉 iff 〈Ψ,β〉 is an under-
cut of〈Φ,α〉 such that no other undercut for〈Φ,α〉 is
strictly more conservative than〈Ψ,β〉.

In other words,〈Ψ,β〉 is a maximal conservative
undercut of an argument〈Φ,α〉 iff for all undercuts
〈Ψ′,β′〉 of 〈Φ,α〉, if Ψ′ ⊆ Ψ andβ ⊢ β′ thenΨ ⊆ Ψ′

andβ′ ⊢ β.
The value of the next definition of canonical un-

dercut is that we only need to take thecanonical un-
dercutsinto account. These arguments are identified
by Besnard and Hunter as of relevant focus for gen-
erating counter-arguments. This means that we can
justifiably ignore the potentially very large number of
non-canonical undercuts.

Definition 7. 〈Ψ,¬(β1∧·· ·∧βn)〉 is a canonical un-
dercut of〈Φ,α〉 iff 〈Ψ,¬(β1∧ . . .∧βn)〉 is a maximal
conservative undercut of〈Φ,α〉 and〈β1, . . . ,βn〉 is the
canonical enumeration ofΦ.

Now, in order to obtain a structure gathering ar-
guments and counter-arguments for/against a specific
claim, Besnard and Hunter define the so-called ar-
gumentation trees that collate such arguments and
counter-arguments.

Definition 8. An argumentation treefor α is a tree
whose nodes are arguments such that:

1. The root is an argument forα
2. For every node〈Ψ,β〉 whose ancestor nodes are

〈Ψ1,β1〉, ....,〈Ψn,βn〉, there existsγ ∈ Ψ such that
for 1≤ i ≤ n, γ /∈ Ψi

3. Each child node is a canonical undercut of its par-
ent node.

An argumentation tree aims at capturing the
way counter-arguments can take place as the dis-
pute develops. Condition 2 insists that each counter-
argument involves extra information thereby preclud-
ing cycles. These trees have noticeable properties. As
∆ is a finite set of formulae, it can be proved (Besnard
and Hunter, 2001) that there are only finitely several
argumentation trees forα and each of them is finite.

As several different argumentation trees for a
given formulaα can co-exist, the followingcomplete
argumentation treeconcept aims to represent them in
a global manner by considering all possible attacks
and consequently all canonical undercuts.

Definition 9. A complete argumentation treefor α,
denoted asT (α), is an argumentation tree forα such
that the children nodes of a node A consist of all the
canonical undercuts of A that satisfy condition 2 of
Definition 8.
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Notation. To simplify the notation, from now on,
the conclusion of a canonical undercut is denoted♦,
obviously, there is no ambiguity as to which formula
it stands for.

Example 4. Let K = {a ∧ b,¬b ∨ ¬c,¬a ∧
¬d,c,¬c,d,¬d∨c,e→ f}.

The complete argumentation tree for the formula
b is visualised bellow.

〈{a∧b},b〉

〈{c,¬b∨¬c},♦〉〈{¬a∧¬d},♦〉

〈{d},♦〉 〈{¬c},♦〉

〈{¬c,¬d∨c},♦〉 〈{d,¬d∨c},♦〉

〈{d,¬d∨c,¬b∨¬c},♦〉

Figure 1: Complete argumentation tree forb.

2.3 Inconsistency Measures

In this section, we describe some inconsistency mea-
sures defined through minimal inconsistent subsets
and the properties usually used for their characteri-
zation. We limit our presentation to the most impor-
tant and related syntax based measures to the one pro-
posed in this paper.

Reasoning with minimal inconsistent sets is a
widely studied concept that gives rise to several mea-
sures of inconsistency of an entire knowledge base or
one of these formulae. These measures are mostly
based on two criteria which are the number of MUSes
and their size. In (Hunter, 2004), the authors define
the degree of inconsistency of a formula as the num-
ber of MUSes containing it. Extended to the entire
knowledge base, this measure has resulted in incon-
sistency measure which is defined to be the number
of MUSes. Furthermore, in (Hunter and Konieczny,
2008) the authors introduced a family of inconsis-
tency measures called MinInc inconsistency values
MIV . For instance, theMIVD measure is a basic
one that assigns 1 if the formula belongs to a MUS
and 0, otherwise. WhenMIV# value is identical to
MIVD, and which associates a formulaα the num-
ber of MUSes to which it belongs. FinallyMIVC
measure, defined asMIVC(K,α) = ∑ 1

|M| such that

M ∈ MUSes(K) andα ∈ M, is a generalization of the
frameworkMIV#, since it takes into account the size
of each MUS containingα.

In contrast with the semantic measures, the ap-
proaches based on minimal inconsistent subsets have
some gaps. Indeed, such syntactic approaches do not
make a distinction in the degree of inconsistency be-
tween two different knowledge bases with exactly the

same size and the same number of minimal inconsis-
tent subsets, what motivated the new measure intro-
duced in (Mu et al., 2011b). This approach combines
both the minimal inconsistent subsets and the max-
imal consistent subsets in order to give an inconsis-
tency degree of the whole knowledge base. Another
approach that combines semantic and syntax based
approaches have been introduced in (Xiao and Ma,
2012). It is based on counting the variables of min-
imal inconsistent subsets and the minimal correction
subsets (Reiter, 1987).

However, while analyzing deeply the divergence
between the different approaches dealing with min-
imal inconsistent subsets, we notice that an impor-
tant point has not been taken into account in these
approaches. More precisely, the correlation between
MUSes have to be taken into account during the eval-
uation of the inconsistency degrees in the knowledge
bases.

In order to give the intuition behind the introduc-
tion of our new measures based on logical argumen-
tation, let us consider firstly the knowledge baseK
such thatK = {a,¬a,a∨b,¬b,b}. K is inconsistent.
For example, the inconsistency measureMIV# (resp.
MIVD) assigns the value 1 (resp. 1) to the formulae
a, a∨b andb. However, we would like thata∨b has
a better value, unlike toa andb, since the formulae
a, a∨ b and b have the same properties except that
a∨b belongs to a MUS more connected thana andb.
Consequently, our goal is to use the interactions be-
tween MUSes as a main element in order to evaluate
the conflict brought by each formula of the knowledge
base.

One of the most known structure able to capture
the interactions between MUSes is undoubtedly the
argumentation tree. Argumentation tree is a well
known concept widely explored in the context of the
classical logic argumentation. This tree offers a faith-
ful image of the interactions of MUSes and allows
then to reason more finely about inconsistency, since
the attack relation definition ordinarily relates attacks
to inconsistency. Note that this is unlike the ori-
ented links between MUSes explored in (Benferhat
and Garcia, 1998) which says that the resolution of
one MUS allows automatically for the resolution of
the other. So, by looking inside MUSes and taking
into account the correlations between them, the pro-
posed analysis of MUSes structure lead to several in-
teresting measures different from the existing ones.
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3 ARGUMENTATION-BASED
INCONSISTENCY
MEASUREMENT

In this section, we discuss how to use logical argu-
mentation to address the problem of measuring the
degree of inconsistency in knowledge bases. Our ap-
proach offers considerable advantage as it actually
supports the use of diverse logics, not just propo-
sitional logic. In other words, our framework can
be naturally extended to other logics where argu-
ments are defined like first order logic (Besnard
and Hunter, 2005), conditional logic (Besnard et al.,
2013), modal logic (Raddaoui, 2013), description
logic (Black et al., 2009), resource logic (Besnard
et al., 2012), etc.

Before formalizing our inconsistency measure-
ment framework, we need further notations that will
be useful in the following section. LetT be a com-
plete argumentation tree,nodes(T ) denotes the set of
nodes ofT . |T | is the number of nodes (i.e., argu-
ments) ofT . Let n∈ nodes(T ), we denote byH (n)
the height ofn, i.e. the number of nodes from the root
to n. We will also useH (T ) to denote the height of
T . Given an argument〈Φ,α〉, Undercuts(Φ) is the
set of children of〈Φ,α〉 in T . For instance, the set of
undercuts of an atomic argument〈α,β〉 is denoted as
Undercuts(α).

We can now show that the inconsistency of the
knowledge base is rooted by the presence of conflict-
ual arguments.

Proposition 3. Let K be a knowledge base. If K is
inconsistent, then there exists at least one complete
argumentation treeT such that|T |> 1.

The following result states the relationship be-
tween minimal inconsistent subsets and attacks be-
tween arguments in the sense that if an argument at-
tacks another, then it must be that the support of the
former is inconsistent with the support of the latter.

Proposition 4. Let T be a complete argumentation
tree in K s.t.|T | ≥ 2. For each argument〈Φ,α〉 ∈ T ,
there exists a MUS M⊆K such that M⊆Φ∪Ψ where
〈Ψ,β〉 ∈ Undercuts(Φ).

As shown by Proposition 4, the complete argu-
mentation tree can gather many minimal inconsistent
subsets of a given knowledge base in the same struc-
ture, and thus it takes the dependencies between these
MUSes into account.

Now, we characterize the notion of a free formula
in the light of the complete argumentation tree as fol-
lows.

Proposition 5. Let K be a knowledge base. Letα be
a formula in K. α is a free formula of K iff for each

complete argumentation treeT such that〈α,β〉 is the
root of T , |T |= 1.

Now we can explore the advantages of consider-
ing argumentation to quantify the degree of conflict
in knowledge bases. In the following, we introduce
the degree of inconsistency measure of each formula
belonging to a given knowledge baseK. More pre-
cisely, we give in the following a family of degree
of inconsistency measure, denoted asIARG, in terms
of complete argumentation tree. These measures aim
specially to take into account not only the attacks be-
tween arguments and their number but also the quality
of each attack.

In logical argumentation, arguments may attack
each other, which is captured by logical conflict. This
requirement reflects a fundamental assumption in log-
ical argumentation, namely that the conflict among
arguments is related to attack between them. So, the
amount of the contradiction in the arguments can then
be viewed as the number of their attackers. More for-
mally, the following result holds.

Proposition 6. Let K be a knowledge base and〈Φ,α〉
be an atomic argument. Then,|Undercuts(Φ)| =
|{M | M ∈ MUSes(K), Φ∩M 6= /0}|.

Proof. We see from Proposition 4, for each undercut
〈Ψ,β〉 for 〈Φ,α〉, there exists a MUSM s.t.M ⊆ Ψ∪
Φ. Then, it easy to see that the number of undercuts
of 〈Φ,α〉 is equal to the number of MUSes containing
Φ.

Proposition 6 suggests that the existence of under-
cuts of a given argument depends on the set of MUSes
involving its support. So, the evaluation of the contra-
diction of a formula (i.e. support of the argument)
is linked to the set of counter-arguments of the ar-
gument containing this formula. According to this
observation, one can notice that theMIV# measure is
simply the number of canonical undercuts that defeat
the argument〈α,β〉, i.e.,MIV#(α) = |Undercuts(α)|.
Then, we can see that each time a counter-argument
exists, we increase the degree of inconsistency by 1.
However, according to the argumentation tree, the ini-
tial argument can be challenged, as well as counter-
arguments to the initial argument can themselves be
challenged, and so on, recursively. This means that
the amount of conflict is splitting among the whole
argumentation tree, telling that the intuition behind
that the conflict lie in the counter-arguments, counter
counter-arguments, etc.

Our goal is then to claim that the degree of incon-
sistency of the formula supported the initial argument
must decrease when the counter-arguments of this ar-
gument are themselves be attacked, and so on. This is
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the direct formulation of the idea that the more argu-
ments needed to produce the argumentation tree, the
less inconsistency there is in the root. To this end,
it should be natural to take all attacks among argu-
ments in order to evaluate more finely the inconsis-
tency of the formulae. Starting from this, it is obvious
to see thatMIV# measure provides a local evaluation
of the inconsistency since it considers only the neigh-
borhood ofα (e.g., only MUSes containingα), and
consequently only the counter-arguments of the ini-
tial argument are taken into account. For instance, the
MIV# measure assigns the same blame to each for-
mula belonging to the same number of interconnected
MUSes. This result shows that theMIV# measure is
not sufficiently discriminating for our purposes since
just one level of inconsistency is considered. Note
that the same reasoning can be obtained if we con-
sider theMIVD or theMIVC measures.

In the sequel, we will present different measures
able to consider such aspects by tacking the whole
structure of the argumentation tree into account to
evaluate the responsibility/contribution of each for-
mula in the inconsistency of the knowledge base.

To address this need, let us now introduce a uni-
form definition of an inconsistency degree under the
complete argumentation tree in order to make a dis-
tinction among the formulae of the knowledge base
according to their participation in the inconsistency.

Definition 10. Let K be a knowledge base s.t.α ∈ K.
Let 〈α,β〉 be an atomic argument. LetT be a com-
plete argumentation tree s.t.〈α,β〉 is the root ofT .
The inconsistency degree ofα, denoted IARG(α,K), is
defined as:

IARG(α,K) =







0 i f |T |= 1

|Undercuts(α)|
|T |−1 otherwise

IARG measure assigns as an inconsistency degree
the ratio between the number of counter-arguments
of 〈α,β〉 and the size of the argumentation tree, but
1 must be subtracted to not count the root of the
tree. Hence, more no challenged counter-arguments
for the initial argument means higher degree of in-
consistency. This allows us to draw a more precise
picture of the inconsistencies of the formulae in the
knowledge base. Note that assigning the maximum
value of 0 as a the degree of conflict of a free for-
mula seems to be very natural, since a free formula
has nothing to do with the conflicts of the knowledge
base.

Next, we show that the inconsistency measure de-
fined above satisfies the consistency, and free formula
independence properties.

Proposition 7. Let K be a knowledge base andα∈K.
The inconsistency measure IARG satisfies the follow-
ing properties:

• IARG(α,K) = 0 if K is consistent (consistency)
• IARG(α,K) = 0 iff α ∈ f ree(K) (free formula in-

dependence)

Note that according to theIARG measure, the in-
consistency can decrease when new formulae are
added in the knowledge base. This is explained by
the fact that the number of MUSes can increase as
well as the number of counter-arguments in the argu-
mentation tree. Hence, theIARGmeasure is not mono-
tonic.

Example 5. Let us consider the knowledge base of
Example 4. Then, the IARGvalue gives as result:

IARG({a∧ b},K) = 3
7, IARG({¬a∧ ¬d},K) = 1

3,
IARG({¬b∨¬c},K) = 1

5, IARG({c},K) = 2
7,

IARG({d},K) = 2
7, IARG({¬c},K) = 2

9, IARG({e→
f},K) = 0.

The following result suggests that free arguments
are not challenged by any other arguments. This
means that these arguments have nothing to do with
the conflicts of the knowledge base.

Proposition 8. Let K be a knowledge base andα∈K.
If 〈α,β〉 is a free argument, then IARG(α,K) = 0.

It is interesting to note that the argumentation tree
associated to the formulaα does not usually involve
all MUSes of the knowledge base but only those in-
terconnected with the MUSes containingα. What
happens is that while such interconnected MUSes do
not contain cycles (e.g. each argument is not dupli-
cated in many branches of the tree), the number of
nodes remains the same for each formula belonging
to these interconnected MUSes. In this case, the in-
consistency measure is only sensitive to the number
of the canonical undercuts of the initial argument. As
consequently, the size and the dependencies between
the set of MUSes the formulaα belongs to, can have
an impact on the evaluation of the inconsistency. To
illustrate this, let us consider the following example.

Example 6. Let us consider the knowledge bases K1
and K2 such that K1 = {a,¬a∧b,¬a∧¬b}, and K2 =
{¬a,a,¬a∨ b,b,¬b}. From this, we obtain the fol-
lowing complete argumentation trees for a∨b. Then,
we have IARG(a,K1) =

1
2 while IARG(a,K2) =

2
3.

The evaluation of the inconsistency value of each
formula given byIARG is still very rough. In partic-
ular, theIARG measure is not yet able to distinguish
finely between the formulae of the knowledge base.
Indeed, if we consider again the knowledge baseK2 of
Example 6, the values of inconsistency of¬a, ¬a∨b
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〈{a},a∨b〉

〈{¬a∧¬b},♦〉〈{¬a∧b},♦〉

〈{¬a∧¬b},♦〉 〈{¬a∧b},♦〉

Figure 2: Complete argumentation tree fora∨b.

〈{a},a∨b〉

〈{¬a∨b,¬b},♦〉〈{¬a},♦〉

〈{b},♦〉

Figure 3: Complete argumentation tree fora∨b.

and¬b are equal. So it could prove better not to sim-
ply take the number of counter-arguments of the root
of an argument tree, but to take into account the height
of the argumentation tree as well as the distance be-
tween nodes.

To address this need, we see in the following that
by taking a more refined inconsistency measure on
knowledge bases, we get a better assignment to for-
mulae.

Definition 11. Let K be a knowledge base such that
α ∈ K. Let〈α,β〉 be an atomic argument. LetT be a
complete argumentation tree s.t.〈α,β〉 is the root of
T . The inconsistency degree ofα is defined as:

I∗ARG(α,K) = |Undercuts(α)|× f (T )

where f is a function that takes as input the complete
argumentation treeT .

The above definition is a general definition that al-
lows for a range of possible measures to be proposed.
Note that instances ofI∗ARG depend on the choice of
function f .

Next we will introduce three types of functions as
follows:

f 1(α) = 1
H (T )

f 2(α) = 1

∑
n∈nodes(T )

H (n)

f 3(α) = ∑
n∈nodes(T )

1
H (n)

The differently defined functions lead to differ-
ent inconsistency measures. Let us explain the re-
sulting measures as follows: Firstly,I1

ARG(α,K) =

|Undercuts(α)|× f 1(α) takes into account the height
of the complete argumentation tree associated toα.
secondly,I2

ARG(α,K) = |Undercuts(α)|× f 2(α) con-
siders the ratio between the counter-arguments of the
initial argument and the sum of all other arguments
of the complete argumentation tree where each one
is represented by its distance to the root node of the
tree. Finally I3

ARG(α,K) = |Undercuts(α)| × f 3(α)
computes the weighted sum of each node of the tree,
where the weight is the inverse of the hight of the cor-
responding node.

Although, the three above inconsistency measures
are quite different, they allow to analyse more deeply
the structure of the complete argumentation tree by
taking into account the dependencies between MUSes
in the knowledge base. This allows us to define a
much more precise view of the inconsistency, as il-
lustrated in the following example.

Example 7. Let us consider the knowledge base K=
{¬a,a,¬a∨b,b,¬b}. Then, we have:

• I1
ARG(a) = 1, I1

ARG(¬a∨b) = 1
2, I

1
ARG(¬a) = 1

3

• I2
ARG(a) =

1
2, I

2
ARG(¬a∨b) = 1

5, I
2
ARG(¬a) = 1

6

• I3
ARG(a) = 5, I3

ARG(¬a∨b) = 2, I3
ARG(¬a) = 11

6

Interestingly, we note that by using the family I∗
ARG

of inconsistency measures we have the following re-
lation: I∗ARG(¬a) = I∗ARG(b) < I∗ARG(¬a∨b) < I∗ARG(a) =
I∗ARG(¬b). We can notice that now we can make a dis-
tinction between the formulae¬a,¬a∨b, and¬b.

3.1 Logical analysis

As seen earlier, theI1
ARG measure combines the car-

dinality of the set of canonical undercuts, and the
inverse of the height of the complete argumentation
tree in order to quantify the participation of each for-
mula in the inconsistencies. Note that adding new
formulae to a knowledge base may grow the height
of the argumentation tree (by adding new counter-
arguments in the tree), and consequently theI1

ARG
value decreases. This means thatI1

ARG is not mono-
tonic. To illustrate, let us consider the knowledge base
K = {a,¬a∧b,¬b∧c,¬c∧d,¬d∧e}. Then, we have
I1
ARG(a) =

1
4. Now if we add the new formula¬e to

K, then the degree of inconsistency ofa in K ∪{¬e}
becomes15.

In contrast,I2
ARG value counts the inverse of all

distances from the root node to each argument in
the tree. Moreover, adding new formulae cannot de-
crease the number of counter-arguments, and cannot
increase the distance of existingMUSesfrom the root
node, thus the inverse of the distances will be non-
decreasing. Consequently, theI2

ARGmeasure is mono-
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tonic. By the same reasoning,I3
ARG is a monotonic

measure.

3.2 Quantifying the Conflict of a Set of
Formulae

In this section, we consider another inconsistency
measure which aims to evaluate the amount of con-
flict of a set of formulae. To do this, theIARG mea-
sure can be naturally extended to a consistent subset
of formulae, by just taking this subset as a support of
the root argument in the complete argumentation tree.

Now, the inconsistency measureIARG can be de-
fined as follows:

Definition 12. Let K be a knowledge base andS a
consistent subset of K. LetT be a complete argumen-
tation tree s.t.〈S ,α〉 is the root ofT . The degree of
inconsistency of S is defined as:

IARG(S ,K) =







0 i f |T |= 1

|Undercuts(S )|
|T |−1 otherwise

This definition allows us to define to what extent a
subset of formulae inside a formula is concerned with
the inconsistencies of the knowledge base.

Note that instances ofI∗ARG measure can be obvi-
ously extended to evaluate the inconsistency of a set
of formulae by just considering a consistent subset of
the knowledge base as a support of the root argument
of the complete argumentation tree.

Example 8. Let the knowledge base K= {a ∧
b,c,a → ¬b∨ c,a → ¬b,d,¬d,¬c,d → a}. Then
IARG({a∧b,a→¬b∨c},K) = 1

3.

Now, we can show that for a particular case of in-
terconnected MUSes, the following result holds.

Proposition 9. Let K be a knowledge base and S⊆ K
s.t. S0 ⊥. If there exists no chain of interconnected
MUSes of a length greater then 2, then the maxi-
mum value reached by IARG(S ,K) is equal to1 and
I1
ARG(S ,K) is equal to|MUSes(K)|− |sel fC(K)|.

4 CONCLUSION

In this paper, we have presented a new framework for
defining inconsistency values that allow to associate
each formula with its degree of contribution for the
conflict of the whole base. Our approach is based
on logical argumentation which is shown to be a use-
ful approach to take the interaction between MUSes
into account. We have also shown that such a frame-
work can be extend to quantify the degree of conflict

of a consistent subset of formulae. We also proposed
some logical properties to characterize our inconsis-
tency measures.

In future work, we plan to investigate the com-
putational complexity ofIARG family of inconsistency
measures, and develop algorithms and implementa-
tions, possibly based on techniques of the computa-
tion of arguments (Besnard et al., 2010). Addition-
ally, we will study how our inconsistency measures
could be used to direct step-wise resolution of incon-
sistency. Finally, we plan to undertake case studies
of applications of our framework of inconsistency de-
grees.
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