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Abstract: Cooperative interval games are a generalized model of cooperative games in which worth of every coalition
corresponds to a closed interval representing the possible outcomes of its cooperation. Selections are all
possible outcomes of the interval game with no additional uncertainty. We introduce new selection-based
classes of interval games and prove their characterizations and relations to existing classes based on the weakly
better operator. We show new results regarding the core and imputations. Then we introduce the definition of
strong imputation and strong core. We also examine a problem of equality of two different versions of core,
which is the main stability solution of cooperative games.

1 INTRODUCTION

Uncertainty and inaccurate data are issues occurring
very often in the real world situations. Therefore it is
important to be able to make decisions even when the
exact data are not available and only bounds on them
are known.

In classical cooperative game theory, every group
of players (coalition) knows precise reward for their
cooperation; in cooperative interval games, only the
worst and the best possible outcome are known. Such
situations can be naturally modeled with intervals en-
capsulating these outcomes.

Cooperation under interval uncertainty was first
considered by Branzei, Dimitrov and Tijs in 2003 to
study bankruptcy situations (Branzei et al., 2004) and
later further extensively studied by Gök in her PhD
thesis (Alparslan-Gök, 2009) and other papers writ-
ten together with Branzei et al. (see the references
section of (Branzei et al., 2010) for more).

However, their approach is almost exclusively
aimed on interval solutions, that is on payoff distri-
butions consisting of intervals and thus containing
another uncertainty. This is in contrast with selec-
tions – possible outcomes of an interval game with
no additional uncertainty. Selection-based approach
was never systematically studied and not very much
is known. This paper is trying to fix this and summa-
rizes our results regarding a selection-based approach
to interval games.

This paper has the following structure. Section

2 is a preliminary section which concisely presents
necessary definitions and facts on classical cooper-
ative games, interval analysis and cooperative inter-
val games. Section 3 is devoted to new selection-
based classes of interval games. We consequently
prove their characterizations and relations to existing
classes. Section 4 focuses on the so called core in-
cidence problem which asks under which conditions
are the selection core and the set of payoffs generated
by the interval core equal. In Section 5, definitions
of strong core and strong imputation are introduced
as new concepts. We show some remarks on strong
core, one of them being a characterization of games
with the strong imputation and strong core.

On Mathematical Notation

We will use� relation on real vectors. For every x;y2
RN we write x� y if xi � yi holds for every 1� i�N.

We do not use symbol � in this paper. Instead, �
and ( are used for subset and proper subset, respec-
tively, to avoid ambiguity.

2 PRELIMINARIES

2.1 Classical Cooperative Game Theory

Comprehensive sources on classical cooperative
game theory are for example (Branzei et al., 2000)
(Driessen, 1988) (Gilles, 2010) (Peleg and Sudhölter,
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2007). For more info about on applications, see
e.g. (Bilbao, 2000) (Curiel, 1997) (Lemaire, 1991).
Here we present only necessary background theory
for study of interval games. We examine games
with transferable utility (TU), therefore by coopera-
tive game we mean cooperative TU game.

Definition 2.1. (Cooperative Game) Cooperative
game is an ordered pair (N;v), where N =
f1;2; : : : ;ng is a set of players and v : 2N ! R is a
characteristic function of the cooperative game. We
further assume that v( /0) = 0.

The set of all cooperative games with player set N
is denoted by GN .

Subsets of N are called coalitions and N itself is
called a grand coalition.

Note 2.2. We often write v instead of (N;v), because
we can easily identify game with its characteristic
function without loss of generality.

To further analyze players’ gains, we will need a
payoff vector which can be interpreted as a proposed
distribution of reward between players.

Definition 2.3. (Payoff vector) Payoff vector for a co-
operative game (N;v) is a vector x 2 RN with xi de-
noting reward given to ith player.

Definition 2.4. (Imputation) An imputation of
(N;v) 2 GN is a vector x 2 RN such that åi2N xi =
v(N) and xi � v(fig) for every i 2 N.

The set of all imputations of a given cooperative
game (N;v) is denoted by I(v).

Definition 2.5. (Core) The core of (N;v) 2 GN is the
set

C(v) =

(
x 2 I(v); å

i2S
xi � v(S);8S� N

)
.

There are many important classes of cooperative
games. Here we show the most important ones.

Definition 2.6. (Monotonic game) A game (N;v) is
monotonic if for every T � S� N we have

v(T )� v(S).

Informally, in monotonic games, bigger coalitions
are stronger.

Definition 2.7. (Superadditive game) A game (N;v)
is superadditive if for every S;T � N, S\ T = /0 we
have

v(T )+ v(S)� v(S[T ).

In a superadditive game, coalition has no incen-
tive to divide itself, since together, they will always
achieve at least as much as separated.

Superadditive game is not necessarily monotonic.
Conversely, monotonic game is not necessarily super-
additive. However, these classes have a nonempty in-
tersection. Check Caulier’s paper (Caulier, 2009) for
more details on relation of these two classes.
Definition 2.8. (Additive game) A game (N;v) is ad-
ditive if for every S;T � N, S\T = /0 we have

v(T )+ v(S) = v(S[T ).

Observe that additive games are superadditive as
well.

Another important type of game is a convex game.
Definition 2.9. (Convex game) A game (N;v) is con-
vex if its characteristic function is supermodular. The
characteristic function is supermodular if for every
S� T � N holds

v(T )+ v(S)� v(S[T )+ v(S\T ).

Clearly, supermodularity implies superadditivity.
Convex games have many nice properties. we

show the most important one.
Theorem 2.10. (Shapley 1971 (Shapley, 1971)) If a
game (N;v) is convex, then its core is nonempty.

2.2 Interval Analysis

Definition 2.11. (Interval) The interval X is a set

X := [X ;X ] = fx 2 R : X � x� Xg.
With X being the lower bound and X being the upper
bound of the interval.

From now on, when we say an interval we mean a
closed interval. The set of all real intervals is denoted
by IR.

The following definition shows how to do a basic
arithmetics with intervals (Moore et al., 2009).
Definition 2.12. For every X ;Y;Z 2 IR and 0 =2 Z de-
fine

X +Y := [X +Y ;X +Y ],

X�Y := [X�Y ;X�Y ],

X �Y := [minS;maxS]; S = fXY ;XY ;XY ;XYg,
X =Z := [minS;maxS]; S = fX=Z;X=Z;X=Z;X=Zg.

2.3 Cooperative Interval Games

Definition 2.13. (Cooperative Interval Game) A co-
operative game is an ordered pair (N;w), where N =
f1;2; : : : ;ng is a set of players and w : 2N ! IR is a
characteristic function of the cooperative game. We
further assume that w( /0) = [0;0].

The set of all interval cooperative games on player
set N is denoted by IGN .
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Note 2.14. We often write w(i) instead of w(fig).
Remark 2.15. Each cooperative interval game in
which the characteristic function maps to degenerate
intervals only can be associated with some classical
cooperative game. Converse holds as well.

Definition 2.16. (Border games) For every (N;w) 2
IGN , border games (N;w) 2GN (lower border game)
and (N;w) 2 GN (upper border game) are given by
w(S) = w(S) and w(S) = w(S) for every S 2 2N .

Definition 2.17. (Length game) The length game of
(N;w) 2 IGN is the game (N; jwj) 2 GN with

jwj(S) = w(S)�w(S); 8S 2 2N .

The basic notion of our approach will be a selec-
tion and consequently a selection imputation and a se-
lection core.

Definition 2.18. (Selection) A game (N;v) 2 GN is a
selection of (N;w) 2 IGN if for every S 2 2N we have
v(S) 2 w(S). Set of all selections of (N;w) is denoted
by Sel(w).

Note that border games are particular examples of
selections.

Definition 2.19. (Interval selection imputation) The
set of interval selection imputations (or just selection
imputations) of (N;w) 2 IGN is defined as

SI (w) =
[�

I(v) j v 2 Sel(w)
	

.

Definition 2.20. (Interval selection core) Interval se-
lection core (or just selection core) of (N;w) 2 IGN is
defined as

SC (w) =
[�

C(v) j v 2 Sel(w)
	

.

Gök (Alparslan-Gök, 2009) choose an approach
using a weakly better operator. That was inspired by
(Puerto et al., 2008).

Definition 2.21. (Weakly better Operator �) Interval
I is weakly better than interval J (I � J) if I � J and
I � J. Furthermore, I � J if and only if I � J and
I � J. Interval I is better than J (I � J) if and only if
I � J and I 6= J.

Their definition of imputation and Core is as follows.

Definition 2.22. (Interval imputation) The set of in-
terval imputations of (N;w) 2 IGN is defined as

I (w) :=
n
(I1; I2; : : : ; IN) 2 IRN j

å
i2N

Ii = w(N); Ii � w(i); 8i 2 N
o

.

Definition 2.23. (Interval core) An interval core of
(N;w) 2 IGN is defined as

C (w) :=
n
(I1; I2; : : : ; IN) 2 I (w) j

å
i2S

Ii � w(S); 8S 2 2N nf /0g
o

.

Important difference between definitions of inter-
val and selection core and imputation is that selection
concepts yield a payoff vectors from RN , while I and
C yield vectors from IRN .

Note 2.24. (Notation) Throughout the papers on co-
operative interval games, notation, especially of core
and imputations, is not unified. It is therefore possible
to encounter different notation from ours.

Also, in these papers, selection core is called core
of interval game. We consider that confusing and that
is why do we use term selection core instead. The term
selection imputation is used because of its connection
with selection core.

The following classes of interval games have
been studied earlier (see e.g. (Alparslan-Gök et al.,
2009b)).

Definition 2.25. (Size monotonicity) A game
(N;w)2 IGN is size monotonic if for every T � S�N
we have

jwj(T )� jwj(S).
That is when its length game is monotonic.

The class of size monotonic games on player set N
is denoted by SMIGN .

As we can see, size monotonic games capture sit-
uations in which an interval uncertainty grows with
the size of coalition.

Definition 2.26. (Superadditive interval game) A
game (N;w) 2 IGN is superadditive interval game if
for every S;T � N, S\T = /0 holds

w(T )+w(S)� w(S[T ),

and its length game is superadditive. We denote by
SIGN class of superadditive interval games on player
set N.

We should be careful with the following analogy
of convex game, since unlike for classical games, su-
permodularity is not the same as convexity.

Definition 2.27. (Supermodular interval game) An in-
terval game (N;v) is supermodular interval if for ev-
ery S� T � N holds

v(T )+ v(S)� v(S[T )+ v(S\T ).

We get immediately that interval game is super-
modular interval if and only if its border games are
convex.
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Definition 2.28. (Convex interval game) An interval
game (N;v) is convex interval if its border games and
length game are convex.

We write CIGN for a set of convex interval games
on player set N.

Convex interval game is supermodular as well but
converse does not hold in general. See (Alparslan-
Gök et al., 2009b) for characterizations of convex in-
terval games and discussion on their properties.

3 SELECTION-BASED CLASSES
OF INTERVAL GAMES

We will now introduce new classes of interval games
based on the properties of their selections. We think
that it is natural way to generalize special classes from
classical cooperative game theory. Consequently, we
show their characterizations and relation to classes
from preceding subsection.
Definition 3.1. (Selection Monotonic Interval Game)
An interval game (N;v) is selection monotonic if all
its selections are monotonic games. The class of such
games on player set N is denoted by SeMIGN .
Definition 3.2. (Selection Superadditive Interval
Game) An interval game (N;v) is selection superaddi-
tive if all its selections are superadditive games. The
class of such games on player set N is denoted by
SeSIGN .
Definition 3.3. (Selection Convex Interval Game) An
interval game (N;v) is selection convex if all its se-
lections are convex games. The class of such games
on player set N is denoted by SeCIGN .

We see that many properties persist. For example,
a selection convex game is a selection superadditive
as well. Selection monotonic and selection superaddi-
tive are not subset of each other but their intersection
is nonempty. Furthermore, selection core of selection
convex game is nonempty, which is an easy observa-
tion.

We will now show characterizations of these three
classes and consequently show their relations to exist-
ing classes presented in Subsection 2.3.
Proposition 3.4. An interval game (N;w) is selection
monotonic if and only if for every S;T 2 2N , S ( T
holds

w(S)� w(T ).

Proof. For the “only if” part, suppose that (N;w) is a
selection monotonic and w(S)>w(T ) for some S;T 2
2N , S ( T . Then selection (N;v) with v(S) = w(S)
and v(T ) = w(T ) clearly violates monotonicity and
we arrive at a contradiction with assumptions.

Now for the “if” part. For any two subsets S;T
of N, one of the situations S ( T , T ( S or S = T
occur. For S = T , in every selection v, v(S) � v(S)
holds. As for the other two situations, it is obvious
that monotonicity cannot be violated as well since
v(S)� w(S)� w(T )� v(T ).

Note 3.5. Notice the importance of using S ( T in
the formulation of Proposition 3.4. It is because us-
ing of S � T (thus allowing situation S = T ) would
imply w(S)� w(S) for every S in selection monotonic
game which is obviously not true in general. In char-
acterizations of selection superadditive and selection
convex games, similar situation arises.

Proposition 3.6. An interval game (N;w) is selection
superadditive if and only if for every S;T 2 2N such
that S\T = /0, S 6= /0, T 6= /0 holds

w(S)+w(T )� w(S[T ).

Proof. Similar to proof of Proposition 3.4.

Proposition 3.7. An interval game (N;w) is selection
convex if and only if for every S;T 2 2N such that S 6�
T , T 6� S, S 6= /0, T 6= /0 holds

w(S)+w(T )� w(S[T )+w(S\T ).

Proof. Similar to proof of Proposition 3.4. Note that
we exclude cases S � T and S � T since w(S) +
w(T )� w(S)+w(T ) is too restrictive.

Now let us look on relation with existing classes
of interval games.

For selection monotonic and size monotonic
games, their relation is obvious. For nontrivial games
(that is games with the player set size greater than
one), a selection monotonic game is not necessarily
size monotonic. Converse is the same.

Proposition 3.8. For every player set N with jNj> 1,
the following assertions hold.

(i) SeSIGN 6� SIGN .
(ii) SIGN 6� SeSIGN .

(iii) SeSIGN \ SIGN 6= /0.

Proof. In (i), we can construct the counterexample in
the following way.

Let us construct game (N;w). For w( /0), interval is
given. Now for any nonempty coalition, set w(S) :=
[2jSj � 2;2jSj � 1]. For any S;T 2 2N with S and T
being nonempty, the following holds with the fact that
jSj+ jT j= jS[T j taken into account.

w(S)+w(T ) = (2jSj�1)+(2jT j�1)
= 2jS[T j�2
= w(S[T )
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So (N;w) is selection superadditive by Proposition
3.6. Its length game, however, is not superadditive,
since for any two nonempty coalitions with the empty
intersection jwj(S) + jwj(T ) = 2 6� 1 = jwj(S [ T )
holds.

In (ii), we can construct the following counterex-
ample (N;w0). Set w0(S) = [0; jSj] for any nonempty
S. The lower border game is trivially superaddi-
tive. For the upper game, w0(S)+w0(T ) = jSj+ jT j=
jS[T j= w0(S[T ) for any S;T with the empty inter-
section, so the upper game is superadditive. Observe
that the length game is the same as the upper border
game. This shows interval superadditivity.

However, (N;w0) is clearly not selection superad-
ditive because of nonzero upper bounds, zero lower
bounds of nonempty coalitions and the characteriza-
tion of SeSIGN taken into account.

(iii) Nonempty intersection can be argumented
easily by taking some superadditive game (N;c) 2
GN . Then we can define corresponding game (N;d)2
IGN with

d(S) = [c(S);c(S)]; 8S 2 2N .

Game (N;d) is selection superadditive since its only
selection is (N;c). And it is superadditive inter-
val game since border games are supermodular and
length game is jwj(S) = 0 for every coalition, which
trivially implies its superadditivity.

Proposition 3.9. For every player set N with jNj> 1,
following assertions hold.
(i) SeCIGN 6� CIGN .

(ii) CIGN 6� SeCIGN .
(iii) SeCIGN \ CIGN 6= /0.

Proof. For (i), take a game (N;w) assigning to each
nonempty coalition S interval [2jSj�2;2jSj�1]. From
Proposition 3.7, we get that for inequalities which
must hold in order to meet necessary conditions of
game to be selection convex, jSj < jS[T j and jT j <
jS[T jmust hold. That gives the following inequality.

w(S)+w(T )� (2jS[T j�1�1)+(2jS[T j�1�1)

= 2jS[T j�2
= w(S[T )
� w(S[T )+w(S\T )

This concludes that (N;w) is selection convex. We see
that the border games and the length game are convex
too. To have a game so that it is selection convex
and not convex interval game, we can take (N;c) and
set c(S) := w(S) for S 6= N and v(N) := [w(S);w(S)].
Now the game (N;c) is still selection convex, but its
length game is not convex, so (N;v) is not convex in-
terval game, which is what we wanted.

In (ii), we can take a game (N;w0) from the proof
of Proposition 3.8(ii). From the fact that jSj+ jT j =
jS[T j+ jS\T j, it is clear that w0 is convex. The lower
border game is trivially convex and the length game is
the same as upper. However, for nonempty S;T 2 2N

such that S 6� T , T 6� S, S 6= /0, T 6= /0, convex selection
games characterization is clearly violated.

As for (iii), we can use the same steps as in (iii) of
Proposition 3.8 or we can use a game (N;w) from (i)
of this theorem.

4 CORE COINCIDENCE

In Gök’s PhD thesis (Alparslan-Gök, 2009), the fol-
lowing topic is suggested: “A difficult topic might be
to analyze under which conditions the set of payoff
vectors generated by the interval core of a coopera-
tive interval game coincides with the core of the game
in terms of selections of the interval game.”

We decided to examine this topic. We call it a
core coincidence problem. This subsection shows our
results.

Note 4.1. We remind the reader that whenever we
talk about relation and maximum, minimum, maxi-
mal, minimal vectors, we mean relation � on real
vectors unless we say otherwise.

The main thing to notice is that while the interval
core gives us a set of interval vectors, selection core
gives us a set of real numbered vectors. To be able to
compare them, we need to assign to a set of interval
vectors a set of real vectors generated by these interval
vectors. That is exactly what the following function
gen does.

Definition 4.2. The function gen : 2IR
N ! 2R

N
maps

to every set of interval vectors a set of real vectors. It
is defined as

gen(S) =
[
s2S

�
(x1;x2; : : : ;xn) j xi 2 si; s 2 IRN	.

Core coincidence problem can be formulated as
this: What are the necessary and sufficient condition
to satisfy gen(C (w)) = SC (w)?

The main results of this subsection are the two fol-
lowing theorems which give an answer to the afore-
mentioned question.

Note 4.3. In the following text, by mixed system we
mean a system of equalities and inequalities.

Proposition 4.4. For every interval game (M;w) we
have gen(C (w))� SC (w).

Proof. For any x0 2 gen(C (w)), inequality v(N) �
åi2N x0i � v(N) obviously holds. Furthermore, x0 is in
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the core for any selection of the interval game (N;s)
with s given by

s(S) =
� �

åi2N x0i;åi2N x0i
�

if S = N�
w(S);min(åi2S x0i;w(S))

�
if otherwise.

Clearly, Sel(s) � Sel(w) and Sel(s) 6= /0. That con-
cludes gen(C (w))� SC (w).

Theorem 4.5. (Core coincidence characterization)
For every interval game (N;w) we have gen(C (w)) =
SC (w) if and only if for every x 2 SC (w) there exist
nonnegative vectors l(x) and u(x) such that

å
i2N

(xi� l(x)i ) = w(N), (4.1)

å
i2N

(xi +u(x)i ) = w(N), (4.2)

å
i2S

(xi� l(x)i ) � w(S); 8S 2 2N nf /0g, (4.3)

å
i2S

)xi +u(x)i ) � w(S); 8S 2 2N nf /0g. (4.4)

Proof. First, we observe that with Proposition 4.4
taken into account, we only need to take care of
gen(C (w))� SC (w) to obtain equality.

For gen(C (w)) � SC (w), suppose we have some
x 2 SC (w). For this vector, we need to find some in-
terval X 2 C (w) such that x 2 gen(X). This is equiva-
lent to the task of finding two nonnegative vectors l(x)

and u(x) such that

([x1�l(x)1 ;x1+u(x)1 ]); [x2�l(x)2 ;x2+u(x)2 ]; : : : ; [xn�l(x)n ;xn+u(x)n ])2C (w).

From the definition of interval core, we can see that
these two vectors have to satisfy exactly the mixed
system (4:1)� (4:4). That completes the proof.

Example 4.6. Consider an interval game with N =
f1;2g and w(f1g) = w(f2g) = [1;3] and w(N) =
[1;4]. Then vector (2;2) lies in the core of the
selection with v(f1g) = v(f2g) = 2 and v(N) = 4.
However, to satisfy equation (4:1), we need to have
åi2N li = 3 which means that either l1 or l2 has to be
greater than 1. That means we cannot satisfy (4:3)
and we conclude that gen(C (w)) 6= SC (w).

The following theorem shows that it suffices to
check only minimal and maximal vectors of SC (w).

Theorem 4.7. For every interval game (N;w), if there
exist vectors q;r;x 2 RN such that q;r 2 gen(C (w))
and qi � xi � ri for every i 2 N, then x 2 gen(C (w)).

Proof. Let l(r);u(r); l(q);u(q) be the corresponding
vectors in sense of Theorem 4.5. We need to find vec-
tors l(x) and u(x) satisfying (4:1)� (4:4) of Theorem
4.5.

Let’s define vectors dq;dr 2 RN :

dqi = xi�qi,

dri = ri� xi.

Finally, we define l(x) and u(x) in this way:

l(x)i = dqi + l(q)i ,

u(x)i = dri +u(r)i .

We need to check that we satisfy (4:1)� (4:4) for
x, l(x) and u(x) We will show (4:2) only, since remain-
ing ones can be done in a similar way.

å
i2N

(xi� l(x)i ) = å
i2N

(xi�dqi� l(q)i )

= å
i2N

(xi� xi +qi� l(q)i )

= å
i2N

(qi� l(q)i )

= w(N).

For games with additive border games (see Defi-
nition 2.8), we got a following result.

Theorem 4.8. For an interval game (N;w)
with additive border games, the payoff vector
(w(1);w(2); : : : ;w(n)) 2 gen(C (w)).

Proof. First, let us look on an arbitrary additive game
(A;vA). From additivity condition and the fact that
we can write any subset of A as a union of one-
player sets we conclude that vA(A) =

S
i2A vA(fig) for

every coalition A. This implies that vector a with
ai = vA(fig) is in the core.

This argument can be applied to border games of
(N;w). The vector q 2 RN with qi = w(i) is an ele-
ment of the core of (N;w) and an element of SC (w).

For the vector q we want to satisfy the mixed sys-
tem (4:1)-(4:4) of Theorem 4.5.

Take the vector l containing zeros only and the
vector u with ui = jwj(i). From the additivity, we get
that åi2N qi� li = w(N) and åi2N qi +ui = w(N).

Additivity further implies that inequalities (4:3)
and (4:4) hold for q, l and u. Therefore, q is an el-
ement of gen(C (w)).

Theorem 4.8 implies that for games with ad-
ditive border games, we need to check the exis-
tence of vectors l and u from (4:1)� (4:4) of The-
orem 4.5 for maximal vectors of SC only. That
follows from the fact that for any vector y 2
SC (w) holds (w(1);w(2); : : : ;w(n)) � y. In other
words, (w(1);w(2); : : : ;w(n)) is a minimum vector of
SC (w).
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5 STRONG IMPUTATION AND
CORE

In this subsection, our focus will be on a new concept
of strong imputation and strong core.

Definition 5.1. (Strong imputation) For a game
(N;w) 2 IGN a strong imputation is a vector x 2 RN

such that x is an imputation for every selection of
(N;w).

Definition 5.2. (Strong core) For a game (N;w) 2
IGN the strong core is the union of vectors x 2 RN

such that x is an element of core of every selection of
(N;w).

Strong imputation and strong core can be consid-
ered as somewhat “universal” solutions. We show the
following three simple facts about the strong core.

Proposition 5.3. For every interval game with
nonempty strong core, w(N) is a degenerate interval.

Proof. Easily by the fact that an element c of strong
core must be efficient for every selection and therefore
åi2N ci = w(N) = w(N).

This leads us to characterizing games with
nonempty strong core.

Proposition 5.4. (Strong core characterization) An
interval game (N;w) has a nonempty strong core if
and only if w(N) is a degenerate interval and the up-
per game w has a nonempty core.

Proof. Combination of Proposition 5.3 and the fact
that an element c of the strong core has to satisfy
åi2S ci � v(S); 8v 2 Sel(w); 8S 2 2N n /0. We see
that this fact is equivalent to condition åi2S ci �
w(S); 8S 2 2N n /0. Proving an equivalence is then
straightforward.

Strong core also has the following important prop-
erty.

Proposition 5.5. For every element c of the strong
core of (N;w), c 2 gen(C (w)).

Proof. The vector c has to satisfy mixed system
(4:1)-(4:4) of Theorem 4.5 for some l;u 2 IRN . We
show that li = ui = 0 will do the thing.

Equations (4:1) and (4:2) are satisfied by taking
Proposition 5.3 into account. Inequalities (4:3) and
(4:4) are satisfied as the consequence of Proposition
5.4.

Note 5.6. The reason behind the using of name strong
core and strong imputation comes form the interval
linear algebra, where strong solutions of interval sys-
tem are a solutions for any realization (selection) of
interval matrices A and b in Ax = b.

Note 5.7. One could say why we did not introduce
a strong game as game in which each of its selec-
tion does have an nonempty core. This is because
such games are already defined as strongly balanced
games (see e.g. (Alparslan-Gök et al., 2008)).

6 CONCLUDING REMARKS

Selections of an interval game are very important,
since they do not contain any additional uncertainty.
On the top of that, selection-based classes and strong
core and imputation have crucial property that al-
though we deal with uncertain data, all possible out-
comes preserve important properties. In case of se-
lection classes it is preserving superadditivity, super-
modularity etc. In case of strong core it is an invariant
of having particular stable payoffs in each selection.
Furthermore, “weak” concepts like SC are important
as well since if SC is empty, no selection has stable
payoff.

The importance of studying selection-based
classes instead of the existing classes using � oper-
ator can be further illustrated by the following two
facts:

� Classes based on weakly better operator may con-
tain games with selections that do not have any link
with the properties of their border games and con-
sequently no link with the name of the class. For
example, superadditive interval games may contain
a selection that is not superadditive.

� Selection-based classes are not contained in corre-
sponding classes based on weakly better operator.
Therefore, the results on existing classes are not di-
rectly extendable to selection-based classes.

Our results provide an important tool for handling
cooperative situations involving interval uncertainty
which is a very common situation in various OR prob-
lems. Some of the specific applications of interval
games were already examined. See (Alparslan-Gök
et al., 2014) (Alparslan-Gök et al., 2009a) (Alparslan-
Gök et al., 2013) for applications to mountain sit-
uations, airport games and forest situations, respec-
tively. However, these papers do not use a selection-
based approach and therefore to study implications of
our approach to them can be an interesting theme for
another research.

To further study properties of selection-based
classes is a possible topic. Fruitful direction can be
an extension of the definition of stable set to interval
games in a selection way. For example, one could ex-
amine a union or an intersection of sets of stable sets
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for each selection. Studying nucleolus and other con-
cepts in interval games context may be interesting as
well.
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