
Model-based Approach for Implementation of Software
Configuration Management Process

Arturs Bartusevics and Leonids Novickis
Faculty of Computer Science and Information Technology, RTU, Kalku Street 1, Riga, Latvia

Keywords: Software Configuration Management, Model-Driven Approach, Models.

Abstract: Software configuration management is a discipline that controls software evolution process. Nowadays this
process is not only challenge to choose the best version control system o branching strategy for particular
project. Together with source code management the following tasks should be solved: continuous
integration, continuous delivery, release management, build management etc. Usually software development
companies already have a set of tools to support mentioned processes. The main challenge is to adopt this
solutions to new projects as soon as possible with minimum efforts of manual steps. The article provides
new model-driven approach to increase reuse of existing solutions in configuration management area. In
order to illustrate the approach, there were developed new meta-models that are purposed for development
of different configuration management models in context of a model-driven approach. This article provides
a simplified example to illustrate models and defines further researches.

1 INTRODUCTION

Software configuration management is a discipline
which controls the software evolution process. The
main task of process is include only valid and tested
items in final version of product (Aiello, 2010),
(Berczuk, 2003). In the 2013 report about results of
software development projects (Rajkumar, 2013), it
was mentioned that only 9% of major projects ended
successfully. As one of the main reasons is bad
management. Configuration management is one of
the disciplines of quality assurance, which is
described in the quality standards such as CMMI,
ISO 9001 (About CMMI Institute, 2014), (Bamford,
1995) and framework (ITIL Home, 2014). To setup
this process, a set of particular tasks should be
solved: configuration identification, version control,
source code management, build management etc.
Usually companies already have tools and scripts to
implement mentioned tasks of configuration
management. The main challenge is adaptation of
these solutions for new projects with minimum
additional efforts. In century of improvement of
cloud computing and model-driven development,
static scripts and solutions for configuration
management are not effective (Ragan, 2014).
Solutions for software configuration management
tasks should be model-driven to increase its reuse.

The article introduce a problem with lack of reuse of
existing scripts and tools for software configuration
management subtasks. The reasons of low reuse are
mixtures of different parts of configuration
management in one solution or script. For example,
company could have script that moves
configurations from test instance to production. This
script could not be applied in other project with the
same set of technologies because it contains
hardcodes, source code management, build and
installation actions in one place.

The article analyzes trends of configuration
management solutions. Based on study of existing
solutions, new model-driven approach is developed.
Unlike other solutions, new approach is oriented to
increase reuse of existing solutions and do not
requires to use some special tool. New models
provide a way how to develop reuse-oriented
solutions for configuration management using well-
known tools. Finally, conclusions and further
researches are given to improve new model-driven
approach.

2 RELATED WORKS

As far back as 1992 there was published an article

177Bartusevics A. and Novickis L..
Model-based Approach for Implementation of Software Configuration Management Process.
DOI: 10.5220/0005228701770184
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 177-184
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

(Dart, 1992) where five future challenges of
configuration management are defined. One of the
mentioned challenges introduces one of the first
attempt to define configuration management by
models. In a recent interview with a long-term
configuration management specialist
(CMCrossroads, 2014) was mentioned the year
1998, when there was an attempt to create a “super
tool” to deal with all the tasks at once in
configuration management process. In practice this
attempt failed, because it was too complicated to
use, and programmers were afraid of such a tool of
"majesty and mysticism." As the future trend the
configuration management specialist
(CMCrossroads, 2014) emphasizes the need to
enhance trust between configuration management
and programmers. Other configuration management
experts (Aiello, 2010), (Berczuk, 2003) note that it is
necessary to plan the process and only then apply
tools for implementation, otherwise solutions will be
ineffective and will require to invest a lot of
resources inefficiently. Finnaly, (Ragan, 2014) note
that solutions should be model-driven and not static
to increase its reuse.

Large part of existing researches related to
software configuration management uses ideas of
model-driven approach (Osis, 2010). The most
important task in configuration management is the
version control and a significant part of model-
driven researches is devoted to version control
(Yongchang, 2010), (de Almeida Monte-Mor, 2014),
(Toth, 2013). New approaches try to improve
version control, in order to better control changes in
the product code (Toth, 2013), as well as provide
abstract models that can be used in development of
new version control systems (Yongchang, 2010), (de
Almeida Monte-Mor, 2014). There are also solutions
offering an abstract model of configuration
management, based on quality standards or specific
characteristics of the software development
approach (Estublier, 2000), (Ruan, 2003), (Mingzhi,
2008). Usually the proposed approaches are not
supported by tools which could allow performing
experiments and making sure about benefits.

The following solutions (Pindhofer, 2009),
(Calhau, 2012), (Giese, 2009) consider configuration
management process as a whole, not just a specific
part. Solution, described in (Pindhofer, 2009)
provides a definition of configuration management
model. The model devoted to support of
configuration identification and build management.
The solution is focused on projects based on model-
driven approach, but there are no recommendations
how this approach could be applied in projects with

classical development methodologies.
Configuration management principles for the

following approach (Giese, 2009) were taken from
the ITIL (Information Technology Infrastructure
Library) framework and later were created abstract
models, from which configuration management
process could be created and later the model could
be transformed into platform specific model.
Although that solution also includes an
implementation for proposed model-driven
configuration management, it is focused on a single
technology (JAVA) and implementation details are
not given.

Study (Calhau, 2012) focuses on mutual
integration of various configuration management
tools. In order to maintain a full configuration
management process, it is required a number of
tools: version control systems, bug tracking systems,
build servers, continuous integration servers and
other tools. As practical experience indicates, all
tools work separately from each other. The study
offers an ontology for configuration management
process. This ontology is used as a configuration
management model that shows how various
configuration management tools should be
integrated. The study does not have any specific
instructions how the ontology could be applied for
particular project. It is not clear what kind of
ontology editors are advised to use and how to
determine the moment when the changes have to be
made.

3 GENERAL APPROACH FOR
MODEL-DRIVEN
CONFIGURATION
MANAGEMENT

The article provides a new model-driven approach
for software configuration management. The
approach is based on model creation and gradual
transformation into the model with a lower level of
abstraction. Unlike other solutions, a new approach
supports all configuration management tasks and
does not impose any specific tool. New approach
shows a way how to increase reuse of existing
solutions. New meta-models are developed to create
models with different levels of abstraction.
Additionally, transformation rules are designed to
transform one model to other.

New model-driven approach for configuration
management is based on assumption that generally
configuration management answers the question

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

178

"How to transfer certain software changes from one
instance into another at the right moment?"
Approach assumes explore the literature on
configuration management (Aiello, 2010), (Berczuk,
2003), (Upravlenije projektami, 2011), and also take
into account personal experience of authors in
position of configuration manager. The answers to
above mentioned question requires that all changes
in software are controlled, and is known a certain
moment when the changes are ready to be
transferred, there is information about all the
instances involved in the process, and is also known
the process of transferring the changes. This means
that the answer to the question requires solving the
basic tasks of configuration management:
configuration item identification, version control,
configuration account, building and installation
management (Aiello, 2010).

There are three models in provided approach:
 Environment Model (EM) – provides a model of

all environments included in a software
development project. A model also contains all
flows of software changes between different
environments. Environment in context of this
model is a infrastructure for particular process of
project, for example DEV for development,
TEST for testing etc.

 Platform Independent Action Model (PIAM) –
provides a set of actions needed to apply all
flows from Environment Model. The actions are
abstract. For example, action “Compile” should
be used to compile software from source code,
but in this model any details about software
technology and compilation algorithm are not
known.

 Platform Specific Action Model (PSAM) –
provides an extended variant of Platform
Independent Action Model because actions are
fulfilled with details about platform, specific
scripts, etc. In current model, action “Compile”
already have information provides details of
compilation algorithms and platform. In this
model all details are known, for example, it
could be MAVEN build script for JAVA
projects.
General picture of a new model-driven approach

provided in Figure 1.
Model-driven approach (Figure 1.) represented

as flow with interactions from a software
configuration manager. The arrows with numbers
mean particular steps of the approach. The first step
“1” provides creation of Environment Model from a
special meta-model. Software configuration manager
builds Environment Model from the set of

Figure 1: Approach of the Model-Driven Software
Configuration Management.

components from the mentioned meta-model.
During the second step “2”, created Environment
Model should be compiled by special block in
Expert System, named “Rules of Risks,
Compilation”. Expert System in context of this
article is a special warehouse for different blocks of
rules. Expert System also contains a database with
information about ready solutions of actions. After
second step “2”, a configuration manager has
compiled Environment Model with the description
of general configuration management risks. Step “3”
explores ready Environment Model by special block
of Expert System called “E->P”. The main task of
“E->P” block is to detect actions needed to apply
each flow between environments. During step “4”,
Platforms Independent Action Model performing
from actions defined at step “3” and from meta-
model of PIAM. The steps “5” and “6” require the
second interaction from configuration manager to
analyse ready Platform Independent Action Model
and choose solutions for each action from “Solutions

Model-based�Approach�for�Implementation�of�Software�Configuration�Management�Process

179

Database”. Structure of mentioned database
provided in Figure 2.

Figure 2: Structure of Solutions Database.

Solutions Database contains all information about all
configuration management actions described in
PIAM. For example, action “Compile” could have
four different solutions to compile executable from
source code for the following technologies: Ruby,
C++, Oracle, C#. The mandatory requirement is that
all solutions are parameterized and do not have
dependencies on solutions of other action. For
example, compilation script should not know any
details about other actions from Platform
Independent Model, hardcodes from bug tracking
system, names of hosts, absolute paths of storages,
etc. All necessary things should be given as
parameters. Any solution stored in “Solution
Database” has the following attributes:
 ID – unique identifier;
 PlatformID – reference to platform;
 ActionID – reference to action. Table “Action”

contains all possible actions and strongly
dependent from PIAM meta-model;

 NeededTools – set of tools to implement
particular solution;

 LocationsOfSolutions – information about ready
scripts, functions, locations of servers etc.;

 Description – notes provide additional
information about implementation.
During the last step “7”, ready PSAM model

should be implemented.

4 META-MODELS FOR EM AND
PIAM

4.1 Meta-Model for Environment
Model

Table 1 shows all elements of EM meta-model and

their attributes. Attributes are filled during
simulation by configuration manager and are later
used in transformation rules to prepare PIAM model.
Meta-model for Environment Model contains the
following elements:
 Set of graphic elements – the user works with

this set of elements to display graphically all
instances and flows of changes between them;

 The algorithm that converts graphic elements
into XML format;

 Classes of model elements and their hierarchy.
Each element has an abstract class with a list of
methods "add". The EM includes logic to ensure
proper formation of a environment model. For
example, there should not be two identical
instances, and the programmer should not make
changes in the source code in production
environment (PROD);

 Model compilation algorithm. Reads a model
structure, creates a object for each element and
tries to fill in information with special "add"
methods. If the addition of some elements has
failed, the algorithm informs the user about
compilation error and terminates compilation;

 Set of XML elements. Each graphic element has
the appropriate element in XML format with the
same name. XML format is necessary, in order
the model could be processed by computer.

4.2 Meta-Model for PIAM

The main goal of PIAM is to show all tasks needed
to implement all flows of changes in EM. PIAM
model has three parts:
ContinuousIntegrationServer - simulates framework,
where all configuration management activities take
place. The following articles (Aiello, 2010) and
(Berczuk, 2003) state that all configuration
management activities have to be done from one
location and the performance should not depend on a
local workstation. The element has the following
attributes: "Platform" - a platform where it operates,
“Name” -name of the tool, "InstallationNotes" -
information about implementation of current
framework, "LocationsOfSolutions" – ready sources,
such as installation files, scripts, instructions, etc;
Events – copied from Environment Model.
Configuration management actions - actions needed
to implement ConfigurationItemFlow. There is a
fixed set of actions. Transformation rules "E->P”,
depending on attributes of ConfigurationItemFlow
elements, determine which actions from a fixed set
are needed for particular configuration item flow.

The Table 2 shows actions, while in the Table 3

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

180

Table 1: EM meta-model elements.

Element name Description Attributes
Environment Instance which contains

items, exposed to
configuration
management.

Name – name.
Decsription – information about environment.

CustomerSupportFlag – Instance belonging to the customer.

DevelopmentFlag – features of developed environment.

OriginalEnv – feature or environment used in real process or
just testing various transfers of changes.

OriginalEnvName – appropriate original name of the
environment, in case the given environment is used only for

configuration test purposes.
ConfigurationItemFlow Configuration item flow. Name – name.

Source - environment where configuration comes from.
Sequence - sequence number.

Goal - environment where configuration goes to.
Description – information about current flow.

Event Simulates transfer of
changes between two
environments used in

project. One Event could
have one and more

ConfigurationItemFlow.

Name – name.

ConfigurationItemFlows – flows of changes.

Description – description.

AllChangesMoveFlag – sign that either all configuration or
only a part of the change is transferred.

can be seen attributes inherent in each activity.
Values of attributes in PIAM model should be
empty.

Table 2: Actions of PIAM model.

Name Description
DEVELOPMENT A programmer makes

changes in source code.
This process is controlled

by configuration
management.

COMMIT_CHANGES Activity, which ensures any
changes to version control,

and defines the rules for
proper saving of changes.

PREPARE_BASELINE Provides management of
source code and different

branches.
COMPILE_BUILD Build from certain

baselines in version control
system.

INSTALL_BUILD Deploy ready build at
environment.

PRODUCT_DELIVERY Product delivery
preparation and shipping to

the customer so that he
could get changes (release)

to his environments.
ENV_UPDATE_NOTIFIC

ATION
It performs necessary

registration and
administrative actions when
the customer has installed

the product into
environment.

Table 3: Attributes of actions in PIAM model.

Attribute Description
Platform Reference to platform.

SolutionName Unique name.
NeededTools Tools that are needed for

implementation.
LocationsOfSolutions Sources of existing

solutions (scripts,
descriptions, installation

files etc.)
Description Description which can

help to implement a
solution.

4.3 Transformation from EM to PIAM

Compilation algorithm reads XML structure of EM
model and establishes class hierarchy, where each
element has a separate object. Modelling logic is
implemented in "add" methods of EM classes, which
is a basis for compilation algorithm. If compilation
finishes successfully, the established class structure
comes into Expert System block "E->P". This block
contains 12 transformation rules. On the left-hand
side is stored a specified condition of configuration
item flow (ConfigurationItemFlow), while the right-
hand side has actions from Table 2. Transformation
algorithm reads the information about each Event,
each ConfigurationItemFlow and compares this
information with all 12 rules. In case of matching,
actions from appropriate right-hand side rule are

Model-based�Approach�for�Implementation�of�Software�Configuration�Management�Process

181

added to a particular ConfigurationItemFlow. The
algorithm adds found actions to PIAM model and
moves to the next ConfigurationItemFlow. As a
result, ready PIAM model is available for
configuration manager. Table 4 shows some
examples of transformation rules.

Table 4: Examples of “E->P” rules.

Condition of
ConfigurationItemFlow

attributes (IF)

Actions from
PIAMsource, description

(THEN)

ownerIsActor() == true DEVELOPMENT
COMMIT_CHANGES

Provede control of

development and save
changes in version

control system.

ownerIsActor() == false
ownerIsOriginalEnvironment

() == false
getConfigurationItemFlowSe

quence() == 1
ownerCustomerSupportFlag()

== true

COMPILE_BUILD
PRODUCT_DELIVERY
ENV_UPDATE_NOTIFI

CATION
If you need to transfer
configuration from the

testing environment to the
environment which is

maintained by the
customer, and it is the

first flow within a
particular Event, it is

necessary to compile the
product, arrange the
delivery of compiled
product with all the

concurrent documentation
and await confirmation
that the customer has

successfully installed this
product.

5 EXAMPLE OF MODELS IN
MODEL-DRIVEN APPROACH
FOR CONFIGURATION
MANAGEMENT

Figure 3 shows EM, PIAM and PSAM models in the
case when developed changes have to be transferred
from DEV environment to TEST. Another additional
instance Pre_TEST will be introduced, where each
new release is tested. This will reduce the risk of
unavailability of TEST instance. Thus, EM model
has three instances: DEV, Pre_TEST and TEST, one
Event that provides transfer of changes from DEV to
TEST. The Event has two ConfigurationItemFlows.
During the first flow configuration is transferred to

Pre_TEST instance, and if the transfer is successful,
then in the second flow the same configuration is
transferred to the original test environment. Then
"E->P" transformation rules detect configuration
management actions, which ensure all the above-
mentioned flows. In the first flow happens the
merging of corresponding new changes in TEST
environment source code (PREPARE_BASELINE),
then from obtained code is created product build
(COMPILE_BUILD), and finally deployed to
Pre_TEST instance (INSTALL_BUILD). If the first
flow has been successful, the same build should be
applied for TEST instance (INSTALL_BUILD).
Next, solutions from Solutions Database are chosen
for the following tasks: PREPARE_BASELINE,
COMPILE_BUILD and INSTALL_BUILD. By
fulfilling the attributes is obtained PSAM model.
The model specifies which system of version control
should be used for version control, which branches

Figure 3: Visual example of models of software
configuration management.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

182

should be established, with what kind of scripts or
tools should be implemented for merge and etc.

6 CONCLUSIONS AND
FURTHER RESEARCHES

The article offers a new, model-driven approach for
implementation of configuration management
process. Unlike other approaches, new one is
focused on gradual implementation of the process
using existing solutions repeatedly. In order to
implement new approach, there have been developed
meta-models for creating EM and PIAM models, as
well as transformation rules that provide creating
PIAM model from EM. In addition database
structure was designed for management solutions of
configuration management actions. All of these
innovations were illustrated by a simplified test
example.

New model-driven approach provides saving of
resources for implementation and maintenance,
improving the re-use option of existing solutions,
and also provides a link between the formal process
(Environment Model) and technical implementation
(PSAM in Configuration Management Domain).
This approach will also improve solution
maintenance for configuration management, because
all of the solutions will be stored centralized and
according to common principles.

The further research with the help of experiments
should determine the benefits of new approach in
various software development projects. Firstly
should be established criteria which help measure
the indicators of configuration management before
and after implementation of a model-driven
approach. With the help of the experiment it will be
extremely important to determine how many
resources is required for refactoring the existing
solutions to parameterized condition, because it will
give an idea whether some upgrades in the models
are needed, or a new meta-model, such as
Continuous Integration Server Framework or some
other.

The offered model-driven approach is abstract,
because it provides only principles of operation and
the essence of the model. However, EM, PIAM, and
PSAM model implementation in theory may be
different from that, what was offered by the authors
of this paper. Hence, the article is concluded with
the hope that the new approach will contribute to the
emergence of a new idea with regard to
configuration management process modelling and

reuse of solutions.

ACKNOWLEDGEMENTS

The research has been partly supported by the
project eINTERASIA “ICT Transfer Concept for
Adaptation, Dissemination and Local Exploitation of
European Research Results in Central Asia's
Countries”, grant agreement No. 600680 of Seventh
Framework Program Theme ICT-9.10.3:
International Partnership Building and Support to
Dialogues for Specific International Cooperation
Actions – CP-SICA-INFSO.

REFERENCES

About CMMI Institute. 2014. (ONLINE) Available at:
http://whatis.cmmiinstitute.com/about-cmmi-institute.
(Accessed 02 September 2014).

Bamford, R., 1995. Configuration Management and ISO
9001. Software Systems Quality Consulting, DO-25
V6, 7.

Calhau, R., (2012). A Configuration Management Task
Ontology for Semantic Integration. In 27th Annual
ACM Symposium on Applied Computing. Italy,
March 26 - 30, 2012. IEEE Digital Library: ACM.
348-353.

CMCrossroads. 2014. How Configuration Management Is
Changing: An Interview with Joe Townsend.
(ONLINE) Available at: http://www.cmcrossroads.
com/interview/how-configuration-management-changi
ng-interview-joe-townsend?page=0%2C0. (Accessed
02 September 2014).

Dart, S., 1992. The Past, Present, and Future of
Configuration Management. CMU/SEI-92-TR-8, 1,
25.

de Almeida Monte-Mor, J., (2014). GALO: A Semantic
Method for Software Configuration Management. In
Information Technology: New Generations (ITNG),
2014. USA, 7-9 April, 2014. ITNG: IOT360. 33 - 39.

Delaet, T., (2007). PoDIM: A Language for High-Level
Configuration Management. In Large Installation
System Administration Conference, LISA 2007. USA,
November 11-16, 2007. IEEE Digital Library.
01/2007.

Estublier, J., (2000). Software configuration management:
a roadmap. In ICSE '00 Conference on The Future of
Software Engineering. USA, June 4-11, 2000. IEEE
Digital Library: ACM. 279 - 289.

Giese, H., (2009). A Model-Driven Configuration
Management System for Advanced IT Service
Management. In International Conference on Model
Driven Engineering Languages and Systems
(MoDELS 2009). USA, October 4 - 9, 2009. IEEE
Digital Library: 4th International Workshop on

Model-based�Approach�for�Implementation�of�Software�Configuration�Management�Process

183

Models. 300-310.
ITIL Home. 2014. (ONLINE) Available at:

http://www.itil-officialsite.com. (Accessed 02
September 2014).

Janis Osis, 2010. Model-Driven Domain Analysis and
Software Development: Architectures and Functions
(Premier Reference Source). 1 Edition. IGI Global.

Mingzhi, M., (2008). A New Component-Based
Configuration Management 3C Model and its
Realization. In Information Science and Engineering,
2008. China, December 20-22. 2008. IEEE Digital
Library: IEEE. 258 - 262.

Pindhofer, W., 2009. Model Driven Configuration
Management. M.Sc.. Wien: Wien University.

Q&A and Advice. 2014. CMCrossroads. [ONLINE]
Available at: http://www.cmcrossroads.com/.
[Accessed 02 September 2014].

Rajkumar, G., 2013. The most common factors for the
failure of software development project. The
International Journal of Computer Science &
Applications (TIJCSA), 1, 11.

Robert Aiello, 2010. Configuration Management Best
Practices: Practical Methods that Work in the Real
World. 1 Edition. Addison-Wesley Professional.

Ruan, Li., (2003). A new configuration management
model for software based on distributed components
and layered architecture. In Parallel and Distributed
Computing, Applications and Technologies, 2003.
China, August 27-29, 2003. IEEE Digital Library:
IEEE. 665 - 669.

Smashing Magazine. 2014. 7 Version Control Systems
Reviewed. (ONLINE) Available at: http://www.
smashingmagazine.com/2008/09/18/the-top-7-open-so
urce-version-control-systems/. (Accessed 02
September 2014).

Stephen P. Berczuk, 2003. Software Configuration
Management Patterns: Effective Teamwork, Practical
Integration. Edition. Addison-Wesley Professional.

Toth, Z., (2013). Using Version Control History to Follow
the Changes of Source Code Elements. In Software
Maintenance and Reengineering (CSMR), 2013. Italy,
March 5–8, 2013. IEEE Digital Library. 319 - 322.

Upravlenije projektami OpenQuality.ru. 2011. (ONLINE)
Available at: http://experience.openquality.ru/
software-configuration-management/. (Accessed 02
September 2014).

Yongchang, R., (2010). Fuzzy Decision Analysis of the
Software Configuration Management Tools Selection.
In ISCA 2010. France, 19-23 June, 2010. Information
Science and Engineering (ISISE): ACM. 295 - 297.

Zeroturnaround.com. 2014. DevProd Report Revisited:
Continuous Integration Servers in 2013. (ONLINE)
Available at: http://zeroturnaround.com/rebellabs/
devprod-report-revisited-continuous-integration-
servers-in-2013. (Accessed 02 September 2014).

Ragan Tracy, (2014). 21st-Century DevOps--an End to the
20th-Century Practice of Writing Static Build and
Deploy Scripts, Linux Journal, 230, pp. 116-120,
Computers & Applied Sciences Complete,
EBSCOhost, viewed 22 October 2014.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

184

