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Abstract: Measuring students’ engagement in a distributed learning environment is a challenge. In particular, a 
teacher gives a lecture at one location, while at the same time the remote students watch the lecture through 
a display screen. In such situation, it is difficult for the teacher to know the reaction at the remote location. 
In this paper, we conducted a field study to measure students’ engagement by using galvanic skin response 
(GSR) sensors, where students simultaneously watched the lecture at the two locations. Our results showed 
the students’ GSR response was aligned with the surveys, which means that during a distributed learning 
environment, GSR sensors can be used as an indicator on students’ engagement. Furthermore, our user 
studies resulted in non-engaging student learning experiences that would be difficult obtained at a lab 
condition. Based on the findings, we found that the patterns of GSR readings were rather different when 
compared to the previous relevant studies, where users were engaged. In addition, we noticed that the 
density of GSR response at the remote location was higher when compared to the one at the lecture room. 
We believe that our studies are beneficial on physiological computing, as we first presented the patterns of 
GSR sensors on non-engaging user experiences. Moreover, as an alternative method, GSR sensors can be 
easily implemented in a distributed learning environment to provide feedback to teachers. 

1 INTRODUCTION 

E-learning technology has effectively changed the 
lecture paradigm, and has provided more flexibility 
to let people choose their preferable time to follow 
recorded lectures (Foertsch, Moses, Strikwerda and 
Litzkow, 2002). Furthermore, the pace of technology 
for use in computing education is staggering, as we 
have seen, during the last five years, the following 
tools/ websites have completely transformed the way 
of teaching: Piazza, Google Docs, YouTube, Doodle 
and whenisgood.net, Skype and Google Hangout 
(Garcia and Segars, 2012). 

In previous studies on E-learning, researchers 
have conducted experiments for assessing learning 
facilities: a blackboard and a hangout platform 
(Erkollar, Alptekin and Oberer, 2013), comparisons 
between Hangout and an existing E-learning 
platform (Strudler and Grove, 2013). Some of 
studies have used surveys to measure the usability of 
an E-learning platform (Zhang, Rui, Crawford and 
He, 2008; Faulkner and McClelland, 2002), and to 
develop solutions to enhance the learners’ 
experience (Wang, Chen, Liu and Liu 2009). Few 
studies used physiological sensors to evaluate the 

students’ biofeedback to interactive and non- 
interactive material (Wirtky, Laumer, Eckhardt, and 
Weitzel, 2013), i.e., discriminant analysis was 
applied to extract sensor data as a feature generator. 
As Kaiser et al. stated (Kaiser and Oertel, 2006), an 
emotion recognition sensor system can enhance E- 
learning system by adding affective abilities. 

However, there are some issues that are not 
addressed in the previous studies. First, users may 
respond differently under a lab condition when 
compared to a field study (Fairclough, 2009). In 
particular, Fairclough claimed that physiological 
response manipulated in a lab could not be 
reproduced in naturalistic settings. Even though a 
lab study might be sufficient for testing how students 
learn alone, that is not the case for actual 
learning, as students might react different in the 
class. Second, measuring students’ engagement 
towards a lecture is different than evaluating an 
interaction method or a usability test. Evaluating an 
interaction method or conducting a usability test can 
be done in several rounds, but in the case of 
measuring students’ engagement to a real lecture, 
repeating experiments may cause different styles of 
teacher presentation.
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Figure 1: Students at two locations: (left) the students joined the lecture, and (right) the students watched the lecture 
through Google+ Hangout. 

 

Figure 2: The GSR sensors. The left picture shows the whole set of GSR sensors, and the right picture shows how the 
GSR sensors were worn during the experiment. 

The different presentation styles may generate the 
different response of students. Last, we believe that 
a ground truth, e.g. a survey, is required to 
understand the patterns of physiological sensors, 
especially when such patterns are linked to user 
engagement. 

In this paper, we conducted a field study to 
measure students’ engagement in an E-learning 
environment, where GSR sensors captured the 
students’ biofeedback. During the experiment, one 
location was a lecture classroom with the teacher, 
and the other location was a remote classroom where 
students followed the lecture in a project screen 
(Figure 1 and Figure 3). After that, we compared 
the sensor results with the results from the surveys. 
We are in particular interested in the following 
research question: 

R1: Can GSR sensors be used to measure 
students’ engagement in an E-learning environment? 
By answering the research question, we may deploy 
GSR sensors on E-learning platform. Without the 
need of surveys, we can use GSR sensors to monitor 
students’ engagement and provide feedback to the 
teacher. 

In our experiment, we interpret students’ GSR 
response as engagement. We restricted our research 
topic to the scope of E-learning. 
This paper is structured as follows. First, we 

discuss the related work. Then, we describe the 
experimental design, detailing the data collection, 
data analysis, and the participants. Next, we report 
our results regarding the questionnaires and the 
physiological sensors. Last, there are a discussion 
and conclusion section. 

2 RELATED WORK 

2.1 Types of Studies on E-learning 

We can divide the studies on E-learning on four 
main types: E-learning platform development, E- 
learning platform usability test, E-learning material 
evaluation, and E-learning interaction method 
development. Traditionally, E-learning platforms 
were developed based on video –conferencing 
systems (Zhang, Rui, Crawford and He, 2008; 
Faulkner and McClelland, 2002). Recently, some 
new technologies have been incorporated in order to 
large amount of students, e.g., cloud computing 
(Aljenaa et al., 2011). Furthermore, some methods 
related to affective computing have been applied in 
E-learning environment to enhance learners’ 
engagement. For example, empathic virtual human 
or social software can be included on an E-learning 
platform to increase learners’ performance  (Wirtky 
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Figure 3: System architecture: the left is the lecture classroom; the middle is the Google+ Hangout platform, 
streaming the lecture into the remote classroom; the right is the remote classroom. 

et al., 2013). Last, some studies have focused on 
the usability test of an E- learning platform 
(Alsumait and Osaimi, 2009). 

Surveys and physiological sensors are the main 
methods in terms of evaluating the usability of 
system, the suitability of learning materials, or the 
performance of learners. For example, Faulkner et 
al. used surveys to investigate how a video 
conferencing system can deliver an educational 
program to women consumers in rural and remote 
area (Faulkner and McClelland, 2002). Clark et al. 
used surveys to study whether the social platform – 
Google+ had a better performance on developing 
teaching material when compared to a text-based E- 
learning platform (Neal and Grove, 2013). 
Furthermore, both Handri et al. and Brawner et al 
applied physiological sensors to evaluate the impacts 
of course materials and user response towards a 
computer-based training system (Handri et al., 
2010; Brawner and Goldberg, 2012). In addition, 
facial recognition was also applied to detect 
learners’ emotional states, so that a virtual tutor 
could provide effective feedback based on these 
emotional cues (D'Mello et al., 2013). 

2.2 GSR Sensors 

GSR sensors, also known as galvanic skin response 
(GSR), electrodermal response (EDR), psychogal-
vanic reflex (PGR), skin conductance response 
(SCR), or skin conductance level (SCL). GSR 
sensors measure users’ electrical conductance of 
the skin, where users’ sweat glands are varied and 
controlled by the sympathetic nervous system. 
Therefore, GSR sensors are normally considered as 
an indicator of psychological or physiological 
arousal. When users are highly aroused, users’ skin 
conductance is increased in turn. Furthermore, in 
affective computing and HCI, GSR sensors have 
been proved as a valid approach for measuring 
audience engagement, and researchers have shown 
interesting results between GSR and engagement 
(Mandryk, 2003; Picard, 1997). 

As for our knowledge, few studies used GSR 
sensors to evaluate the learners’ performance on E- 
learning environment (Brawner and Goldberg, 
2012). However, GSR sensors, combined with other 
sensors, have been extensively applied on some 
other scenarios, e.g., video gaming and theatre 
performance. For instance, based on physiological 
signals, Ruan et al. proposed a discriminant model to 
predict the fatigue state of players, so that the design 
of body-controlled games can be adapted and 
improved (Ruan et al., 2009). In addition, GSR 
sensors have also been studied for performing 
arts, Latuliper et al. and Chen et al. used both 
surveys and GSR sensors to investigate audience 
engagement at a lab and a field study respectively 
(Latulipe et al., 2011; Wang et al., 2014). 

3 EXPERIMENTAL DESIGN 

3.1 Participants 

There were 17 students at each location: the lecture 
classroom with four females and thirteen males 
(Mean age =21.05, SD = 2.16), and the remote 
classroom six females and eleven males (Mean age 
= 22.29, SD = 2.02). The experiment was conducted 
at a scheduled class – the last class on Structured 
Query Language (SQL) database before an exam, 
and both the teacher and the students did not have 
any experience on sensor experiments before (Figure 
1). During the lecture, there was no interaction 
between the teacher and the students. Before the 
experiment started, they signed a consent form for 
the video recordings. After the experiment, all the 
students received a small gift as a bonus. 

3.2 Questionnaires 

Before the experiment, we conducted a pre-
questionnaire in order to examine the students’ 
physical condition, emotional state, and daily 
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learning habit. After the experiment, the students 
took a small exam in order to check the learning 
outcomes. Afterwards, they filled out a short 
questionnaire about their learning experience during 
the lecture. All of the questions were in the form of 
“Graphic Rating Scales” in which participants were 
asked to make a mark on a line between two 
extremes, e.g. 
How much did you enjoy during the lecture? 

Not at all Very 
| _| 
The line measured 100 mm and responses were 
measured to 1mm accurate. 

3.3 Steaming Technology 

We chose Google+ Hangout as the streaming 
platform for the remote students. The reason is that 
such platform has been considered as a capable and 
low-cost solution that can be used in education and 
training. For instance, Erkollar et al. studied the 
impact of using Google+ and a blackboard 
respectively (Erkollar, Alptekin and Oberer, 2013). 
Similarly, Clark et al. conducted an experiment to 
investigate whether the affordances of Google+ 
would more effectively help develop teaching and 
enhance social presence when compared with the 
university’s current text-based WebCT discussion 
platform (Neal and Grove, 2013). 

3.4 Methodologies 

Questionnaires ratings and GSR readings were 
analysed using Analysis of Variance (ANOVA), 
correlations and Multi-Dimensional Scaling (MDS). 
At each location, the repeat measurements were used 
on the pre- and post- questionnaires, to examine the 
impact of the lecture. In terms of the different 
experience between the two locations, the between- 
subjects design was used for both surveys and GSR 
sensor data. 

Multidimensional scaling (MDS) is a means of 
visualizing the level of similarity of individual cases 
of a dataset, in particular to display the information 
contained in a distance matrix (Schiffman, 
Reynolds and Young, 1981). Furthermore, MDS 
technique aims to place each object in N-
dimensional space such that the between-object 
distances are preserved as well as possible. In our 
analysis, we used a two – dimensional space to 
display the similarities between the averaged 
audience GSR responses.  

MDS has been widely applied in psychological 
research (Trevor and Cox, 2000; Borg and Groenen, 
2002), but it is another new research technique to 
physiological computing. Unlike other statistical 

techniques that test hypotheses that have been 
proposed a priori, MDS is an exploratory data 
method that explores data for which no specific 
hypotheses have been formed. Therefore, we do not 
require to check the assumptions on the data sets, 
but we need to report the overall fit statistics 
(Kruskal’s stress and R Square) in the MDS, as they 
are the indication about how the algorithm fits the 
input data. In our case, we applied the MDS to 
visualize the lecture impact on the two locations, so 
that we could compare the density of GSR response 
on the two locations. 

In the results of Pearson product-moment 
correlation coefficient, we used one star “*” 
representing 95% confidence level and two stars 
“**” indicating 99% confidence level.  

All the data analysis was done using SPSS. C 
language and Python were used to develop the 
hardware and sensor data collection. Before 
performing the ANOVA, we checked the 
assumptions (normality and homogeneity of 
variance) in order to assuring the validation of the 
results. In our case, our data satisfied these 
assumptions.4.1 Survey Results (the ground truth) 

4 RESULTS 

4.1 Survey Results (the Ground Truth) 

The repeated measurement results showed that the 
students at the lecture classroom had a significant 
decrease on cheerful, energy and attention, but 
sadness and being tired did not change after the 
lecture (Table 1). While for the remote students, 
there were no significant differences found after the 
lecture (Table 2). Furthermore, the students gave the 
rather low ratings on most of items of the surveys: 
averaging 4.9 at the lecture classroom and 4.7 at the 
remote classroom. 

By examining the post-questions between the 
two location students, we found that the students at 
the lecture classroom were more cheerful but less 
comfortable when compared to the remote students 
(Table 3). 

Table 1: The differences between pre- and post- 
questionnaires at the lecture classroom, and yellow 
indicates a significant difference found at p value. 

Item p Mean_pre Mean_post
Cheerful 0.008 6.07 4.4

Sad 0.81 2.25 2.39
Energy 0.04 5.38 4.03
Tired 0.27 3.86 3.01

Attention 0.001 6.38 3.88
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Table 2: The differences between pre- and post- 
questionnaires at the remote classroom, where no 
significant values were found at p value. 

Item p Mean_pre Mean_post
Cheerful 0.31 5.2 5.6

Sad 0.24 2.4 3.03
Energy 0.06 6.1 5.1
Tired 0.28 3.01 3.9

Attention 0.06 6.12 4.9

Table 3: The significant differences found with the 
surveys between the two locations. 

Items Mean(Remote
/ Lecture) 

p (R-L)%

Cheerful 3.59/5.82 * -0.38
Comfortable 6.56/2.36 ** 1.78

Q1: How much cheerful were you during the 
lecture? 
Q2: How much comfortable were you during 
the lecture? 

The results in Table 3 are very interesting. It 
seems that the remote students felt more comfortable 
during the lecture, but they were less cheerful. We 
believe this is because the remote students could 
easily direct their attention to other things than the 
lecture, e.g., checking other classmates’ states or 
mobile phones, as we saw in the video recordings. In 
contrast, the students at the lecture classroom had to 
pay attention to the teacher, and thus they felt less 
comfortable. In terms of the difference on the 
cheerful state between the two locations, we think 
that this may be related to the teacher’s presence, as 
the remote students watched the lecture through a 
screen projector. 

4.2 Exam Results 

The test scores showed the students at both locations 
had a good performance (Table 4). The reason may 
be the lecture was an extra lecture, and did not 
introduce much new knowledge. Furthermore, there 
was a significant difference on the scores found 
between the two locations. The students at the 
lecture classroom achieved a higher score (around 
16% higher) than the remote students. In addition, 
the pre-questionnaires showed there was no 
significant difference on the previous knowledge 
between the two locations. 

Table 4: The significant differences were found on exam 
scores between the students at both locations. 

Items Mean(Remote/Lecture) p (R-
L)%

Scores 7.76/9.29 * -0.16

4.3 GSR Sensors Results (R1) 

4.3.1 Arousal 

We found that the arousal levels at the two locations 
were both negative (Fig. 4), and these results were 
aligned with the survey data: both location students 
were not so much engaged during the lecture. 
Moreover, we found that the remote students’ 
arousal was lower than the one at the lecture 
classroom (but the statistical value is at p: 0.06, 
which is not significant). 

 
Figure 4: The arousal values at both locations are negative. 

4.3.2 Correlations 

We found the correlations results on our data sets 
were rather different to other relevant study that 
used a brain sensor. Dmochowski et al. found that 
“when two people watch a movie, their brains 
respond similarly – but only if the video is engaging. 
These results were obtained by using a brain wave 
sensor, while user watched videos available in social 
media (Dmochowski, Bezdek, Abelson, Johnson, 
Schumacher and Parra, 2014). In our experiment, we 
had a non-engaging learning experience, and it is 
important to note that such situation (non-engaging 
experience) has not been reported before. Unlike the 
previous studies, the audience was engaged with a 
video (Dmochowski, Bezdek, Abelson, Johnson, 
Schumacher and Parra, 2014) or a comedy play 
(Wang, Geelhoed, Stenton and Cesar, 2014). 
However, during a non-engaging experience, we 
found that there were no such significant 
correlations existed between the two locations 
(surveys and GSR response), and there was no 
significant cross correlation between surveys and 
GSR readings. In addition, the study conducted by 
Wang et al., (Wang, Geelhoed, Stenton and Cesar, 
2014), 10 of 15 audience members formed a big 
engaging cluster. Yet, we noticed that in our study, 
there were several clusters established at each 
location based on the students’ GSR response, and 
this made it difficult to interpret the each cluster by 
simply checking surveys. 
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4.3.3 The Density of GSR Response on the 
Two Locations 

We displayed the MDS results on the two- 
dimensional map (Figure 5), where each point 
indicates the averaged minute by minute students’ 
GSR response at the two locations. We found that 
the density of GSR responses at the two locations 
was rather different: the GSR response (the green 
points) on the remote students was more closed to 
each other when compared to the one (the red 
points) at the lecture classroom. According to Wang 
et al. study (Wang, Geelhoed, Stenton and Cesar, 
2014), they found the more similar GSR response, 
the more close distance between the adjacent time- 
lined (based on every minute) points. Therefore, we 
think this result may imply, during a non-engaging 
experience, the remote location GSR response was 
more synchronized (the green points are more closed 
to each other) when compared to the one (the red 
points) at the lecture classroom. This might be 
related to the different user states at the two 
locations, e.g., comfortable or cheerful, although 
thestudents at the two locations were both non-
engaged during the lecture. 

 
Figure 5: MDS minute by minute unfolding of the lecture 
impact at the both locations: the density of GSR responses 
at the remote location was higher when compared to the 
one at the lecture room (R: the lecture duration at the 
remote classroom; L: the lecture duration at the lecture 
classroom). (Stress: 0.1, RSQ: 0.98). 

As Figure 5 displayed, the remote students spent 
the first 3 minutes to be synchronized on their GSR 
response – a massive cluster appeared afterwards, 
but their GSR response started to have a big jump 
distance at the minute 26 until the end of the lecture. 
In contrast, the GSR response of the students at the 
lecture classroom had the similar manner, after the 
first 3 minutes, there was a big cluster formed on 
their GSR response from the minute 4 to the minute 
20. Unlike the GSR response at the remote location, 
the GSR response at the lecture classroom had a big 

jump at the minute 21, afterwards, there was another 
cluster established until the end of the lecture. 

5 DISCUSSION 

In this study, we obtained the realistic GSR data on 
students’ engagement in a real lecture, except that 
the students were required to wear a sensor. The 
results report a non-engaging user experience, and 
such results have not been reported before. 

We think that a field study might more easily 
capture a non-engaging user experience, as users are 
placed in a realistic environment. On the contrary, if 
users are placed under a lab condition, users 
normally treat the stimulus as a task, to which they 
pay attention, as they have to fulfil the assignment 
we give to them. Furthermore, in a lab condition, 
even though users label a bored state, their actual 
biofeedback may be rather different to a real bored 
state (Fairclough, 2009, Wang and Cesar, 2014). 

Our results on the density of GSR responses at 
the two locations do not conflict with the previous 
correlation results, as we mentioned in the part of 
methodologies, the MDS algorithm is a technique to 
explore the data. The explored findings will 
motivate us to make a further investigation on user 
experiences that are linked to the patterns of GSR 
sensors. 

In addition, we suggest not adding extra task to 
users during a physiological experiment, i.e., user 
annotations, as such constant labelling work would 
distract user experience and alter sensor readings. 
Therefore, we suggest obtaining a ground truth by 
some other methods, e.g., surveys or video 
recordings. 

Last, the measurement in our study was 
simultaneously done at the two locations. However, 
for the applications E-learning, e.g., watching an 
educational video, this might not be required. It will 
be an interesting future work to conduct experiments 
with these two different experimental settings. In 
particular, we are interested in investigating how the 
GSR patterns look like on non-engaging home 
learners, whether they have the similar/different 
sensor patterns compared to non-engaging learners 
who watch a lecture at a classroom. However, the 
resulted learner’ engagement cannot be predicted 
before the experiment, as we normally obtain such 
information after the experiment. 

6 CONCLUSIONS 

In this paper, we used GSR sensors to measure 
students’ engagement in a field study - a distributed
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learning environment. The experimental results 
showed that the GSR sensors’ measurement was 
aligned with the surveys, so that we can use GSR 
sensors as an alternative method to measure 
students’ engagement. Furthermore, we compared 
the resulted non-engaging user experiences to the 
previous similar studies, and we found that GSR 
readings demonstrated the different patterns that 
have not been reported before. In addition, the MDS 
result revealed that the GSR response at the remote 
location was more synchronized when compared to 
the one at the lecture classroom. 

We believe that our study is beneficial for E- 
learning, as we have shown that GSR sensors can be 
used as an alternative tool to provide feedback in a 
distributed learning environment. Moreover, we 
presented a non-engaging user case, where the 
patterns of GSR readings were first reported. Last, 
the methodologies incorporated in this study are also 
helpful on other sensor studies, e.g., a pulse sensor. 
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