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Abstract:  In many different social contexts, communication allows a collective intelligence to emerge. However, a 
correct way of exchanging information usually requires determined topological configurations of the agents 
involved in the process. Such a configuration should take into account several parameters, e.g. agents 
positioning, their proximity and time efficiency of communication. Our aim is to present an algorithm, 
based on evolutionary programming, which optimizes agents placement on arbitrarily shaped areas. In order 
to show its ability to deal with arbitrary bi-dimensional topologies, this algorithm has been tested on a set of 
differently shaped areas that present concavities, convexities and obstacles. This approach can be extended 
to deal with concrete cases, such as object localization in a delimited area. 

1 INTRODUCTION 

In an agent simulation, just as in real social contexts, 
communication among individuals is one of those 
characteristics that can enhance survival as well as 
performances fitness-wise (Caci et al., 2011, Cardaci 
et al., 2013, Tabacchi et al., 2010, Villata et al., 
2012). Communication allows a collective 
intelligence to emerge, as it has been shown by 
research on insects and using animat (Bonabeau et 
al., 1999). 

In many scenarios it is necessary to transmit 
messages to a number of distinct intermediaries 
(while other information can be delivered to many 
agents at the same time using broadcast mode, Terna 
& Taormina, 2007), due to the distance between 
individuals. The concept of distance itself can be put 
into question: in nature, distances are usually 
regarded as “physical” distances, while in other 
scenarios this concept can be readily extended; for 
instance, consider the cost of a link between two 
computers (Barabási, 2002), the energy cost of a 
biological link between cells (Albert, 2005), or even 
between concepts (Petrou et al., 2010). Further 
problems can be caused by the presence of natural or 
artificial obstacles between two individuals, or even 
by a limited channel capacity. 

In our proposed scenario, several agents inhabit 

an arbitrarily shaped environment populated by 
obstacles, and they can only communicate through 
intermediaries lying at some maximal distance one 
from another; each of such intermediaries is able to 
receive messages from several sources and forward 
them to other individuals in the designed area. This 
is a broadcast kind of transmission: in order to reach 
the destination, a single individual forwards the 
received message to several intermediaries, ensuring 
some desirable characteristics such as the robustness 
and reliability of the ensuing network. 

The number of agents in such a network is 
usually variable, and it is necessary to consider the 
possibility that some specific agents could reach a 
huge number of other agents lying at a reasonable 
distance, and at the same time to have a low number 
of errors due to the transmission medium and to 
episodes such as the temporary inactivation of an 
agent or even its permanent removal from the 
network. Therefore it is not out of place to draw an 
analogy with social networks dynamics: in our case, 
intermediaries behave just like hubs making possible 
for distant nodes, which would otherwise have 
difficulties to reach each other, to communicate. 

A central parameter to consider, if we are to 
assess the network evolution in time, is the 
minimum number of agents needed to reach every 
agent in the network; finding an optimal value 
without introducing errors or noise in the signal is a 
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notoriously hard problem (Tabacchi & Termini, 
2011). On the other hand, if we consider the network 
arrangement in space, the topology of the 
environment – that is, the absolute (with respect to 
space) and relative (with respect to other agents) 
position of each agent – has to be carefully taken 
into account. Optimal and sub-optimal solutions to 
well-known and highly idealized situations are 
already available in literature, including Steiner’s 
Tree (Hwang et al., 1992); however, it is harder to 
deal with harsher, possibly non-convex, non-
contiguous, and/or arbitrarily complex areas. 

In these cases, a soft-computing technique 
(Seising and Tabacchi, 2013) such as evolutionary 
programming (Michalewicz, 1996) could provide 
sub-optimal solutions in a reasonable amount of 
time. Evolutionary algorithms in general, and 
especially genetic algorithms, are already 
successfully applied to a huge number of 
optimization problems and they are proven of being 
capable to efficiently find “good” solutions, i.e. 
solutions that closely approximate the best one. 

In this work we propose a preliminary version of 
an evolutionary algorithm, which serves to optimize 
the number and position of agents in arbitrarily 
shaped areas, possibly populated by obstacles. 
Results have shown how the algorithm satisfies sub-
optimality criteria as well as strong connectivity 
requirements and were also obtained in an efficient 
way. Even more, the algorithm tries to optimize the 
number of agents, removing the superabundant ones 
from the map. 

This article is organized as follows: in the next 
section we shall describe in detail the problem we 
are concerned with and the approach we chose to 
face it. In the third section we shall present the 
algorithm as we implemented it, while analyzing the 
principal mechanisms regulating agents and entities 
of the simulation. Last section is devoted to 
conclusions and to possible further developments of 
this work. Some alternative methodologies and 
different approaches to this very problem are 
discussed and it will be pointed out how this work 
can be applied to problems of a very different nature 
than the one considered here. 

2 METHODOLOGY 

In the study and analysis of an ideal network, it is 
crucial to focus on the first stages of its creation, 
since the initial topology can have a severe impact 
on network functionalities and evolution, as well as 
on its principal entities, i.e. those nodes establishing 

interconnections among peers. 
Amongst the fundamental aspects to be 

considered we should mention the minimization of 
the number of entities involved in the peer-
communication process, which plays an important 
role during the construction stage. In fact, an 
excessive number of agents can lead to some 
inconveniences (already well-known in information 
theory) such as information redundancy and 
corruption due to signal degradation. However, 
decreasing the number of entities should not 
compromise the connection between them — 
therefore it turns out to be indispensable to evaluate 
the proportion between number of nodes and 
available space. 

Another point that should be carefully taken into 
account is that network topology could contemplate 
the presence of hubs, which play a fundamental role 
for the reasons discussed in the introduction; 
however, the number of hubs in a network should 
not exceed a critical limit, since otherwise we would 
get an inefficient network due to the redundancy of 
some connections. 

Some mathematical models to deal with 
canonically shaped areas are already known in 
literature; they allow to find the “best” (with regard 
to communication efficiency and total number of 
entities) way of positioning entities in such highly 
idealized scenarios, though this formally restricts the 
possible choices by presenting characteristics that 
are not modifiable by those entities moving in the 
arbitrarily shaped spaces. 

Considering all the limits and problems arising in 
such situations, it comes as no surprise that finding 
the optimal solution is a computationally unfeasible 
problem. However, we can find suboptimal solutions 
in a reasonable amount of time using evolutionary 
programming techniques. In particular, in the next 
section we shall introduce and discuss a procedure 
that employs an evolutionary algorithm augmented 
by hill-climbing, of which many variants are 
available. 

Even though a full detailed description of the 
algorithm is the focus of the next chapter, we want 
to highlight that the algorithm plays a crucial role 
because of its capacity of satisfying all the requisites 
mentioned before. This very algorithm acts as a 
leader, imposing a direction for the entities to move, 
without asking them to act in a precise way. The 
leader also evaluates the solution at each stage of the 
process, using a fitness function, which is based on 
an evaluation of the total area covered by each 
agent.  

Some motivation for the leader to be 
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implemented through a genetic algorithm comes 
from the fact that similar approaches were already 
successfully used in various areas such as wire 
routing, scheduling, adaptive control, game playing, 
cognitive modeling, transportation problems, 
traveling salesman problems, optimal control 
problems, database query optimization (for a review 
see Michalewicz, 1996).  

Single agents, on the other hand, are 
implemented through the already mentioned hill-
climbing algorithm, that is, a greedy algorithm 
which at each iteration chooses the best state, 
leading every time to a better (or, at least, non-
worse) solution. 

Unlike a gradient-descending technique, we 
chose the possibility of introducing a tabu search 
variant to avoid repeated actions.  

3 ALGORITHM 

The idea behind our algorithm is to initially set up 
the map in a way derived from the optimal solution 
for a canonical shape surrounding the area we are 
considering. For such shapes we can indeed use 
some well known algorithms about Convex Hull 
problem in a bi-dimensional plane. Such algorithms 
are based on several differential and computational 
geometry theorems (Vazirani, 2001). In particular, 
Groemer’s theorem (Groemer, 1960) establishes a 
relation between an area and the number of nodes 
that are needed to cover (compact or convex) parts 
of it. However, efficient algorithms in the more 
general case of non-convex, non-compact areas are 
not known. 

In this work, the “optimal solution” is considered 
as a starting point from which it is then possible to 
calculate, through refinements, the desired sub-
optimal solution for the real area in consideration. 
The refining procedure consists of moving the 
agents in every possible way in a pre-defined 
neighborhood, while verifying whether the new 
placements leads to an improvement of the general 
connectivity status. More precisely, agents are able 
to move in their neighborhood according to a turn-
based mechanism. 

At each turn the leader, which cannot be 
identified with any agent and which therefore 
constitutes an external entity, evaluates whether it is 
necessary to order a movement or not. Such 
broadcast communication forces all the agents to 
make a displacement, providing them useful 
information about their neighborhood. 

It    should  be  carefully  noticed  that  in   some 

Table 1: Highlights of the algorithm. 

1. Set up the agents in a way derived from the 
optimal solution, as suggested by Groemer’s 
Theorem; 

2. Moving the agents in every possible way in a 
pre-defined neighborhood and recalculate the 
fitness function; 

3. Repeat step two until find the sub-optimal 
solution.  Any configurations loop are avoided 
using the tabu search; 

4. Remove one of the agents and recalculate the 
fitness function; 

5. Repeat step four until find a configuration with a 
fitness function better or worse, however, not 
more than a certain tolerance (5%) compared to 
the solution of the previous iteration. 

 

situations the presence of an agent could turn out to 
be redundant; these superabundant agents should be 
removed from the map, since every such agent bears 
a cost. 

Our leader can take into consideration this 
important factor by progressively removing 
redundant components, i.e. those that carry no 
significantly contribution to the improvement of the 
global solution. The "greedy" procedure described in 
steps 4—5 is clearly order-dependent since the order 
in which the antennas are sequentially taken off 
might affect the final result. In fact, we could 
perform an exhaustive (hence, order-independent) 
search of the optimal set of antennas to be removed 
instead. However, such a process would be 
unfeasible computationally wise, while our "greedy" 
procedure, even though order-dependent, is more 
efficient and approximates the theoretical optimum 
with sufficient precision. The presence of a leader 
provides the possibility of reducing the network’s 
size without having to care about conflicts between 
agents and/or spontaneous deletion of single nodes. 

The main parameters involved in this 
computation are: the initial distance between agents, 
the minimum distance allowed between different 
agents, the size of the neighborhood. These 
parameters are set at the beginning of the simulation 
and remain fixed during the entire execution of the 
procedure. The leader only considers the first of 
these three variables, while the latter two are 
broadcasted to each single agent. 

Simulation halts whenever the leader stops 
communicating relevant information to the agents. 
Such process is asynchronous due to the indirect 
nature of the communication. Once this 
organizational process is over, agents can go on 
exchanging information in an efficient way, 
expPloiting the new optimized network topology
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Table 2: Results obtained from pseudo-random generated samples. In the second row the area covered by agents is shown 
using Groemer’s Theorem. Each grey level represents the number of agents covering the underlying area, according to the 
following scale:  =0,  =1,  =2,  =3,  =4,  =5 or more. In the third row the disposition of agents after optimization is 
shown. 

 

 

4 CONCLUSIONS  

A first collection of tests carried out in a simulated 
environment confirmed the soundness of our 
algorithm. This reinforces the hypothesis about the 
validity of abstract mathematical models when they 
are applied to social areas such as information 
exchange. 

If a suitable set of parameters is chosen, this 
approach can be readily extended to other fields, e.g. 
object localization in a three-dimensional 
environment. 

Further developments of this work could 
contemplate the possibility of putting aside the 
leader and making single agents independent. In this 
case they will be free to decide action timing and to 
start/resolve conflicts to eliminate superfluous 
agents. Obviously this would lead to a new set of 
(computational) issues related to the observance of 
global constraints, which however might be 
conveniently handled through information exchange 
between agents. 

Furthermore, fuzzy sets theory can be fruitfully 
applied to this framework by using a suitable 
membership function wherever required (D’Asaro et 
al., 2013a, D’Asaro et al., 2013b). In this way, it is 
possible to find a suitable solution even when an 
external constraint prevents the fitness function from 
being maximized. 

Table 3: Aggregated results from a pseudo-random 
generated sample. 

Sample 
N = 

1.000 

Average (Standard Deviation) of the 
coverage for 3 or more agents using the 
Groemer’s theorem 

62.29% 
(8.53%) 

Average (Standard Deviation) of the 
coverage for 3 or more agents using the 
algorithm proposed 

71.17% 
(5.94%) 

Average (Standard Deviation) of the number 
of removed agents 

10.82% 
(5.66%) 
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