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Abstract: This paper is focused on regularized versions of classification analysis and their computation for high-
dimensional data. A variety of regularized classification methods has been proposed and we critically discuss
their computational aspects. We formulate several new algorithms for regularized linear discriminant analysis,
which exploits a regularized covariance matrix estimator towards a regular target matrix. Numerical linear
algebra considerations are used to propose tailor-made algorithms for specific choices of the target matrix.
Further, we arrive at proposing a new classification method based on L2-regularization of group means and the
pooled covariance matrix and accompany it by an efficient algorithm for its computation.

1 INTRODUCTION

Classification analysis methods have the aim to con-
struct (learn) a decision rule based on a training data
set, which is able to automatically assign new data to
one of K groups. Linear discriminant analysis (LDA)
is a standard statistical classification method. In the
whole paper, we consider n observations with p vari-
ables, observed in K different samples (groups) with
p > K � 2,

X11; : : : ;X1n1 ; : : : ;XK1; : : : ;XKnK ; (1)

where n = å
K
k=1 nk: LDA assumes the data in each

group to come from a Gaussian distribution. The co-
variance matrix S is assumed to be the same across
groups and its estimator will be denoted by S.

Various tasks in bioinformatics deal with high-
dimensional data, i.e. data with the number of ob-
served variables p exceeding the number of observa-
tions. Analyzing data in this so-called large p/small n
problem is especially important e.g. in gene expres-
sion studies. Unfortunately, LDA in its standard form
is infeasible for n < p, because the matrix S of size p
is singular and computing its inverse must be replaced
by an appropriate alternative. Available approaches in
this context are based e.g. on pseudoinverse matrices,
which are however unstable due to a small n (Guo
et al., 2007).

Regularized versions of LDA for n� p were pro-
posed (Guo et al., 2007) mainly for applications in
bioinformatics. They are based on such regularized
estimator of the covariance matrix, which is guaran-
teed to be regular and positive definite even for n� p.
Fast computation and numerical stability is a key re-
quirement expected from reliable statistical and data
mining procedures (Kogan, 2007; Duintjer Tebbens
and Schlesinger, 2007) and remains to be an impor-
tant issue also for regularized classification methods
(Hastie et al., 2008; Pourahmadi, 2013). Let us now
describe the most important approaches and critically
discuss their possible computation.

This paper studies efficient algorithms for com-
puting various regularized versions of LDA. Section 2
of this paper formulates several algorithms for reg-
ularized LDA, which exploits a regularized covari-
ance matrix estimator towards a regular target matrix.
The computational effectivity of the algorithms is in-
spected using arguments of numerical linear algebra.
For a specific choice of the target matrix, we are able
to propose a tailor-made algorithm with a lower com-
putational cost compared to algorithms which are for-
mulated for a general context. Besides, we arrive at
proposing a new version of LDA based on regular-
ization in the sense of the L2 norm and accompany it
by an efficient algorithm for its computation in Sec-
tion 3. The classification performance of the methods
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is illustrated on real data in Section 4. Finally, Sec-
tion 5 concludes the paper.

2 COMPUTATION OF
REGULARIZED LINEAR
DISCRIMINANT ANALYSIS

This section is devoted to proposing and comparing
new algorithms for a habitually used version of the
regularized LDA. We use suitable matrix decomposi-
tions to propose efficient algorithms either for a gen-
eral choice of T or for its specific choices. To the best
of our knowledge, tailor-made algorithms for a spe-
cific T have not been described. We compare the new
algorithms in terms of their computational costs as
well as numerical stability.

We will describe one of habitually used regular-
ized versions of LDA. This will be denoted as LDA�

to avoid confusion, because the concept of regularized
discriminant analysis encompasses several different
methods (Pourahmadi, 2013; Kalina, 2014) A given
target matrix T will be used, which must be a regular
symmetric positive definite matrix of size p� p. Its
most common choices include the identity matrix Ip
or a diagonal (non-identity) matrix; other target matri-
ces have been considered by (Schäfer and Strimmer,
2005).

Let us denote the mean of the observed values in
the k-th group (k = 1; : : : ;K) by X̄k. LDA� assigns
a new observation Z = (Z1; : : : ;Zp)

T to group k, if
l�k > l�j for every j 6= k, where the regularized linear
discriminant score for the k-th group (k = 1; : : : ;K)
has the form

l�k = X̄T
k (S�)�1Z� 1

2
X̄T

k (S�)�1X̄k + log pk; (2)

where pk is a prior probability of observing an obser-
vation from the k-th group and

S� = lS+(1�l)T (3)

for l 2 (0;1] denotes a regularized estimator of the
covariance matrix across groups. We do not treat the
situation with l�k = l�k0 for k0 6= k separately, because
it occurs with a zero probability for data coming from
a continuous distribution. Equivalently, LDA� assigns
a new observation Z to group k, if

(X̄k�Z)T S��1(X̄k�Z) =

= min
j=1;:::;K

�
(X̄ j�Z)T S��1(X̄ j�Z)

	
: (4)

Various versions of the target matrix T have been
suggested by (Schäfer and Strimmer, 2005). We point
out that the formula (3) can be justified by Bayesian

reasoning. Let us assume normally distributed data
with a covariance matrix S, while S�1 is assumed to
be a random variable following Wishart distribution
Wp(T=g;k) for some g > 0 and an integer k. Follow-
ing (Haff, 1980), the mean of the posterior distribu-
tion of S is equal to (3) up to a normalizing constant,
which does not influence the classification rule.

First, the standard approach for computing LDA�

may be improved by employing the eigendecomposi-
tion of S� for a fixed l. A suitable value of l is found
by a cross-validation in the form of a grid search over
all possible values of l 2 (0;1]:

Algorithm 1. LDA� for the general regularization (3)
based on eigendecomposition.

Step 1. Compute the matrix

A = [X̄1�Z; : : : ; X̄K�Z] (5)

of size p�K whose k-th column is X̄k�Z:
Step 2. Compute S� according to (3) with a fixed l 2

(0;1].
Step 3. Compute the eigendecomposition of S� as

S� = Q�D�QT
� : (6)

Step 4. Compute the matrix

B = D�1=2
� QT

� A (7)

and assign Z to group k if the column of B with
largest Euclidean norm is the k-th column.

Step 5. Repeat steps 2 to 4 with different values of l

and find the classification rule with the best clas-
sification performance.

The group assignment (4) is done by using

(X̄ j�Z)T S��1(X̄ j�Z) =

= (X̄ j�Z)T Q�D�1
� QT

� (X̄ j�Z) =

= kD�1=2
� QT

� (X̄ j�Z)k2: (8)

The costs of the algorithm can be made reduced
by replacing the eigendecomposition of S� with its
Cholesky decomposition

S� = L�LT
� ; (9)

where L� is a nonsingular lower triangular matrix.

Algorithm 2. LDA� for the general regularization (3)
based on Cholesky decomposition.

Step 1. Compute the matrix

A = [X̄1�Z; : : : ; X̄K�Z] (10)

of size p�K whose k-th column is X̄k�Z:
Step 2. Compute S� according to (3) with a fixed l 2

(0;1].
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Step 3. Compute the Cholesky factor L� of S�.
Step 4. Compute the matrix

B = L�T
� A (11)

and assign Z to group k if the column of B with
largest Euclidean norm is the k-th column.

Step 5. Repeat steps 2 to 4 with different values of l

and find the classification rule with the best clas-
sification performance.

For specific target matrices, we can further reduce
computational costs by using the following algorithm
for LDA�. The pooled estimator S can be written in
the form S = Y TY , where

Y = [X11� X̄ ; : : : ;X1n1 � X̄ ; : : : ;

XK1� X̄ ; : : : ;XKnK � X̄ ]T (12)

is of size n� p: Then using the singular value decom-
position (SVD) of Y in the form

Y = PSQT ; (13)

we can express the eigendecomposition of S as

S = Y TY = (PSQT )T PSQT = QS
2QT : (14)

The costs will be about 4 � np2 floating point opera-
tions, thus with p� n the gain is considerable.

Moreover, if

S� = lS+(1�l)Ip; l 2 (0;1]; (15)

we immediately obtain the needed eigendecomposi-
tion of S� as

S� = lS+(1�l)Ip = Q
�
lS

2 +(1�l)Ip
�

QT : (16)

The SVD can be computed in a backward stable way
with all singular values accurate up to machine pre-
cision level (Barlow et al., 2005). For the special
case (15), which is commonly denoted as Tikhonov
or ridge regularization of S, a more efficient compu-
tation can be performed as follows.

Algorithm 3. LDA� for the ridge regularization (15).

Step 1. Compute the matrix

A = [X̄1�Z; : : : ; X̄K�Z] (17)

of size p�K whose k-th column is X̄k � Z and
compute the matrix Y in (12).

Step 2. Compute the singular value decomposition of
Y as

Y = PSQT ; (18)

with singular values fs1; : : : ;sng and comple-
ment these singular values with p�n zero values
sn+1 = � � �= sp = 0:

Step 3. For a fixed l 2 (0;1]; compute D� =

diagfls
2
1 +(1�l); : : : ;ls

2
p +(1�l)g: (19)

Step 4. Compute the matrix

B = D�1=2
� QT A (20)

and assign Z to group k if the column of B with
largest Euclidean norm is the k-th column.

Step 5. Repeat steps 2 to 4 with different values of l

and find the classification rule with the best clas-
sification performance.

Eigenvalues of S� evaluated in (19) can be in-
terpreted as regularized eigenvalues. They are how-
ever different from shrinkage eigenvalues (Pourah-
madi, 2013), which are obtained by regularizing S by
applying a penalization criterion directly on eigenval-
ues.

3 L2-REGULARIZED LINEAR
DISCRIMINANT ANALYSIS

Disadvantages of SCRDA include a computational in-
tensity as well as an inconsistent approach to regular-
ization. The means are namely modified by an L1-
norm regularization and the covariance matrix in the
sense of the L2-norm. Examples of other regularized
LDA versions include the Prediction Analysis of Mi-
croarrays (PAM) (Tibshirani et al., 2003), which can
be described as a diagonalized LDA (DLDA) with
means regularized in the L1-norm.

As an alternative, this section proposes a new reg-
ularized version of LDA denoted as L2-LDA. As a
unique feature, the means in each group as well as the
pooled covariance matrix are regularized in the same
way, i.e. in the L2-norm. We propose an efficient al-
gorithm for the computation of the method.

The classification rule of L2-LDA assigns a new
observation Z to the k-th group, if l†

k > l†
j for every

j 6= k, where

l†
k = X̄

0T
k (S�)�1Z� 1

2
X̄
0T
k (S�)�1X̄

0
k + log pk (21)

and X̄
0
k denotes the shrunken mean of the k-th group

towards the overall mean computed across groups.
The method can be interpreted as based on a L2 reg-
ularized Mahalanobis distance. As another contrast
with the habitually used algorithm of SCRDA, we
will estimate the parameter l in a straightforward
way using an asymptotically optimal value minimiz-
ing the mean square error (Schäfer and Strimmer,
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2005). To avoid confusion, the asymptotically opti-
mal value of l will be denoted by l† and the corre-
sponding regularized covariance matrix by

S† = l
†S+(1�l

†)T: (22)

Algorithm 4. L2-LDA.

Step 1. Compute l† as

l
† =

2å
p
i=2 å

i�1
j=1 cvar(Si j)

2å
p
i=2 å

i�1
j=1 S2

i j +å
p
i=1(Sii�1)2

; (23)

where cvar(Si j) is the maximum likelihood estima-
tor of the variance of values Si j for a fixed i and j.

Step 2. Compute the eigendecomposition of S† as

S† = Q�D�QT
� : (24)

Step 3. For a fixed d 2 [0;1], compute

X̄
0
k = dX̄k +(1�d)X̄ ; k = 1; : : : ;K: (25)

Step 4. Assign Z to group k, if

kD�1=2
� QT

� (X̄
0
k�Z)k=

= min
j=1;:::;K

kD�1=2
� QT

� (X̄
0
j�Z)k: (26)

Step 5. Repeat steps 3 and 4 for various d and find
the optimal classification rule yielding the best
classification performance.

The main computational costs are in step 2; the
eigendecomposition costs about 9 � p3 floating point
operations. Note that we need not (and should never)
compute the inverse of S�, thus avoiding additional
computations of the Mahalanobis distance, which is
expensive of order p3 and numerically rather unsta-
ble.

Algorithm 4 is formulated for a general target ma-
trix T . For a specific choice of T , a computationally
cheaper method can be obtained in an analogous way
as Algorithms 2 and 3 from the general Algorithm 1.
Particularly, the costs of Cholesky decomposition (9)
are about p3=3 floating point operations. On the other
hand, Cholesky decomposition will suffer from insta-
bility when S� is not positive definite.

Analogous reasoning can be applied to obtain
an algorithm for L2-regularized version of quadratic
discriminant analysis (QDA), which is another stan-
dard classification method derived for data following
a Gaussian distribution, but without the assumption
of a common covariance matrix. A regularized co-
variance matrix estimator S�k in the k-th group will be
considered with the optimal value of the regulariza-
tion parameter, again yielding the best classification

performance. The regularized quadratic discriminant
score for the k-th group has the form

q�k = X̄T
k (S�k)

�1Z� 1
2

X̄T
k (S�k)

�1X̄k�

�1
2

ZT (S�k)
�1Z +

1
2

log jS�k j+ log pk; (27)

where j � j denotes the determinant of a matrix.

4 EXAMPLES

We present two examples on real molecular genetic
data sets in order to illustrate the behavior of the
newly proposed L2-LDA method and to compare its
with performance of classical classification proce-
dures.

Example 1 contains data from our own cardio-
vascular genetic study on 24 patients having a cere-
brovascular stroke and 24 control persons (Kalina and
Zvárová, 2013). The were p= 38590 gene transcripts
measured, which correspond to the whole genome.

In Example 2, a prostate cancer metabolomic data
set (Sreekumar et al., 2009) is analyzed, which con-
tains p = 518 metabolites measured over two groups
of patients, namely those with a benign prostate can-
cer (16 patients) and with other cancer types (26 pa-
tients). The task in both examples is to learn a classi-
fication rule allowing to discriminate between the two
classes of individuals.

In both examples, we computed the classification
methods described in this paper using the algorithms
of Sections 2 and 3. For comparison, we computed
also other available classification methods, including
the support vector machines (SVM), a classification
tree, Kohonen’s self-organizing map, or a multilayer
perceptron with 2 hidden layers. Various regularized
versions of LDA include the most common choice
T = Ip or another choice

S� = lS+(1�l)sIp; s =
p

å
i=1

Sii=p; (28)

for l 2 (0;1]: We used the default settings to compute
them in user-submitted packages, which accompany
the R free software and are listed also in Table 1. The
classification performance is measured by means of
the Youden’s index, which is defined as

sensitivity+ specificity�1: (29)

The results performed on raw data as well as after
a dimensionality reduction reveal that the regularized
versions of LDA perform quite similarly. The newly
proposed method L2-LDA with an efficient algorithm
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Table 1: Results of Example 1 and Example 2. LDA� was computed using Algorithm 3 for the choice (15) and Algorithm 2
for (28). L2-LDA was computed using Algorithm 4. PCA uses 20 principal components.

Youden’s index
Method S� R Package Function Example 1 Example 2
SVM - e1071 svm 1.00 1.00

Classification tree - tree tree 0.94 0.97
Self-organizing map - kohonen som 0.88 0.93

Multilayer percpetron - nnet nnet Infeasible Infeasible
LDA - MASS lda Infeasible Infeasible

SCRDA (15) rda rda 1.00 1.00
LDA� (15) - - 1.00 1.00
LDA� (28) - - 1.00 1.00

L2-LDA (15) - - 1.00 1.00
L2-LDA (28) - - 1.00 1.00

PCA =) LDA - - - 0.54 0.90
PCA =) SCRDA (15) - - 0.71 0.92
PCA =) LDA� (15) - - 0.63 0.81
PCA =) LDA� (28) - - 0.63 0.81

PCA =) L2-LDA (15) - - 0.71 0.92
PCA =) L2-LDA (28) - - 0.71 0.92

seems to perform comparably with the available reg-
ularized methods with less efficient computation. Be-
sides, the choice of the target matrix T does not seem
to play an important role. Some of standard classifi-
cation methods are infeasible because of the dimen-
sionality (n� p).

Further, we investigated the effect of dimensional-
ity reduction on the classification performance. Prin-
cipal component analysis (PCA) is performed and the
consequent classification is applied on 20 principal
components. To explain the notation, for example the
approach denoted as PCA =) L2-LDA corresponds
to performing L2-LDA (using Algorithm 4) on 20
principal components of the original data.

The method PCA =) L2-LDA yields improved
results compared to its standard counterpart (PCA
=) LDA) and is not outperformed by any other
method. It is remarkable that the combination PCA
=) LDA� does not improve the results compared to
PCA =) LDA. The first three principal components
seem rather arbitrary and they explain only 6 %, 6 %,
and 5 % of the variability in the data, respectively. Be-
sides, we did not find any clear interpretation of the
principal components and there seems no remarkable
small group of genes responsible for a large portion
of variability of the data.

5 CONCLUSIONS

For high-dimensional continuous data, the main ob-
stacle of the traditional Mahalanobis distance is sin-
gularity of the empirical covariance matrix. As a so-
lution, various regularized versions of the LDA have

been proposed, which are commonly used to learn
a classification rule from high-dimensional data. This
paper presents our view that the methodology in its
standard form represents a set of ad hoc procedures
rather than a coherent approach, moreover without ef-
ficient algorithms available for the computation. Be-
sides, we explain some open problems concerning
regularized versions of LDA, e.g. specific algorithms
tailor-made for a specific choice of the target matrix.

Several new algorithms are proposed for a reg-
ularized LDA in Section 2. We propose the L2-
regularized version of LDA, advocating our position
that the mean and covariance matrix of multivariate
data can be estimated by means of the same regu-
larization principle. A new regularized classification
method L2-LDA is proposed in Section 3 and accom-
panied by an efficient algorithm. Its computational
costs are discussed. The regularization can be inter-
preted as a tailor-made correction for a small sample
size. If n < p for larger sample sizes, the effect of the
regularization will become of a smaller importance.

L2-LDA can be interpreted as a shrinkage esti-
mator of the covariance matrix, in the light of the
Stein’s result of estimating the mean of multivariate
normal data (Stein, 1956; Hastie et al., 2008). It
is possible to interpret the method as an approach
based on a regularized version of the Mahalanobis
distance. The method is reliable under an implicit as-
sumption that the variability is not substantially dif-
ferent across variables. The optimal regularization
parameters seem to be reasonable in the classification
analysis context. Another possibility is to regularize
the within-group covariance matrix instead of regu-
larizing S, which is however computationally more
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intensive. An analysis of two real data sets reveals
its classification performance to be comparable to
available regularized classification methods for high-
dimensional data.

In general, some regularized statistical methods
for the analysis of high-dimensional data have been
empirically observed to possess reasonable robust-
ness properties with respect to outlying measurement
in the data. To give an example, regularized means
has been observed to cause a certain local robust-
ness against small departures in the observed data
(Tibshirani et al., 2003). Regularization itself cannot
ensure robustness against serious outliers (Filzmoser
and Todorov, 2011) for continuous data. In the words
of robust statistics, regularization does not imply a ro-
bustness in terms of the breakdown point and regular-
ized LDA cannot replace robust classification proce-
dures with a high breakdown point (Kalina, 2012). It
remains an open problem to investigate systematically
the relationship between regularization and statisti-
cal robustness for continuous data. Another warning
should be given that there is no reason to suppose that
the optimal procedure for the regularized model will
perform well away from that model (Davies, 2014).

Alternative approaches could be formulated by
means of regularization requiring a certain level of
sparsity (Chen et al., 2012). Moreover, L2-LDA can
be derived in an alternative way as a Bayesian esti-
mator or as the optimal method by means of robust
optimization (Xanthopoulos et al., 2013).

As a future research, we plan to investigate suit-
able choices of the target matrix T and extend the
regularized Mahalanobis distance to the context of
cluster analysis. From the theoretical point of view,
robustness of LDA regularized in the L1-norm has
not been inspected as well as regularized versions of
the highly robust MWCD estimator (Kalina, 2012).
We plan to apply and compare regularized versions
of LDA to pattern recognition problems in the analy-
sis of 3D neuroimages of spontaneous brain activity.
There, we plan to exploit the new L2-LDA without the
usual sparseness assumption, allowing to choose T to
model the high correlation of neighboring voxels.
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