
Automated Model-based Testing Based on an Agnostic-platform
Modeling Language

Concepción Sanz1, Alejandro Salas1, Miguel de Miguel1,2, Alejandro Alonso1,2,
Juan Antonio de la Puente1,2 and Clara Benac1,3

1Center for Open Middleware, Universidad Politécnica de Madrid (UPM),
Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain

2DIT, Universidad Politécnica de Madrid (UPM), Madrid, Spain
3LSIIS, Universidad Politécnica de Madrid (UPM), Madrid, Spain

Keywords: Model-based Testing, Automated Testing, Agile Development.

Abstract: Currently multiple Domain Specific Languages (DSLs) are used for model-driven software development, in
some specific domains. Software development methods, such as agile development, are test-centered, and
their application in model-based frameworks requires model support for test development. We introduce a
specific language to define generic test models, which can be automatically transformed into executable tests
for particular testing platforms. The resulting test models represent the test plan for applications also built
according to a model-based approach. The approach presented here includes some customisations for the
application of the developed languages and transformation tools for some specific testing platforms. These
languages and tools have been integrated with some specific DSL designed for software development.

1 INTRODUCTION

Along time, different methodologies have been ap-
plied to software development in order to improve the
product quality and reduce the time-to-market with
tight budgets. From the most traditional approaches -
such as waterfall development-, to the latest variations
of agile development, testing has been a key phase
to perform due to the need for detection and correc-
tion of defects as soon as possible; but it is also costly
and highly time consuming. As companies tend to
apply methodologies which shorten the software de-
velopment lifecycle, it is necessary to adapt testing to
more demanding scenarios where time and resources
are limited. For instance, in agile methodologies test-
ing activities are performed during the whole lifecy-
cle. This means that it is possible to start the design
of a test plan as early in the development process as
the requirements specification phase, and evolve it in
parallel to software. In this scenario, an adaptive and
responsive framework to design tests and allow their
automation increases productivity, specially when re-
gression and integration tasks need to be carried out.
Other challenges linked to testing come from the dif-
ferent target platforms and development technologies

that can be involved in the process, which are usu-
ally known only by testers. This complexity prevents
other prospective users, such as application develop-
ers, from doing their own tests. Moreover, testing can
be so coupled to specific management tools that any
migration could have a quite significant impact.

This work proposes a testing framework for test-
ing model-based software applications. The testing
framework is based on a model-driven approach, hav-
ing developed a modelling language that allows to
build test models which are agnostic about the final
testing platform. In this way, the complexity is hidden
to users, who only manage high-level concepts, eas-
ing the integration of test frameworks into software
development frameworks. The reuse and customiza-
tion of models are allowed, avoiding unnecessary rep-
etition along test design. Once test plans are built
as agnostic platform models, the framework is also
responsible for transforming them, in an automatic
way, into executable tests for specific target testing
platforms. Some examples of testing platforms and
frameworks are JUnit (Tahchiev et al., 2010), Sele-
nium (Holmes and Kellogg, 2006) and QTP-HP (Rao,
2011). The automation of the transformation process
eases regression tasks, as well as maintenance, since

239Sanz C., Salas A., de Miguel M., Alonso A., Antonio de la Puente J. and Benac C..
Automated Model-based Testing Based on an Agnostic-platform Modeling Language.
DOI: 10.5220/0005237802390246
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 239-246
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

only abstract test models need to be changed.
The approach presented here has been applied to

a specific modelling framework, BankSphere, a tool
suite created by the Santander Group which integrates
model-based design tools in a deployment and run-
time environment. This suite, used by the large com-
munity of developers existing in Santander Group,
reduces significantly the development time of new
banking software.

The rest of the paper is structured as follows. Sec-
tion 2 summarizes different approaches linked to test-
ing. Section 3 gives an overview of the test architec-
ture proposed in this work. Section 4 depicts the main
concepts contained in the developed language, pro-
viding a case study for a better comprehension. Sec-
tion 5 shows a case where the presented approach has
been applied to generate executable tests. Finally, 6
summarizes the main results of this work and sketches
the lines for future work.

2 RELATED WORK

Model-based testing is the paradigm by which test
cases are automatically generated using models that
describe the functional behaviour of the system un-
der test. This approach allows testers focusing on the
design of better test plans instead of wasting effort
in coding tasks, increasing productivity and product
quality due to the automation. Models are designed
using from formal specifications (e.g. B, Z) (Utting
and Legeard, 2007; Cristiá and Monetti, 2009) to a
large variety of diagrams, such as state charts, use
case, sequence diagrams (Briand and Labiche, 2001),
(extended) finite state machines (Pedrosa et al., 2013;
Karl, 2013) or graphs. Most of research in models
for testing is focused on UML modeling language
(Fowler, 2003). A common practice is using sequence
diagrams to represent the system behaviour for use
case scenarios. Diagrams are then transformed into
test case models -such as xUnit (Meszaros, 2006)- by
means of model-to-model transformations, before be-
ing transformed -model-to-text - into executable tests
for a specific platform (Javed et al., 2007).

The widespread use of UML in testing has led to
the development of a specific standard profile, UML
2.0 Testing Profile -U2TP- (Baker et al., 2004), an
extension to define and build test cases for software
systems. Different authors have used it to derive test
artefacts from systems previously described in UML
(Lamancha et al., 2009; Wendland et al., 2013; Baker
et al., 2007). Although U2TP bridges the gap between
system and test development by using the same mod-
elling notation, public implementations are incom-

plete (Wendland et al., 2013; Eclipse(a), 2011). Im-
plementations are focused mainly on the Test Archi-
tecture section and partially on Test Behaviour, where
not all the defined concepts are covered. Other sec-
tions, such as Test Data, are usually also skipped.

UML is the most widespread modelling language,
but some other DSLs are also used for software de-
velopment (Fowler, 2010). UML profiles are UML
dependent and they are not applicable on DSL. The
languages introduced in this paper are independent of
development languages.

In contrast to most of literature on model-based
testing, the proposal described here does not derive
test models from other models which represent the
system behaviour (Javed et al., 2007; Lamancha et al.,
2009). The executable tests are neither derived from
code or system requirements (Wendland et al., 2013).
Instead, this work proposes a UML-independent ap-
proach, where test models are designed by testers and
automatically translated to be executable.

3 TEST ARCHITECTURE

In this section, the architecture proposed is briefly de-
picted before being explained more deeply next. The
aim of the architecture is the building of generic test
models, agnostic about any testing platform.

3.1 Architecture Overview

The architecture proposed in this work is shown in
Figure 1, as well as the role played by users. The core
of the architecture is the testing models, whose main
concepts will be described in Section 4. The test-
ing modelling language is supported by an editor spe-
cially developed to help users to design test models
graphically, improving the user experience and hiding

Figure 1: The proposed architecture allows users to be ag-
nostic about the final target platform, focusing the effort on
building of test models.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

240

the complexity of the language. The resulting mod-
els conform the developed modelling language and its
constraints. These models are then stored in a regular
repository in order to be accessible by different ele-
ments in the architecture and from outside. Inside the
architecture, the stored models are accessed by: (1)
the editor, in case of performing modifications in the
test models; (2) the transformer assistant, when users
select models to be transformed into executable tests.
From outside, the repository can be accessed by ap-
plication lifecycle management tools (ALM) for life-
cycle supervision activities. From these three actors,
only the editor can update the repository, being used
in a read-only mode by the others.

A test plan based on the proposed language can
be transformed in executable tests for specific testing
platforms. For this task, a transformer assistant helps
users to select a model from the repository, and the
target platform where tests will be finally executed.
Then, the assistant delegates the test model to the right
engine, which will apply specific transformation rules
to automatically translate the agnostic model into a
collection of tests executable in the chosen platform.
Due to the agnostic nature of test models and the ex-
istence of specific transformation engines, the same
model can be executed in more than one testing plat-
form. The engines are responsible for the appropri-
ate adaptation of models to each platform. When the
transformation process ends, the resulting test collec-
tion is available in the final testing platform for execu-
tion, which in case of being also automated, hides the
potential complexity of the process. Information ob-
tained as a result of the executions should be retrieved
to be included in the repository, being associated to its
corresponding test model and target platform.

The advantages of agnostic testing models are nu-
merous. Firstly, since models are independent from
the management solution (ALM) adopted by the com-
pany, migration from one tool to another due to
changes in the business strategy just requires an adap-
tor between the model repository and the new tool to
populate it with the required information in each case.
Models are not altered in this process. Secondly, once
a test model has been built, it can be executed as many
times as needed due to the automation of the transfor-
mation process, providing time saving when regres-
sion tests are needed. This automation hides the com-
plexity of the target testing platform and reduces fail-
ures due to human action. Thirdly, when application
functionalities are modified, it is only necessary to
adapt the associated model, instead of the executable
tests. Moreover, any modification in the testing plat-
form only affects to the transformation engines. Fi-
nally, models can be built and used by people who

are not necessarily test experts, broadening the use of
tests in the development process and focused on each
user’s expertise area.

3.2 Testing Modelling Language
Overview

The abstract syntax has been implemented using
Eclipse Modeling Framework (EMF) (Eclipse(c),
2013). The number and nature of the concepts man-
aged make necessary to build the main specification
as a group of smaller packages, each of them focused
on a group of concepts closely related among them.
The core of the specification are four packages which
covers concepts regarding structure, behaviour, con-
text and results respectively. There is also a last pack-
age to manage common concepts such as data or fil-
ters. The three first packages are the most evolved at
the moment, being deeply described in Section 4.

3.3 Test Model Editor

A graphical editor has been developed using Graphi-
cal Modeling Framework -GMF- (Eclipse(b), 2010).
Depending on the test plan to build, the design can be
complex enough to be difficult to visualize and man-
age in a single diagram. For this reason, the devel-
oped editor distinguishes among different diagrams,
each of them focused on a portion of the proposed lan-
guage. Thus, different diagrams allow to design tests
at different levels, providing from a general overview
of the test plan to a lower granularity focused on the
test case level. There are three kind of diagrams to
visualize different aspects of the structural design,
whereas there is only one specific diagram to describe
contextual information. The combination of several
of these diagrams gives rise to a whole test model.

3.4 Test Model Transformation

The transformation from agnostic test models to col-
lections of specific tests for particular testing plat-
forms is performed currently by using the operational
QVT language (OMG, 2011), the OMG’s standard
to perform model-to-model transformations between
EMF models. In case that test plans in the target plat-
form could not be described by its own metamodel,
model-to-text transformations would be required in-
stead.

Automated�Model-based�Testing�Based�on�an�Agnostic-platform�Modeling�Language

241

4 TESTING MODELLING
LANGUAGE

The core of the proposed architecture is the test mod-
els mentioned previously. For the sake of clarity, only
the main concepts related to structure, behaviour and
context will be depicted in this section. For a bet-
ter explanation of the concepts managed, a case study
will be used to give some examples about the potential
of the developed modelling language. The examples
will be based on a banking application described next.

4.1 PiggyBank: A Case Study

PiggyBankis the experimental use of case chosen
to show the concepts managed in the developed lan-
guage. It is a simplified application to access a
banking system, frequently used to study the test-
ing approaches in model-based software develop-
ment. The application has been created using a fully
model-driven approach, where every functionality has
been built with the modelling framework BankSphere
based on extended state diagrams. The framework
translates automatically each of the models into exe-
cutable code for web applications.PiggyBank’s main
functionalities are: (1) a login process, mandatory to
gain access to banking tasks; (2) balance visualiza-
tion; (3) money transfer; and (4) system disconnec-
tion. Having this application as case study, the aim is
to build a complete test plan for it using the designed
language, a test plan agnostic about any testing plat-
form.

4.2 Structure Package

This package groups all the elements which provide
a hierarchical structure to the test plan. The concepts
managed are flexible enough to create a large vari-
ety of hierarchies, from the most simple ones to the
most complex, being able to build nested structures
and reuse elements from other test plans already de-
signed. A summary of this package can be seen in
Figure 2. The most important relations with concepts
from other packages are also shown.

The main concepts managed in this package are
TestProject, TestSuiteandTestCaseBase. TestProject
is the root for any test plan, identifying the System-
Under-Test (SUT) to consider and grouping all the
functionalities to test in the application. This element
contains an undefined number ofTestSuites, each of
them can be described as a set of test cases which
are functionally related. ThisTestSuiteconcept pro-
vides complexity to the test plan since it can contain
moreTestSuitesand point to other structural elements,

allowing the reuse of testing structures. Finally, a
TestSuite- which represents a particular functionality-
contains theTestCaseBaseconcept, this is each in-
dividual test that need to be considered in the test
plan. These three elements have a common super-
class (StructuralTestElement) which, among other at-
tributes, owns: information about the result of the ex-
ecution of that element, annotations to customize at-
tributes when an element is being reused, and aCon-
text attribute to provide behavioural information as
well as other kind of parameters necessary at run-
time. Another attribute contains the set of require-
ments covered by a structural element, easing the
gathering of elements affected by changes in a re-
quirement.TestCaseBaseelements are slightly differ-
ent from the other structural elements since they are
the ones that will provide a unique behaviour to each
test. In such a way,TestCaseBaseis similar to an ac-
tivity diagram in a traditional UML approach. This el-
ement, apart from the context with certain behavioural
information, it owns another attribute to complete the
expected behaviour and validations for the test (link
to BehaviouralObjectin Figure 2).

A novelty in this package is the concept of
TestScenario, which is only contained byTestCase-
Baseelements. This concept allows to set the data
that will be executed at runtime for a particularTest-
CaseBase, and represents a possible extension to the
set of validations already defined in theTestCaseBase
element. The set of validations atTestCaseBaselevel
are common to all theTestScenariosexisting in the
structural element. However, the extra validations
at TestScenariolevel indicates specific checkers that
need to be added for execution, which will proba-
ble depends of the specific data set in theTestSce-
nario. Thus,TestScenariosrepresent variations of a
TestCaseBasedepending on the input data selected.
Data collections set atTestScenariolevel are defined
at pools, which act as repositories to reuse informa-
tion. Data own a specific structure that allows to use
them as a collection (valid/invalid customers), or as
a kind of registers, being able to reference specific
fields (e.g. name, surname, etc).

Considering our experimental application,Piggy-
Bank, the concepts described here can be used to de-
sign the core of the test plan as follows. SincePig-
gyBankhas a reduced number of functionalities, the
test plan for the whole application can be built us-
ing a uniqueTestProject. This project will contain
a TestSuiteelement for each functionality, i.e. Lo-
gin, Money Transfer, Display Balance and Discon-
nect. Suppose the login access is a common task in
most of the applications, not onlyPiggyBank, and it
has been established a fixed building pattern to cod-

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

242

Figure 2: Structure package.

ify this task. In this situation it could make sense that
the login access owns its own test plan in a specific
TestProject, independent from the rest of the applica-
tions. This test plan could be reused in theTestSuite
Login for PiggyBankjust pointing to it with the ap-
propriate attribute. Thus, it would be only necessary
to use annotations to rename some data if necessary.
Neither of the remaining suites would require further
complexity except being containers forTestCaseBase
elements. For instance, considering theTestSuiteDis-
play Balance, there would be aTestCaseBaseto check
the existence of a return button in the page (testCase-
Base1) and another one to check the existence of a
message with the customer name and the balance of
the bank account (testCaseBase2). At TestCaseBase
level there would be defined validations to check the
appropriate information in each case. The data used at
runtime would be set onTestScenarios. As an exam-
ple, for testCaseBase1 any set of valid users would
be possible. However, for testCaseBase2 it would be
necessary, for instance, to divide valid users depend-
ing on their balance, positive or negative. In this case,
testCaseBase2 would require twoTestScenarios, one
to point to a set of registers of customers with positive
balance and a second scenario pointing to registers of
customers with negative balance. Probably, in case of
negative balance, extra validations would be required,
such as checking that a special message also appears
on the web page. This extra validations would be indi-
cated atTestScenariolevel, not atTestCaseBaselevel
since it only affects a specific group of users.

To conclude with the Structure package, and in or-
der to keep information about the execution of a par-
ticular test plan, atTestScenariolevel there are struc-
tures to save a number of basic details about each exe-
cution performed at the testing platform. These struc-
tures areExecutionGroupandExecution. Each indi-
vidual execution would keep a report of the data used
for that particular execution and its result. These data

could be the name of the browser, the user and pass-
word used in the login process, etc.Executionsare
grouped onExecutionGroups, giving a unique verdict
for the whole set of executions. These structures col-
lect results from the target testing platform and pro-
vide verdicts which are moved up in the test structure
until theTestProjectlevel is reached and a unique ver-
dict for the whole test plan can be provided.

4.3 Behaviour Package

This package groups the elements that provide the
workflow of a test. A summary of this package can
be seen in Figure 3.

The most important concept is theBe-
haviouralElement, which contains the smallest
elements with behaviour in a test,ActionElements
and ValidationElements. These elements will have
a direct translation to one or more basic execution
units (functions, services, etc.) in each target testing
platform, being the transformation engines the
responsible for providing the right translation in each
case. ValidationElementsrepresent only validating
and checking behaviours. They own an attributetype
which can be used to set how important is the result
of a particular validation. Thus, a validation that
fails when the user expects a successful result can be
reported just as a warning if type isweak, or as an
error or an exception if type has been set tostrong.
These kind of attributes needs also to be considered
during the codification of each transformation engine
to provide the right translation. ActionElements
represent non-validating behaviours, such as filling
or clicking. These behavioural elements contain
attributes to customize the behaviour (i.e. a text that
needs to be checked or references to data from pools).

Action and validation elements can be grouped in
a specific sequence in order to create a single reusable
unit, aBehaviouralGroup. Thus, a group can be cre-

Automated�Model-based�Testing�Based�on�an�Agnostic-platform�Modeling�Language

243

Figure 3: Behaviour Package.

ated once, and used several times. The reuse ofBe-
haviouralElementsis performed due to the existence
of BehaviouralReferences, a special behavioural ob-
ject which allows to point to anyBehaviouralElement
and customize their attributes to adapt them to each
particular situation. ABehaviouralGroupcan also in-
clude references among its collection of elements.

BehaviouralElementscan be considered as prede-
fined behaviours, generated by expert tests developers
and accessible from pools, which act as repositories
for being reused among different users and test plans.

Apart from the predefined elements, it is also pos-
sible for a user to create their own behavioural ele-
ments. The user would indicate the behaviour of the
element and set the collection of attributes which need
to be considered for its right execution. These new be-
haviours will not have a direct translation in transfor-
mation engines unless they are specifically included
if its considered necessary. The advantage of creating
behavioural elements is that the update of transforma-
tion engines is based on users’ needs.

The describedBehaviouralObjectsare used in
very few parts of the whole developed package.
Regarding the elements in theStructure Package,
only TestCaseBaseowns a list ofBehaviouralObjects.
TestScenarios, due to its nature only owns a list of
ValidationElementsor references to those kind of ele-
ments. Apart from these structural elements, no other
elements contain behaviour except forContext, an el-
ement contained in the package context, explained
next.

4.4 Context Testing Language

This last package is focused on the concept of con-
text, which can be understood as a collection of in-
formation which: (1) helps the system to reach a spe-

cific execution point before going on with the test; It
moves the system from a state A to another B, which
is considered the right starting point for the test to ex-
ecute; and (2) ensures that the system has reached that
execution point.

The concepts contained in this package, extended
with some auxiliary terms from other packages for
better understanding, can be seen in Figure 4.

A context includes behavioural elements -
BehaviouralObjectsof any kind-, and parameters -
ConfigurationParameter-. The behavioural elements
are the responsible for moving the system from one
state to another, in a similar way to concepts such as
’set-up’ and ’tear-down’ in JUnit. The parameters are
pairs attribute-value in order to set information related
with the testing environment to use at runtime. Ex-
amples of parameters for a web application such as
PiggyBankcan be the list of browsers where an entire
test plan or a particular test need to be successfully
executed or some constant value to be used as a con-
figuration option. These parameters can be as com-
plex as needed since they can be nested for a better
description of the execution environment. An exam-
ple of this nested description, and continuing with the
example of browsers forPiggyBank, we could imag-
ine a test for which a particular navigator should be
checked for a set of specific versions, while for others
this version specification would not be necessary. The
parameter browser could be described then as:

Browser={IE={version=21, version=22}, Firefox}.

Contexts can also include some other contexts al-
ready defined. This is interesting for avoiding repeti-
tions when several structural elements have the same
behaviour in their contexts or it is necessary a slightly
extension of a context. Finally, a context can also
point to a specificStructuralTestElemento TestSce-

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

244

Figure 4: Context Testing Language.

nario (AccesibleElement). At runtime, this last fea-
ture would execute all the necessary behavioural ele-
ments to reach that point and use it as starting point
for the rest of the test. To clarify this concept, imagine
theTestSuiteDisplay Balance. To perform any of the
tests contained in theTestSuite, it is necessary to ex-
ecute a login process. A common solution would be
repeating the login process again in the context of the
TestSuiteDisplay Balance. However, this can be done
just pointing to theTestCaseBasewhich describes the
login test. Once the login process has been included,
the user can continue designing the test suite related
to checking the balance.

Only the structural elements which are a kind of
StructuralTestElementown a context attribute. The
aim is the design of test plans minimizing the number
of elements to manage, since the elements defined in
a context can be shared by a large number of struc-
tural elements. Focusing onConfigurationParame-
ters, a parameter in a context set at a certain level
in the structural hierarchy will be visible by any of
its descendant structural elements. As an example, a
parameter defined atTestProjectlevel will be seen by
anyone down in the project, while a parameter defined
at TestCaseBasewill only have influence in that ele-
ment. Something similar happens with behavioural
elements defined in the context of a structural ele-
ment. Those ones will be visible and performed by
any descendant of that element in the hierarchy.

ConfigurationParametersdefined as shown allow
to reduce the complexity at design time since the
transformation engines will be the responsible for ex-
ploding all the information contained in these param-
eters, giving rise to a large number of individual tests
in the testing platform that otherwise would be dif-
ficult to manage by users. UsingPiggyBankas ex-
ample, and given that it is a web application, a con-
text element could be set atTestProjectlevel con-
taining all the information that will be common to
all the test plan. This information can includeAc-
tionElements, such asOpenBrowser($browser) and
GoToURL($url), which will be necessary to perform
by any test, but also parameters such as the list of

browsers to use at runtime. At a lower level,TestSuite
Login for instance, the context will only contain ac-
tions related with the filling of the access form, since
the information to reach that point comes from its par-
ent, theTestProjectelement.

5 FROM TESTING LANGUAGES
TO TESTS EXECUTIONS

Section 3 and Figure 1 introduced the general struc-
ture for integrating testing platforms and testing mod-
elling language. This approach is based on transfor-
mations that generate automatically the inputs of test-
ing platforms based on the testing models.

The testing platform considered in this work uses
a database technology for the representation of test-
ing objects and their properties. Examples that use
this storage approach are: HP QTP (QuickTest Pro-
fessional) (Rao, 2011), IBM RFT (Davis et al., 2009)
and GP in Santander Group. In this work, GP is the
platform chosen as example of transformation. It is
currently used for testing different kinds of software,
mainly, model-based banking systems, but also their
own modelling tools. GP reuses some other testing
technologies such as Selenium. GP, as the other plat-
forms based on databases, can be addressed through
model-to-model transformations since the store that
support the platform can be formalized with a schema,
which we can reuse for the construction of an interme-
diate target modelling language. This language will
represent the database of the target testing platform,
using Eclipse projects such as Teneo and CDO to sup-
port the persistence into the database of models that
conform the intermediate language.

Figure 5 shows the general structure of transfor-
mation from agnostic testing models to executable GP
test projects. The structure of the transformation is
decomposed into two QVT transformations; the first
one uses the testing model to create the GP structure
model, while the second one updates that model to in-
clude specific behaviour and validation elements. The

Figure 5: Generation of Test Projects for a database-kind
testing platform.

Automated�Model-based�Testing�Based�on�an�Agnostic-platform�Modeling�Language

245

QVT transformer maps agnostic-platform behaviour
from the testing model into specific elements of the
target platform. This second transformation, also re-
trieve data and context information, generating all the
possible combinations for testing. Each combination
will result in a single executable test in GP. When the
transformation is completed, it can be persisted into
the database. Finally, once tests are executed in GP,
using its API, results are integrated in the source test-
ing model.

6 CONCLUSIONS

An architecture has been proposed for testing follow-
ing a model-based approach. The developed mod-
elling language allows to design test plans which are
agnostic about the final target platform. It represents
architectural and behavioural aspects using an inte-
grated notation, and provides notation for test data
and context information. Models designed accord-
ing to this language become a generic repository to
be used in any testing environment. Transformation
engines with the appropriate transformation rules are
responsible for generating the right test cases for each
target platform. The language includes the reuse of
concepts, reducing design time. Transformation en-
gines are also aware of these reuse possibilities, since
they would be written by experts in each target testing
platform and the modelling language. This approach
allows a quick starting of the testing phase, right when
the development process begins with the requirements
specification. The test plan can be enhanced in an
iterative way as more information is obtained from
the development process until it captures all the needs
established. The graphical editor and transformation
engines hides the complexity of testing languages and
platforms from non-expert testers, being possible that
more people include tests in their working routine.

In the future, behavioural options should be en-
riched, since only sequential behaviour is considered
right now. Results from test executions will be re-
trieved and included in the models at the repository.
In the long term, some support to deal with changes
in the SUT could be also considered. Increasing the
available transformation engines should be also con-
sidered.

ACKNOWLEDGEMENTS

The work for this paper was partially supported by
funding from ISBAN and PRODUBAN, under the
Center for Open Middleware initiative.

REFERENCES

Baker, P., Dai, Z. R., Grabowski, J., Haugen, O., Samuels-
son, E., Schieferdecker, I., and Williams, C. E. (2004).
The UML 2.0 Testing Profile.

Baker, P., Dai, Z. R., Grabowski, J., Haugen, O., Schiefer-
decker, I., and Williams, C. (2007).Model-Driven
Testing: Using the UML Testing Profile. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

Briand, L. C. and Labiche, Y. (2001). A UML-Based Ap-
proach to System Testing. InProc. of the 4th Int. Con-
ference on The Unified Modeling Language, Model-
ing Languages, Concepts, and Tools, pages 194–208,
London, UK, UK. Springer-Verlag.

Cristiá, M. and Monetti, P. R. (2009). Implementing and
applying the stocks-carrington framework for model-
based testing. InICFEM, pages 167–185.

Davis, C. et al. (2009).Software Test Engineering with IBM
Rational Functional Tester: The Definitive Resource.
IBM Press, 1st edition.

Eclipse(a) (2011). Eclipse Foundation: Test & Performance
Tools Platform (TPTP). http://www.eclipse.org/tptp.

Eclipse(b) (2010). Eclipse Graphical Modeling Framework
(GMF). www.eclipse.org/modeling/gmf/.

Eclipse(c) (2013). Eclipse Modeling Framework (EMF).
www.eclipse.org/modeling/emf/.

Fowler, M. (2003). UML Distilled: A Brief Guide to
the Standard Object Modeling Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 3rd edition.

Fowler, M. (2010).Domain Specific Languages. Addison-
Wesley Professional, 1st edition.

Holmes, A. and Kellogg, M. (2006). Automating functional
tests using Selenium. InAgile Conf., pages 270–275.

Javed, A. Z., Strooper, P., and Watson, G. (2007). Auto-
mated generation of test cases using model-driven ar-
chitecture. InAutomation of Software Test , 2007. AST
’07. 2nd Int. Workshop on, pages 3–3.

Karl, K. (2013). GraphWalker. www.graphwalker.org.
Lamancha, B. P. et al. (2009). Automated Model-based

Testing Using the UML Testing Profile and QVT. In
Proc. of the 6th Int. Workshop on Model-Driven Engi-
neering, Verification and Validation, MoDeVVa ’09,
pages 1–10, New York, NY, USA. ACM.

Meszaros, G. (2006).XUnit Test Patterns: Refactoring Test
Code. Prentice Hall, Upper Saddle River, NJ, USA.

OMG (2011). Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, v1.1.

Pedrosa, C., Lelis, L., and Vieira Moura, A. (2013). In-
cremental testing of finite state machines.Software
Testing, Verification and Reliability, 23(8):585–612.

Rao, A. (2011).HP QuickTest Professional WorkShop Se-
ries: Level 1 HP Quicktest. Outskirts Press.

Tahchiev, P., Leme, F., et al. (2010).JUnit in Action. Man-
ning Publications Co., Greenwich, CT, USA.

Utting, M. and Legeard, B. (2007).Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

Wendland, M.-F. et al. (2013). Fokus!MBT: A Multi-
paradigmatic Test Modeling Environment. InProc.
of the Workshop on ACadeMics Tooling with Eclipse,
ACME ’13, pages 1–10, New York, NY, USA. ACM.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

246

