
Model Query Translator
A Model-level Query Approach for Large-scale Models

Xabier De Carlos1, Goiuria Sagardui2, Aitor Murguzur1, Salvador Trujillo1

and Xabier Mendialdua1

1IK4-Ikerlan Research Center, P .J. M. Arizmendiarrieta, 2 20500 Arrasate, Spain
2Mondragon Unibertsitatea, Goiru 2, 20500 Arrasate, Spain

Keywords: Model-Driven Development, Large-scale Models, Query Languages, Persistence, Eclipse Modelling Frame-
work, Scalable-query.

Abstract: Persisting and querying models larger than a few tens of megabytes using XMI introduces a significant time
and memory footprint overhead to MDD workflows. In this paper, we present an approach that attempts to
address this issue using an embedded relational database as an alternative persistence layer for EMF models,
and runtime translation of OCL-like expressions for efficiently querying such models. We have performed
an empirical study of the approach using a set of large-scale reverse engineered models and queries from the
Grabats 2009 Reverse Engineering Contest. Main contribution of this paper is the Model Query Translator, an
approach that translates (and executes) at runtime queries from model-level (EOL) to persistence-level (SQL).

1 INTRODUCTION

Model Driven Development (MDD) raises the level
of abstraction from code to models and makes the
latter first-class citizens of the development process.
In some domains, models used for MDD can be-
come very large. For example, in embedded sys-
tem domains such as wind-power or railway, sys-
tems can comprise a large number of elements such
as sensors, actuators and control units. To effec-
tively support such domains, scalable model persis-
tence mechanisms are essential. Unfortunately, this
is not the case for the standard XML Metadata Inter-
change (XMI), which the Eclipse Modelling Frame-
work (EMF) uses as its default persistence format
(Pagán et al., 2013).

To overcome scalability problems several ap-
proaches have been proposed to leverage relational
and non-relational databases to facilitate scalable
model persistence and loading. Those provide an al-
ternative persistence mechanism for large-scale mod-
els entailing different elements: (i) providing a persis-
tence approach with features that facilitate scalabil-
ity such as partial loading or loading on demand; (ii)
integrating the persistence mechanism within com-
monly used modelling tools; and (iii) providing scal-
able querying of persisted models.

This paper focuses on the scalable querying of

persisted models. For that purpose, we present the
Model Query Translator (MQT) approach in order
to translate at runtime queries expressed in the Ob-
ject Constraint Language (OCL)-based Epsilon Ob-
ject Language (EOL) to SQL. MQT supports read-
only EOL queries and we plan to add support for mod-
ification query expressions in a next version. General
overview of MQT was presented in (De Carlos et al.,
2014). In this paper we provide technical details of
the solution and an empirical study to compare it with
XMI.

With MQT users can execute queries using the
same level of abstraction used for querying models
persisted using XMI, but with the efficiency of SQL.
As a quantitative evaluation, we have performed an
empirical study using five models of different sizes
(from 45.3MB to 403MB). Each model has been per-
sisted using both XMI and our persistence approach
(embedded database). Then we have executed the
GraBaTs’09 Reverse Engineering Contest query (sin-
gleton extraction). In our experiments, models per-
sisted using our approach take up more storage space
but consistently outperform their XMI counterparts in
terms of memory footprint and query execution time.

62 De Carlos X., Sagardui G., Murguzur A., Trujillo S. and Mendialdua X..
Model Query Translator - A Model-level Query Approach for Large-scale Models.
DOI: 10.5220/0005238000620073
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 62-73
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

Roadmap of the Paper

The rest of the paper is organised as follows: Sec-
tion 2 provides some background and motivates this
work. Sections 3 and 4 describe MQT approach and
the translation process. An empirical study is per-
formed in Section 5 and then Section 6 reviews related
work and compares it with the proposed approach.
This paper concludes with conclusions and directions
for future work are proposed in Section 7.

2 BACKGROUND AND
MOTIVATION

XMI is an XML-based model interchange format
standardised by the OMG, and the default model per-
sistence format in the widely-used EMF. In addition
to XMI other file-based persistence formats exist: bi-
nary (supported by EMF) or JSON1. However, file-
based persistence entails memory and performance
problems with large models, since the information
needs to be fully loaded in memory before it can be
queried (Pagán et al., 2013). As models grow in size,
this can have a significant impact both on the overall
time needed to execute a query on a stored model, and
on the memory footprint of the host application.

Most recent approaches (Eike Stepper, 2014;
Pagán et al., 2013; Benelallam et al., 2014;
Scheidgen, 2013) try to solve scalability problems
through persisting models in databases. These ap-
proaches provide persistence-level query languages
that leverage the capabilities of these databases (e.g.
SQL, MorsaQL (Pagán and Molina, 2014), etc.).
Persistence-level queries are specific and dependent
on a particular persistence mechanism. This results
in queries that are expressed at a low level of ab-
straction and tightly couples the queries with the spe-
cific model persistence mechanism. One of the ad-
vantages of persistence-level queries is that they are
typically executed directly over persisted models. By
contrast, model-level queries are closer to model en-
gineers since they are expressed in languages focused
on interacting with models, independently of the per-
sistence mechanism (e.g. IncQuery, EOL, etc.). The
main disadvantage of model-level query languages is
that they typically require to load models into mem-
ory before queries can be executed.

This scenario motivates us to provide a solution
that is able to query persisted models using a model-
level query language, but also leveraging the capabil-
ities of the persistence mechanism used.

1Read more at http://ghillairet.github.io/emfjson/

3 MQT: OVERVIEW

MQT is an approach that supports querying models
with a model-level language but also takes advan-
tage of the persistence-level query language. MQT
translates at runtime model-level (EOL) queries to
persistence-level (SQL) queries.

We have chosen EOL as model-level query lan-
guage. Main reasons for choosing EOL are that (i)
EOL is a OCL-like language that besides read-only
queries it also provides queries for model modifi-
cation; (ii) other languages such as Epsilon Valida-
tion Language (EVL), Epsilon Transformation Lan-
guage (ETL), Epsilon Comparison Language (ECL)
are built on top of EOL (Kolovos et al., 2014) and pro-
vide model validation, transformation or comparison
features. On the persistence-level, we have chosen
SQL since it is a structured and mature language used
to query information from relational databases (and
also some NoSQL databases). EOL is imperative and
cannot be directly mapped to SQL. For this reason,
MQT performs partial translation of EOL queries into
equivalent SQL queries. Partial translation is suitable
when the model-level query language provides con-
structs that have no direct mapping in the target lan-
guage. Approaches such as (Demuth et al., 2001) and
(Marder et al., 1999) perform OCL to SQL transla-
tion at compilation-time, but the translation on MQT
is executed at runtime. Runtime-translation facilitates
translation of languages that have not direct mapping
(e.g. EOL and SQL).

The translation mechanism provided by our ap-
proach is based on the Epsilon Model Connectivity
Layer (EMC) (Kolovos et al., 2014). EMC is an API
that provides abstraction facilities over modelling and
data persistence technologies. It defines the IModel
interface that provides methods that enable query-
ing and modifying model elements. MQT provides,
EDBObject class (described in Section 3.2) that im-
plements the IModel interface of EMC. Using in-
stances of this class, MQT is able to interact with
models conforming to an Ecore metamodel and per-
sisted in a relational database. Our approach is based
on (Kolovos et al., 2013), where the naive transla-
tion provided by EMC is used to query large datasets
stored on a single-table relational database. By con-
trast, MQT provides: (i) a metamodel-agnostic data-
schema that is able to persist models conforming to
any Ecore metamodel; and (ii) customized transla-
tion of queries from EOL to SQL. At this stage, al-
though translation of read-only EOL query expres-
sions is supported, MQT does not support query ex-
pressions that modify model.

Model�Query�Translator�-�A�Model-level�Query�Approach�for�Large-scale�Models

63

3.1 Data-schema

We have chosen SQL query language on persistence-
level. Consequently, translated queries must be based
on a data-schema. We have specified a data-schema
that is able to persist models in a relational database.
The schema is metamodel-agnostic and persistence
of models in the database is independent of meta-
models they conform to. Thus, any model can be
persisted under the same schema, so in case meta-
model evolves, no changes are required in the schema.
We have defined different indexes within the schema
that allow running the translated SQL queries faster.
Figure 1 illustrates the schema. The EOL to SQL
translation process of MQT is dependent on this data-
schema. Tables, relations and indexes shown on the
schema are discussed below:

Figure 1: Specified metamodel-agnostic database schema.

� Object table: A tuple in this table is created
for each element of the model. Model elements
are identified by a primary key in the row of the
ObjectID column and the meta-class ID (foreign
key) of each element is stored in the row of the
ClassID column. ObjectID has been defined as
an index of this table.

� Class table: It contains all meta-classes of the
model. ClassID (primary key) and Name of the
meta-class are stored for each one. ClassID has
been defined as an index of this table.

� Feature table: It stores an ID (FeatureID
column, primary key) and the name (Name col-
umn) for each attribute and reference in the meta-
classes of the model. FeatureID has been defined
as an index of this table.

� AttributeValue table: This table stores at-
tribute values of model elements. Attribute values
are identified by an ObjectID and a FeatureID
(both foreign keys), and the Value column stores
the primitive value of the attribute. In case of
single-file attributes with empty value, value-by-

default is stored. An index has been created for
this table on ObjectID and FeatureID.

� ReferenceValue table: This table stores ref-
erences of model elements. References are iden-
tified by an ObjectID and a FeatureID (both
foreign keys). The ID of the referenced element
(Value column, foreign key) and meta-class of
the referenced element (ClassID column, foreign
key) identify the referenced model element. An
index has been created for this table on ObjectID
and FeatureID.

� FeatureValueCount table: Stores the num-
ber of values of each feature. Tuples are identified
by two foreign keys (ObjectID and FeatureID),
and the count is stored in ValueCount. This ta-
ble is not indispensable to save the model infor-
mation, but preliminary tests show that using it
performance is improved in terms of speed. An
index has been created for this table on ObjectID
and FeatureID.

Although the schema is metamodel-agnostic, the
metamodel is provided by the users when the EDB-
Model class is instantiated (through a parameter on
the constructor). Being so, MQT makes use of the
metamodel to: (i) identify superclasses and subclasses
of model elements; (ii) obtain the default value of
each attribute; (iii) identify whether a feature is an
attribute or a reference; or (iv) obtain bounds of fea-
tures.

Additionally, we have provided an utility
that giving a model persisted in XMI, re-
turns a database with the previously described
schema and containing all the model infor-
mation (es.ikerlan.edbm.EDBModelImport.
importFromXMI(...)).

3.2 Conceptual Model

Figure 2 illustrates a UML class diagram of MQT,
where the conceptual model of MQT is specified.
Next, each class is described one-by-one:

� EDBConnection. This class is responsible for
connecting with the database and it is used to ex-
ecute queries and get results from the database.
The instance of EDBConnection contains the in-
formation required to connect to the database:
username, password, basepath, database name
and an instance of the JDBC Driver.

� EDBCache. Each instance of this class contains
two Maps that keep in memory names and ids
of classes and features in the queried model.
Maps are accessible using different methods:
getClassID(name), getFeatureID(name),

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

64

Figure 2: Class-diagram of MQT.

getClassName(id) or getFeatureName(id).
Using methods provided by this class, it is
possible to avoid some joins on the translated
SQL queries, since names or ids of classes and
features are obtained directly from memory.

� EDBModel. This class extends the Model class
of EOL (which implements the IModel inter-
face of EMC). This is the main class of MQT
and instances of this class are responsible for in-
teracting with model elements persisted in the
database. Each instance of this class stores and
uses an instance of the class EDBConnection
and another one of EDBCache. The EDBModel
class overrides Model methods that query models
(modification methods are not supported). This
class also overrides the getPropertyGetter()
methods of Model, returning an instance of
EDBObjectPropertyGetter.

� EDBObjectPropertyGetter. This class
extends the AbstractPropertyGetter class of
EOL. It is invoked when a feature value is queried,
and it executes the method getValue(feature)
of the queried EDBObject instance (the method
is described in the next point).

� EDBObject. This class implements the
IModelElement interface of EOL and it is
used to represent model elements that are per-

sisted in the database. EDBObject class is in-
stantiated by classes such as EDBObjectList,
EDBObjectIterator or EDBModel to return el-
ements of the model. Instances of EDBObject
class are able to get attribute and reference
values of the model object that they repre-
sent. Attribute and reference values are ob-
tained through the method getValue(String
featureName). It also provides other methods
to obtain other information about the model el-
ement: equals(Object object) compares the
model element with another object and returns if it
is equal; getEClass() returns the EClass of the
represented model element; getOwningModel()
returns the model where the element is contained;
getObjectID() returns the ID that identifies the
model element within the database; etc.

� EDBObjectBag, EDBObjectSequence,
EDBObjectSet,
EDBObjectOrderedSet. These classes
extend different collection type classes of
EOL (EolBag, EolSequence, EolSet and
EolOrderedSet). These classes are instantiated
and returned in the execution of the method
getValue(feature) of the class EDBObject.

� ImmutableList. An abstract class that im-
plements the interface java.util.List and pro-

Model�Query�Translator�-�A�Model-level�Query�Approach�for�Large-scale�Models

65

vides support for read-only lists.

� ResultSetList. An abstract class that ex-
tends the previously described ImmutableList.
This class is used to provide a List that is able
to work with results returned by the database
(ResultSet) after executing a SQL query.

� EDBObjectList. This class extends
ResultSetList and specifies a list composed
by EDBObjects. This class is instantiated when
the translated and executed SQL query returns
a list of model elements. List methods imple-
mented in this class use a database (ResultSet)
to return results. For example: the size()
method returns the size of the ResultSet;
contains(Object object) returns if the given
object exists on the results of the ResultSet;
etc. To support runtime adaptation of queries
the EDBObjectList class implements the in-
terface IAbstractOperationContributor
and an implementation of
getAbstractOperation(String operation)
method is provided. Depending on the translated
operation (select, collect, etc.) it returns an
instance of class EDBObjectSelectOperation,
EDBObjectCollectOperation or
EDBObjectRejectOperation.

� PrimitiveValuesList. This class extends
ResultSetList and is similar to the previously
described EDBObjectList. In this case, this class
is instantiated when the translated and executed
SQL query returns a list of primitive values (in-
stead of model elements).

� ImmutableListIterator. An ab-
stract class that implements the interface
java.util.ListIterator and provides an
implementation for read-only list iterators.

� ResultSetListIterator. Abstract
class extending the previously described
ImmutableListIterator. This class is used to
provide a ListIterator that is able to work with
results returned by the database (ResultSet)
after executing a SQL query.

� EDBObjectListIterator. Extends the
class ResultSetListIterator and implements
IteratorList methods but returning results
(EDBObjects) based on a database (ResultSet).
This class is instantiated when the method
listIterator() of the EDBObjectList class is
executed.

� PrimitiveValuesListIterator. Imple-
ments the same methods of the previous class but
in this case it is adapted to work with a ResultSet

containing primitive values. This class is instan-
tiated when the method listIterator() of the
PrimitiveValuesList class is executed.

� EDBObjectSelectOperation,
EDBObjectCollectOperation and
EDBObjectRejectOperation. These
classes extend different EOLOperations, over-
riding the execute() method and providing
more performant and adapted translated select,
collect and reject queries. EMC provides a naive
translation where each expression is translated
and then executed one-by-one. For example,
the expression ‘‘Elem.all.collect(n |
n.name)’’ returns a list containing names of
all model elements of type Elem. In the case
of the EMCs’ naive translation and execution
of the query, first ‘‘Elem.all’’ is executed,
getting a EDBObjectList containing all Elem
type elements. Then, one SQL query is generated
and executed to get the name of each element
returned on the list. By contrast, extending
EOLOperations, more performant queries are
constructed when translating select, reject and
collect expressions. For example, in case of
‘‘Elem.all.collect(n | n.name)’’, we
can construct a SQL query that returns in one
execution all Elem type elements’ name. We
compared query execution times of the naive and
of the extended translation in (De Carlos et al.,
2014).

4 MQT: EOL to SQL Translation

This section describes the translation process by
analysing how MQT translates EOL query expres-
sions. The EOL query parsing and execution is driven
by the EOL Module and our approach is able to inter-
act with it since MQT is based on the EMC. Figure 3
illustrates the sequence diagram of the translation of
the most noteworthy EOL expressions. Following, the
translation and execution process of the expressions
illustrated in the Figure 3 and of other EOL expres-
sions is described. We have extracted from (Kolovos
et al., 2014) the description of each EOL expression .

4.1 Query Model Elements

The model itself is the input of EOL expressions of
this type. Being so, the starting point of the transla-
tion are the methods located on the EDBModel class
instance and they are executed by the EOL Module.
First step of the Figure 3 illustrates the translation pro-
cess of an EOL query of this type. Next, the transla-

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

66

Figure 3: Sequence diagram of a MQT execution.

tion process for EOL expressions of this type is de-
scribed:

� allOfKind(), allInstances(),
all():EDBObjectList:

EOL Description: allOfKind() returns an
EDBObjectList containing all the model ele-
ments (EDBObject instances) that are instances
either of the type itself or of one of its subtypes.
Methods allInstances() and all() are aliases
of allOfKind() and the execution and result is
the same.

MQT Translation: returned EDBObjectList
is able to query from the database model ele-
ments that are instances of the type or of the
subtypes: (SELECT * FROM OBJECT WHERE
(OBJECT.CLASSID = getClassID(type) OR
OBJECT.CLASSID = getClassID(subtype)
OR ...)), but the query is not executed until
the result is required. As step 1 of Figure
3 illustrates, when an allOfKind() EOL
query is executed, the EOLModule executes the
getAllOfKind(String type) method of the
EDBModel class instance (Model in the figure).
In this method, summarizing, first classIds of
the type and subtypes (if exist) are obtained from
memory through the EDBCache class instance. If
the queried class is loaded in memory, it returns
the ID directly. If it is not yet loaded, the ID of the

class is obtained through a SQL query that is ex-
ecuted by an EDBConnection instance. Next, an
EDBObjectList is instantiated (L1), where some
of the constructor parameters are : tables =
‘‘[Object]’’, conditions=‘‘(ClassID=?
OR ClassID=? OR ...)’’
parameters=[getClassID(type),
getClassID(subtype),...], isOne=false.
These parameters are used to construct the SQL
query.

� allOfType():EDBObjectList:
EOL Description: returns an EDBObjectList

containing all the elements in the model (repre-
sented using EDBObject instances) that are in-
stances of the type.
MQT Translation: returned EDBObjectList
is able to query from the database model ele-
ments that are instances of the type (SELECT
* FROM OBJECT WHERE (OBJECT.CLASSID
= getClassID(type))) and the query is not
executed until the result is required. The pro-
cess to get the EDBObjectList is similar to
the expression allOfKind(). In this case, the
getAllOfType(type) method of the EDBModel
instance is executed. In this method, first,
classId of the type is obtained using EDBCache
instance. Then EDBObjectList is instanti-
ated. Some parameters which are passed to the

Model�Query�Translator�-�A�Model-level�Query�Approach�for�Large-scale�Models

67

constructor are: tables = ‘‘[Object]’’,
conditions=‘‘(ClassID=?)’’
parameters=[getClassID(type)],
isOne=false.

4.2 Element Filtering

A previously instantiated EDBObjectList is the in-
put of EOL expressions of this group. The starting
point of the translation is the execution of a method
of the EDBObjectList instance, and it is performed
by the EOL Module. The second step in Figure 3 il-
lustrates translation of a select, an expression of this
type. Next, translation process of some EOL expres-
sions of this type is described:

� select(iterator:Type |
condition):EDBObjectList:
EOL Description: getting an EDBObjectList as
input, it returns all elements of the list satisfying
the condition.
MQT Translation: returned EDBObjectList is
able to query from the database model elements
of the input EDBObjectList satisfying specified
condition (SELECT * FROM OBJECT WHERE
(L2 SUBQUERY) AND (CLASSID=? OR ...)).
The query is not executed until the result is
required.
Step 2 of Figure 3 illustrates the trans-
lation process and it is explained be-
low: First, the EOL Module executes the
getAbstractOperation("select") method
of the corresponding EDBObjectList (pre-
viously instantiated on the translation of
another expression; e.g. L1 of the fig-
ure). Then, the execute() method of the
EDBObjectListSelectOperation class
instance (S1) is executed. It returns a
new instance of the EDBObjectList class
(L2). In this case, constructor parame-
ters are completed with attributes of L1
and with condition of the select: tables =
L1.tables, conditions=select subquery
+ L1.conditions
parameters=[select parameters +
L1.parameters], isOne=false. With this
information, the EDBObjectList instance is able
to construct the SQL expression that gets model
elements that meet previous conditions and also
the condition of the select.

� reject(iterator:Type |
condition):EDBObjectList:
EOL Description: getting an EDBObjectList as
input, it returns all elements of the list that do not

satisfy the condition.
MQT Translation: returned EDBObjectList is
able to query from the database model elements
of the input EDBObjectList that do not sat-
isfy the condition (SELECT * FROM OBJECT
WHERE (OBJECT NOT IN L2 SUBQUERY)
AND (CLASSID=? OR ...)). When this
expression is parsed, as with the select
expression, the EOL Module executes the
getAbstractOperation("reject") method
of the corresponding EDBObjectList. It uses
a EDBObjectListRejectOperation instance
(based on a EDBObjectListSelectOperation)
to instantiate the returned EDBObjectList.

� collect(iterator:Type |
condition):EDBObjectList |
PrimitiveValueList:
EOL Description: getting an EDBObjectList
as input, it returns a EDBObjectList or a
PrimitiveValueList. The returned list contains
values of the specified condition for each element
of the input list.
MQT Translation: if the specified cond-
tion is based on an attribute, the returned
PrimitiveValueList contains values of
the feature for each element of the input
EDBObjectList. Else, if the feature is based on a
reference, an EDBObjectList is returned.
When this expression is parsed,
the EOL Module executes the
getAbstractOperation("collect") method
of the corresponding EDBObjectList. To
return the computed list, first, SQL queries
should be executed and then results obtained
from the database are used to populate returned
list. The executed query is based on the in-
put EDBObjectList, but it is re-factorized to
return in one execution all the required val-
ues. If the result is a PrimitiveValueList,
format of the SQL expression constructed and
executed during collect translation is the fol-
lowing: SELECT VALUE FROM OBJECT INNER
JOIN ATTRIBUTEVALUE ON OBJECT.OBJECTID
= ATTRIBUTEVALUE.OBJECTID WHERE
Else if the result is an EDBObjectList, the
format of the SQL expression is: SELECT
VALUE, CLASSID FROM OBJECT INNER JOIN
REFERENCEVALUE ON OBJECT.OBJECTID =
REFERENCEVALUE.OBJECTID WHERE ...

� selectOne(...), closure(...),
aggregate(...), exists(...),
etc.: The approach makes use of the pre-
viously described methods’ to get the result of

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

68

these methods.

4.3 Query Results (EDBObjectList)

These EOL query expressions return a result from
a given EDBObjectList. The translation starting
point is a method of the EDBObjectList instance
that is executed by the EOL Module. It is im-
portant to note that as this type expressions re-
quire to return the result, SQL expression constructed
by the input EDBObjectList should be executed.
The SQL query expression is only executed once,
since in the following execution of methods of the
same EDBObjectList instance same ResultSet is
used. Then, based on the ResultSet returned by
the database, required result is prepared and returned.
Third step of the Figure 3 illustrates translation of an
expression of this type: at(2) that returns the second
EDBObject of the list.

Next, translation process of some EOL expres-
sions of this type are described:

� at(index: Integer):EDBObject:
EOL Description: returns the EDBObject of the
collection at the specified index.
MQT Translation: returns a new instance of
EDBObject based on the result located in the
ResultSet (returned by the database) at the spec-
ified index. As step 3 of the Figure 3 illustrates,
the EOL Module executes the method get(2) of
the EDBObjectList (L2). To get the result, first
the SQL expression constructed by the L2 is exe-
cuted through the EDBConnection instance (Con)
located at the EDBModel instance (Model). The
database returns a ResultSet that is stored on L2.
Finally, it is used to return results, in this case cre-
ating a new EDBObject instance based on the sec-
ond row of the ResultSet.

� first(), second(), third(),
fourth(), last() : EDBObject:
EOL Description: returns the first, second, third,
fourth and last EDBObject of the EDBObjectList
respectively.
MQT Translation: these expressions make use of
the previously described method at(index) (e.g.
at(0) in case of first()).

� size():Integer:
EOL Description: returns how many EDBObjects
are contained in the EDBObjectList.
MQT Translation: first, ResultSet is obtained
(as previously described) and then returns the
number of rows that it contains.

� includes(obj:
EDBObject):Boolean:
EOL Description: returns true if the
EDBObjectList includes the EDBObject.
MQT Translation: the EOL Module executes the
contains(obj) method of the EDBObjectList.
This method iterates all the rows of the previ-
ously obtained ResultSet analysing if the speci-
fied obj is in the list. ObjectID is used to compare
EDBObjects and if it is equal once, the method
returns true.

� includesAll(objCol:
Collection):Boolean:
EOL Description: returns true if the
EDBObjectList includes all the EDBObjects of
objCol.
MQT Translation: the EOL Module exe-
cutes the containsAll(col) method of the
EDBObjectList. This method iterates all
EDBObjects of col, executing for each one the
previously described includes(obj).

4.4 Query Results (EDBObject)

These EOL query expressions return a result from a
given EDBObject. The translation starting point is a
method of the EDBObject instance that is executed
by the EOL Module. Next, the translation process of
some EOL expressions of this type is described:

� .feature (e.g. obj.name):
EOL Description: returns the value of the speci-
fied feature of the given EDBObject.
MQT Translation: constructs and executes the
SQL expression getting the features’ value from
the database. In case the feature is an attribute
the SQL expression has the following for-
mat: SELECT FROM ATTRIBUTEVALUE WHERE
OBJECTID=? AND FEATUREID=?; else, if the
feature is a reference, the SQL expression format
is: SELECT FROM REFERENCEVALUE WHERE
OBJECTID=? AND FEATUREID=?. As shown
on the fourth step of 3, to translate the EOL
expression to SQL, first, the EOL Module exe-
cutes the getValue(feature). Then, the SQL
expression is constructed and executed within
this method. As previously shown, the SQL
query uses the OBJECTID and FEATUREID.
While the OBJECTID is directly obtained from
the EDBObject instance, the FEATUREID is
obtained through the EDBCache instance (cache)
of the Model. Finally, the SQL query is executed
and result is returned.

Model�Query�Translator�-�A�Model-level�Query�Approach�for�Large-scale�Models

69

� type(): Type:
EOL Description: returns the type of the
EDBObject.
MQT Translation: the EOL Module executes the
getEClass() method that returns EClass of the
EDBObject. The EClass is obtained directly from
the EDBObject instance (it is specified in the in-
stantiation through the constructor).

5 EMPIRICAL STUDY

This section presents an empirical study of MQT. We
have executed a query over five models (M1...M5)
of different sizes. We have evaluated storage size,
query execution time and memory footprint. The
query is based on the GraBaTs’09 Reverse Engineer-
ing Contest, and identifies singletons within a Java
project. The query has been implemented using EOL,
and it is illustrated in Listing 1. First all the meth-
ods named getInstance that have a modifier are
selected (lines 1-2). Then, for each method, if its
modifier is static and public (line 7) and the return
type is the same as the class that contains the method
(lines 8-9), the class is stored in a variable (line 10).
Finally, the query shows the name of all the classes
that are singletons (lines 13-14).

1 var method = MethodDeclaration.all.
select(m | m.name= ’getInstance’);

2 method = method.select(m | ! m.
modifier.isEmpty());

3 var mod;
4 var singletons = new Sequence;
5 for(m in method){
6 mod = m.modifier;
7 if(mod.static = true and mod.

visibility.literal == ’public’){
8 var class = m.

abstractTypeDeclaration;
9 if(m.returnType.type = class)
10 singletons.add(class);
11 }
12 }
13 for(c in singletons)
14 c.name.println();

Listing 1: EOL query that extracts singleton classes from a
Java model.

Models have been created from existing Java plug-
ins using the Java Discoverer provided by MoDisco
(Bruneliere et al., 2010), a framework for model-
driven reverse engineering. These models have been
persisted in the native XMI and also in a single-
file, embedded database using H2 v.1.3.168 and a
metamodel-schema (previously described in Section

3.1). Model to database importation has been per-
formed using the XMI to database import utility
provided by MQT. Table 1 illustrates details about
models used on this study: size of the XMI file,
size of the database file, number of objects exist-
ing within the database, number of instances of the
MethodDeclaration class, number of instances that
satisfy first conditions (lines 1-2 of 1) and number of
returned singletons.

The query has been executed 100 times over each
model and using both persistence formats (XMI and
embedded DB). Values measured have been storage
size, memory footprint and query execution time. The
memory footprint has been measured on both cases
using VisualVM2. Regarding query execution times,
measured values are different depending on the used
persistence:

� XMI: the model is first completely loaded into
memory and then the query is executed. As such,
we have divided results in two groups: (i) first
execution which includes loading time and query
execution time; and (ii) the average of the follow-
ing executions which include only query execu-
tion time.

� Embedded DB: the first execution has a warm-
up time overhead which includes loading the
database driver, connections, etc. For this rea-
son, we have divided results in two groups: (i)
first execution which includes warm-up time and
query execution time; and (ii) the average of sub-
sequent executions which include only query exe-
cution time.

All tests have been executed under an Intel Core
i7-3520M CPU at 2.90GHz with 8GB of physical
RAM running 64 bits Windows 7 SP1, JVM 1.8.0 and
the Eclipse Luna (4.4.0) distribution configured with
2GB of maximum heap size.

5.1 Results

This section shows and discusses obtained results:
storage size, execution time and memory footprint.
Storage size and memory footprint are shown in
Megabytes (MB) and query execution time in mil-
liseconds (ms).

5.1.1 Storage Size

As is illustrated on Figure 4 models persisted using
our approach are between %31-%53 bigger than mod-
els persisted using XMI. The reason for it is that be-
sides model information, the database stores indexes

2Read more about VisualVM at http://visualvm.java.net

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

70

Table 1: Details about used models.

XMI Size (MB) DB Size (MB) # Object # MethodDecl. # Methods cond # Singletons
M1 45,3 59,5 165.741 5.366 9 9
M2 82,2 126 330.761 8.129 8 8
M3 212 299 875.988 11.393 6 6
M4 327 452 1.343.207 15.386 3 0
M5 403 519 1.566.890 19.366 0 0

Figure 4: Comparison of storage size (MB) between XMI
and Embedded DB.

and duplicated information in some cases (e.g. Fea-
tureValueCount table) to support faster queries.

5.1.2 Memory Footprint

Figure 5: Comparison of used memory (MB) between XMI
and MQT.

Figure 5 shows the results of the used memory during
the execution of the query over the selected models
(from the smallest M1 to the largest M5). As illus-
trated in the figure, in XMI, the use of memory grows
slowly from M1 to M2 (% 16 more) but the size of the
model has much more impact over memory footprint
from M3 to M5. In the first executions the used mem-
ory has a low value (185 and 215 MB), but in case
of M4-M5 the used of memory rounds one gigabyte,
making handling large XMI models impractical in de-
vices with limited memory such as an embedded sys-
tem, smartphones/tablets or computers with reduced
memory.

In MQT, the memory usage increases, but the
growth is slower: comparing with M1, memory us-
age is 2.79 times higher in M5, while in the case of
XMI the use of memory is 6.27 bigger. Being so, al-
though model size has impact over used memory in
MQT, it scales better than XMI.

5.1.3 Query Execution Time

Figure 6: Comparison of query execution time (ms) be-
tween XMI (with loading time) and MQT (with warm-up
time).

On the one hand, Figure 6 illustrates query execu-
tion times on different models using XMI and MQT.
Measures shown on this chart also include the time
for loading model in case of XMI and the time for
warming-up the database in case of MQT. As is illus-
trated in the figure, XMI has to load the entire model
in memory and it is a time consuming task. By con-
trast, MQT has to warm-up the database (create driver
and connections, load some information in the mem-
ory, etc.) but the impact of the model size is lower
than in XMI.

Figure 7: Comparison of query execution time (ms) be-
tween XMI (without loading time) and MQT (without
warm-up time).

On the other hand, Figure 7 illustrates average of
the query execution without load/warm-up time. As
shown on the chart, model size has impact over the
query execution time over XMI. However, execution
time in M5 is lower than execution time in M4. The
reason is that as is shown on Table 1, while in M4
three methods satisfy conditions of the query pro-
gram, there are not methods satisfying them in M5.
Consequently, fewer queries should be translated and
executed in the case of M5, and this has a positive
impact over the execution time (less time required).

Model�Query�Translator�-�A�Model-level�Query�Approach�for�Large-scale�Models

71

In case of MQT, the number of queries to be trans-
lated and executed has direct impact over the execu-
tion time result and it is dependent on the nature of
the model. However, in this case, model size has not
significant impact over the result.

5.2 Threats to Validity

Used memory and execution time results, show that
our approach is promising in terms of scalability with
respect to XMI. Correctness of the results has been
verified manually, ensuring that query results are the
same in XMI and in MQT.

Results show that a more intensive evaluation
should be performed, analysing the impact of the na-
ture of the model and of the query program over the
execution time and memory footprint. We plan to per-
form this study in future iterations of this work.

6 RELATED WORK

Morsa (Pagán et al., 2013), Neo4EMF (Benelallam
et al., 2014), EMF Fragments (Scheidgen, 2013),
Mongo EMF (Bryan Hunt, 2014) and CDO (Eike
Stepper, 2014) are approaches that provide model per-
sistence facilities by leveraging relational and non-
relational Database Management Systems (DBMSs).
These approaches provide persistence-level query
languages that leverage capabilities of these databases
(E.G. MorsaQL (Pagán and Molina, 2014), COCL
(Eike Stepper, 2014), CYPHER or SQL). Models per-
sisted using this approach also can be queried using a
model-level query language (E.G. EMF Query (An-
thony Hunter, 2014), INCQuery (Bergmann et al.,
2012), EOL (Kolovos et al., 2014) or OCL), but with-
out fully-leveraging database capabilities. By con-
trast, our approach translates queries from model-
level to persistence-level and then executes them, pro-
viding in this way a mechanisms for querying from
model-level but leveraging also persistence capabili-
ties.

Other approaches are focused on the generation
of queries based on OCL-like languages: (Heiden-
reich et al., 2008) proposes an approach focused on
generating SQL queries from invariants that are spec-
ified using OCL. This approach supports mapping be-
tween Unified Modelling Language (UML) models
and databases. Then, the approach generates queries
that allow to evaluate invariants using SQL. (Demuth
et al., 2001) describes an approach that generates
views using OCL constraints. Then it uses views to
check the integrity of the persisted data. The approach

has been implemented in OCL2SQL3, a tool that gen-
erates SQL queries from OCL constraints. (Marder
et al., 1999) proposes another similar approach for
integrity checking. While previously described ap-
proaches translate OCL constraints into SQL queries
at compilation-time, our approach translates queries
from EOL to SQL, but at runtime.

The approach described in (Parreiras, 2012),
translates SPARQLAS (an SPARQL-like query syn-
tax) to SPARQL and then executes translated queries
against an OWL knowledge base. Obtained re-
sults are used as input for OCL queries. Being so,
this approach executes queries in persistence-level
(SPARQL) and then results are the input of model-
level queries (OCL). By contrast, our approach trans-
lates queries from model-level (EOL) to persistence-
level (SQL) and then executes them against the
database.

(Kolovos et al., 2013) describes an approach
where EOL is used to query large datasets stored on
relational databases composed by one table. This ap-
proach uses the naive translation provided by EMC to
query information persisted in a single-table database.
By contrast, our approach provides custom translation
of SQL queries to be executed against a database with
multiple tables.

7 CONCLUSIONS AND FURTHER
WORK

In this paper, we have presented MQT, a prototype
that is able to query models persisted in a relational
database at model-level (same level of abstraction
used for querying models persisted with XMI) but ex-
ploring the advantages of a persistence-level language
(SQL). While existing approaches which are able to
translate OCL-like languages statically at compila-
tion time, our approach provides runtime translation
of queries from EOL to SQL. Performing the transla-
tion at runtime eases to translate languages that have
not direct mapping, and this is the case of EOL and
SQL. At this stage, MQT only supports read-only
EOL queries. However, we plan to add support for
modification queries in a future prototype.

We have performed an empirical study where
querying using both MQT and XMI is compared. In
this study, we have compared the values that measure
storage size, memory footprint and query execution
time. The results show that our approach scales better
than XMI on the execution of the query proposed by

3Read more at http://dresden-
ocl.sourceforge.net/usage/ocl22sql/

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

72

the GraBaTs’09 Reverse Engineering Contest. While
model size has a substantial impact on the memory
footprint and loading time using XMI, the impact is
softer in the case of MQT. However, results show that
number of queries to be translated and executed has
direct impact over the execution time. The number of
queries is dependent on the nature of the model.

For future work, we plan to perform a complete
study that will involve: (i) experimenting with dif-
ferent database configurations and with different in-
memory caching strategies; (ii) experimenting with
queries of different types (e.g. more complex, return-
ing more results, etc.); (iii) experimenting with mod-
els of different sizes returning similar results and with
models of same size returning more results; and (iv)
comparing results with other persistence approaches.

Open issues for the future are: (a) implementa-
tion of the Resource interface of EMF to integrate
the approach with EMF-based tools; and (b) analysis
of whether the approach could be generalized to sup-
port additional persistence approaches and querying
languages.

ACKNOWLEDGEMENTS

This work is partially supported by the EC, through
the Scalable Modelling and Model Management on
the Cloud (MONDO) FP7 STREP project (#611125).
Authors wish to thank Dr. Dimitris Kolovos and Ar-
turo Orbegozo for their help on this work.

REFERENCES

Anthony Hunter (2014). EMF Query. http://projects.
eclipse.org/projects/modeling.emf.query. Accessed
June 13, 2014.

Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., and Lau-
nay, D. (2014). Neo4EMF, A Scalable Persistence
Layer for EMF Models. In Cabot, J. and Rubin,
J., editors, Modelling Foundations and Applications,
volume 8569 of Lecture Notes in Computer Science,
pages 230–241. Springer International Publishing.

Bergmann, G., Hegedüs, A., Horváth, A., Ráth, I., Ujhelyi,
Z., and Varró, D. (2012). Integrating efficient model
queries in state-of-the-art emf tools. In Proceedings of
the 50th International Conference on Objects, Mod-
els, Components, Patterns, TOOLS’12, pages 1–8,
Berlin, Heidelberg. Springer-Verlag.

Bruneliere, H., Cabot, J., Jouault, F., and Madiot, F. (2010).
Modisco: A generic and extensible framework for
model driven reverse engineering. In Proceedings
of the IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE ’10, pages 173–
174, New York, NY, USA. ACM.

Bryan Hunt (2014). Mongo EMF Wiki.
https://github.com/BryanHunt/mongo-emf/wiki.
Accessed March 17, 2014.

De Carlos, X., Sagardui, G., and Trujillo, S. (2014). MQT,
an Approach for Runtime Query Translation: From
EOL to SQL. In Proceedings of the 14th International
Workshop on OCL and Textual Modeling Applications
and Case Studies, OCL ’14.

Demuth, B., Hussmann, H., and Loecher, S. (2001). Ocl as
a specification language for business rules in database
applications. In Proceedings of the 4th International
Conference on The Unified Modeling Language, Mod-
eling Languages, Concepts, and Tools, UML ’01,
pages 104–117, London, UK, UK. Springer-Verlag.

Eike Stepper (2014). CDO Model Repository Overview.
http://www.eclipse.org/cdo/documentation/. Ac-
cessed March 17, 2014.

Heidenreich, F., Wende, C., and Demuth, B. (2008). A
framework for generating query language code from
ocl invariants. ECEASST, 9.

Kolovos, D., Rose, L., Garca-Domnguez, A., and Paige, R.,
editors (2014). The Epsilon Book. Enterprise Systems,
University of York.

Kolovos, D. S., Wei, R., and Barmpis, K. (2013). An
Approach for Efficient Querying of Large Relational
Datasets with OCL-based Languages. In XM 2013–
Extreme Modeling Workshop, page 48.

Marder, U., Ritter, N., and Steiert, H. (1999). A dbms-based
approach for automatic checking of ocl constraints. In
Proceedings of Rigourous Modeling and Analysis with
the UML: Challenges and Limitations, OOPSLA.

Pagán, J. E., Cuadrado, J. S., and Molina, J. G. (2013).
A Repository for Scalable Model Management. Soft-
ware & Systems Modeling, pages 1–21.

Pagán, J. E. and Molina, J. G. (2014). Querying large mod-
els efficiently. Information and Software Technology,
56(6):586 – 622.

Parreiras, F. S. (2012). Semantic Web and Model-driven
Engineering. John Wiley & Sons.

Scheidgen, M. (2013). Reference representation techniques
for large models. In Proceedings of the Workshop
on Scalability in Model Driven Engineering, BigMDE
’13, pages 5:1–5:9, New York, NY, USA. ACM.

Model�Query�Translator�-�A�Model-level�Query�Approach�for�Large-scale�Models

73

