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Abstract: With the development of wearable physiological sensors, emotion estimation becomes a hot topic in the 
literature. Databases of physiological signals recorded during emotional stimulation are acquired and 
machine learning algorithms are used. Yet, which are the most relevant signals to detect emotions is still a 
question to be answered. In order to better understand the contribution of each signal, and thus sensor, to the 
emotion estimation problem, several feature selection algorithms were implemented on two databases freely 
available to the research community (DEAP and MANHOB-HCI). Both databases manipulate emotions by 
showing participants short videos (video clips or part of movies respectively). Features extracted from 
Galvanic Skin response were found to be relevant for arousal estimation in both databases. Other relevant 
features were eye closing rate for arousal, variance of zygomatic EMG for valence (those features being 
only available for DEAP). The hearth rate variability power in three frequency bands also appeared to be 
very relevant, but only for MANHOB-HCI database where heat rate was measured using ECG (whereas 
DEAP used PPG). This suggests that PPG is not accurate enough to estimate HRV precisely. Finally we 
showed on DEAP database that emotion classifiers need just a few well selected features to obtain similar 
performances to literature classifiers using more features. 

1 INTRODUCTION 

Emotion estimation is a topic of interest for 
intelligent interaction. If a machine is able to 
recognize the emotional state of its user, it will be 
possible, for example, to adapt the way the machine 
interacts with the user so as to enhance the user 
experience (André et al., 2004). There are several 
ways to recognize emotional states (Mauss and 
Robinson, 2009). Emotion is perceptible in  facial 
expression, in the sound of voice and also in motions 
(Zeng et al., 2009), which are measurable using a 
camera or a microphone. It is also well known that 
emotions imply specific brain activities and changes 
in activity of  heart, muscles and sweet glands 
(Ekman et al., 1983). Hence, sensors measuring 
physiological activity can be used in order to 
estimate emotions (Picard et al., 2001). In this study 
we decided to focus on physiological signals in 

order to address ambulatory applications. From a 
theoretical perspective, emotional ambulatory 
monitoring has the potential to qualify and quantify 
real-life emotions, discover new emotional 
phenomena, model real life stimuli (Wilhelm and 
Grossman, 2010). From a medical perspective, 
emotion sensing systems could be used for example 
for personalized psychotherapy (Gaggioli et al., 
2014), mental health monitoring (Ertin et al., 2011). 
Designers could use such systems in order to assess 
the customer reactions when discovering a new 
product. They also could be used from a self-
improvement perspective to increase emotional self-
awareness of the user during his daily activities.  

In literature, several studies to estimate emotions 
are reported. These studies differ in many ways. 
Emotions can be induced  by various activities :  
driving (Healey and Picard, 2005), looking at a 
movie (Fleureau et al., 2012), playing a video game 
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(Yannakakis et al., 2014). The way to characterize 
emotional states is also different. In some studies, 
emotions are considered to be discrete states 
(Healey, 2000) according to discrete emotion theory 
(Ekman, 2005). In other studies, they are classified 
using a space in 2 or 3 dimensions such as valence, 
arousal, dominance (Chanel et al., 2007) according 
to  dimensional theory (Posner et al., 2005). The 
same physiological signal can be acquired using 
different kind of sensors (commercial or homemade 
ones). Different signal processing techniques can 
also be used in order to extract features from 
physiological signals and classify emotions. All 
these differences make it difficult to compare the 
results of those studies.  Comparison between 
databases is all the more difficult given that most of 
them are not available to the research community. 

Yet, a few research teams have made their 
database available, with the goal to provide the 
scientific community with a common basis. Let us 
cite “Eight emotion” (Healey and Picard, 2002), 
“Driver”(Healey and Picard, 2005), “DEAP” 
(Koelstra et al., 2012) and “MAHNOB-HCI” 
(Soleymani et al., 2012). In all the studies using 
these databases, feature selection and classification 
algorithms were used, but the relevance of each 
physiological sensor and each extracted feature to 
emotion assessment was not analyzed in depth. Yet, 
selecting the right sensors and the right features is 
important if one wants to design a device that 
minimizes the number of sensors and the power 
consumption. Moreover it is well known that the 
choice of features contributes to the performance of 
the classifiers (Janecek et al., 2008). Finally, 
underlining which features are important for 
emotional assessment could contribute to a better 
understanding of physiological emotional processes.  

The goal of this paper is to evaluate the 
relevance of particular features to emotion 
classification. Furthermore, we will aim at 
identifying features that appear to be relevant 
whatever the database used (meaning those features 
could be used to classify emotions whatever the way 
emotions are induced). To achieve this goal, we 
explore and compare peripheral signals from the 
DEAP and MANHOB-HCI databases. Indeed, those 
two databases were recorded in a mainly similar 
way, the physiological signals recorded and the 
emotional representation being about the same.  

The outline of the paper is as follows. We will 
describe the content of each database in section 2, 
the pre-processing in section 3, the feature selection 
methods in section 4. The results presented in 
section 5, will be discussed in section 6. 

2 DATABASES 

DEAP and MANHOB-HCI (hereafter called 
MAHNOB) databases contain behavioral and 
physiological data measured in participants watching 
small videos (of around 1 min). A comparative 
analysis of their content is presented in Table 1.  
Their respective experimental protocol can be found 
in (Koelstra et al., 2012) and  (Soleymani et al., 
2012). Several differences observed between the two 
databases, on the video type, the number of 
participants, the number of videos per participant, 
and the kind of behavioral and physiological signals 
recorded.  

Table 1: content of the DEAP and MAHNOB-HCI 
databases (+=available, -= unavailable). 

 DEAP MAHNOB-HCI 
Video type video clip movie 
Duration 1min Approx. 1min 

P=Number of 
participant 

32 27 

V=Number of video 
per participant 

40 20 

Emotion assessment 
labels 

Arousal, 
Valence, 

Dominance, 
Liking, 

Familiarity 

Arousal, valence, 
dominance, 

predictability 

   
EEG + + 
GSR + + 

ECG - + 
PPG + - 

Respiration + + 
Temperature + + 

EMG + - 
EOG + - 
Other - Camera, eye gaze, 

sounds 

For both databases, emotions were assessed on 
basis of their arousal level, their valence and their 
dominance. The two first indicators are the most 
widely used to characterize emotions in a 
dimensional scale (Posner et al., 2005). Arousal 
reflects the emotional activation/intensity (from 
calm to excited/from low to high intensity), valence 
reflects pleasure associated with the emotion (from 
pleasant to unpleasant) and dominance the coping 
potential at the emotional situation (from low to high 
control). Each label is ranked from 0 to 10 by each 
subject after viewing the video. 
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3 PRE-PROCESSING 

3.1 Normalization of the Emotional 
Assessments (Labels) 

In our study, in order to minimize inter-individual 
variability, we normalized labels for each 
participant. For participant number ߤ, for the video 
number ߛ we considered the label given by: 

݈ఓ,ఊ ൌ ሺ݈
ఓ,ఊ െ ݈ഥ

ఓ
ሻ/ߪబ

ఓ (1)

where the label can be ݈ ൌ ሺݒ, ܽ, ݀ሻ for valence, 
arousal and dominance, ݈

ఓ,ఊ is the label given in the 

database,  ݈ഥ
ఓ

 and ߪబ
ఓ are respectively the mean and 

standard deviation of the label over the V videos for 
participant number ߤ. In this paper, we consider only 
valence and arousal, the labels the most commonly 
used in literature.  

However, we noticed that in both databases 
dominance was highly correlated to valence 
(correlation score is 0.82 for DEAP and 0.9 for 
MAHNOB when we consider the labels and the 
features averaged by video over the participants). 
This could be due to a high link between emotion 
and motivation generated by both sets of videos.  

3.2 Emotion Classes 

In most of the papers considering emotional state 
estimation, the labels levels are divided into classes 
of intensity. For each label (valence, arousal), two 
classes are considered in DEAP (Koelstra et al., 
2012) whereas three classes are used in MAHNOB 
(Soleymani et al., 2012). In order to have similar 
results for both databases, we consider two classes. 
The labels being normalized, we consider the video 
belongs to the low label class (H0) when lஜ,ஓ ൏ 0 
and to the high label class (H1) when lஜ,ஓ  0. 

3.3 Physiological Signal 

In this study, considering we want to target 
ambulatory applications, we have chosen to focus on 
peripheral physiological sensors that are wearable 
and non-obtrusive. From this perspective, EEG and 
other modalities (camera, eye gaze and sounds) are 
excluded. Then, we consider Galvanic Skin 
Responses (GSR), Electro-CardioGram (ECG) (for 
MAHNOB), Photo-Plethysmogram (PPG) (for 
DEAP), respiration amplitude, temperature, Electro-
MyoGram (EMG), and Electro-OcculoGram (EOG).  

DEAP signals were acquired at 512Hz sampling 
frequency but were down sampled to 128Hz. In 

MANHOB, the acquisition sampling frequency was 
256Hz. In concordance with DEAP, we down 
sampled the signals to 128Hz.  

3.4 Extracted Features  

In (Koelstra et al., 2012) and  (Soleymani et al., 
2012), the authors propose a large list of potential 
features to characterize emotion. In a first approach, 
we used all the features proposed in both papers, for 
a total of a hundred parameters. We found that just a 
few parameters were relevant for modeling 
emotional state. In addition, a lot of proposed 
parameters were highly correlated (i.e. they 
represent redundant information), these features 
reflecting similar physiological mechanisms by 
definition. In this paper, we reduced the set of 
parameters to the list presented in table 2, in order to 
simplify the analysis. Each feature is identified by a 
feature number (given into brackets) which will be 
used afterwards. This leads to 15 parameters for 
MAHNOB and 20 parameters for DEAP (where 
EMG and EOG are recorded, contrary to 
MAHNOB-HCI). As for labels, in order to minimize 
the inter-individual variability, the measured 
features were normalized over the videos for each 
participant as follows: 

݂
ఓ,ఊ ൌ ሺ ݂,

ఓ,ఊ െ ప݂,
തതതതఓሻ/ߪ,బ

ఓ  (2)

with ݅ ൌ ሼ1,… ,ܰሽ, N the number of features to be 
analyzed (N=15 for MAHNOB et N=20 for DEAP), 

݂,
ఓ,ఊ are the features extracted from the database 

before normalization, ప݂,
തതതതఓ and ߪ,బ

ఓ their mean and 
standard deviation over the V videos for the 
participant number ߤ. 

Table 2: features extracted from physiological measures. 

Modality Extracted features 
GSR (1) Average of the derivative, (2) % of neg. 

samples in the derivative, (3) number of local 
minima 

ECG/PPG (4) Average of heart rate, (5) average of 
inter-beat intervals, (6) standard deviation of 
heart rate, (7) Root Mean Square of 
Successive Differences (RMSSD), (8) 
Standard Deviation of Successive 
Differences (SDSD), (9)
Heart Rate Variability (HRV) power in the 
bands VLF [0.01-0.04] Hz,  (10) LF [0.04-
0.15] Hz and (11) HF [0.15-0.5] Hz,  

Respiration (12) Standard deviation, (13) range (greatest 
breath), (14) average peak to peak time 

Temperature (15) Average skin temperature 
EMG (16) Zigomatic variance (17) trapezius 

variance 
EOG (18) Horizontal Variance (19) Vertical 

variance (20) Eye blinking rate 
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4 FEATURE SELECTION 

A lot of feature selection methods are used in the 
literature (Guyon and Elisseeff, 2003), (Saeys et al., 
2007) in order to analyse a feature relevance and to 
select a subset of features. They are generally 
divided into filters and wrappers. Filter methods 
rank the features independently of a classifier by 
giving a score for each feature, estimating a class 
separability criteria. Wrapper methods are classifier 
dependent. They select the subset of features that is 
the most relevant for a given classifier. In this 
section, we describe the feature selection methods 
chosen and the way they are implemented in our 
analysis. 

4.1 Correlation 

Given labels are continuous values, correlation 
between features and labels appears to be a natural 
method to use. 

We use the correlation coefficient given by: 

ܴ, ൌ
∑ ∑ ሺ ݂

ఓ,ఊ െ ݂̅ሻሺ݈ఓ,ఊ െ ݈పഥሻ
ఓୀଵ


ఊୀଵ

∑ ∑ ሺ ݂
ఓ,ఊ െ ݂̅ሻଶሺ݈ఓ,ఊ െ ݈పഥሻଶ

ఓୀଵ

ఊୀଵ

 (3)

This coefficient reflects the linear dependence 
between the feature ݂ and the label ݈. If those 
variables are perfectly linearly dependant ( ݂ ൌ  ,ሻ݈	ߙ
then ܴ, ൌ േ1, the sign corresponding to the sign of 
 If there is no linear link between label and .ߙ
feature, ܴ, ൌ 0. Feature relevance can then be 
ranked by sorting the computed absolute values of 
the coefficient in ascending order. 

4.2 Fisher Score  

In classification tasks, the Fisher score is a 
traditional method for feature selection. The 
objective of this score is to evaluate the ratio 
between inter-class variability and intra-class 
variability. It is given by: 

,ܥܵ ൌ
∑ ݊
ୀଵ ሺߤ, െ ሻଶߤ

∑ ݊

ୀଵ ,ଶߪ

 (4)

where	ܥ is the number of classes, ݊ the number 
of samples of class c , ߤ, is the mean value of 
feature ݂ over the dataset, ߤ, and ߪ, are the mean 
and standard deviation of ݂ on class c.  

The best feature is the one with the highest inter-
class variability and the lowest intra-class 
variability. Hence, the best features are ones which 
have the highest scores SC. 

We used this Fisher score in our study for the 
classification task by considering two classes for 
each label (C=2: low label, high label). 

We also considered the feature score obtained by 
considering each video as a separate class (C=V). 
Indeed, we observed for each video a very large 
variability in the labels between participants. This 
result suggests that it was not easy for the 
participants to rate the videos in the (arousal, 
valence, dominance) space.  The Fisher analysis 
with V classes was done in order to analyse the 
feature relevance independently of the way the 
labels have been assigned.  

4.3 Bayes Classification 

Finally, we considered the binary classification task 
(low label, high label, C=2). 

We used a Naïve Bayes classifier. This classifier 
assumes that the features are independent and can be 
mapped for each class by a normal distribution. 
ܰሺߤ,,  ,ሻ. The first step of the classificationߪ
consists in learning the parameters of the classifier. 
For the naïve Bayes classifier, the parameters to 
learn are the mean and variance of the features over 
each class (ߤ,,  ,,). Then in the evaluation phaseߪ
for each example, the probability of its membership 
to each class is computed. The class with the 
maximum probability is allocated to the example.  
The features are selected using a selective forward 
search using Bayes classifier. Beginning with an 
empty set of features, we add, at each step, the new 
feature that (combined with the previously selected 
features) results in the highest classification 
accuracy. 

In order to evaluate the performance of the 
classifiers, we use the accuracy and its 95% upper 
and lower bounds.  

To evaluate the generalization power of their 
classifier, (Koelstra et al., 2012) trained a classifier 
for each participant and performed a leave-one video 
out cross-validation. (Soleymani et al., 2012) trained 
a participant independent classifier by considering 
all the examples of their database and performed a 
leave one participant out cross-validation. In our 
opinion, the second approach is better suited when 
one wants to select features whose relevance does 
not depend of the databases used or of the 
participants. Our assessment criterion is the mean 
percentage of accuracy over all the participants 
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5 RESULTS 

5.1 Features Vias Label Relevance 

In this section, we analyse how features are related 
to labels (valence, arousal).  

In order to identify which feature should be 
relevant for the classification task, we use Fisher 
score introduced in 2.2. The results are illustrated in 
figure 1. Each bar graph represents the value of the 
score for each of the numbered features in both 
databases (DEAP in blue and MAHNOB in red). 
The highest bars represent the most relevant 
features. The absolute value of the correlation gives 
a new indicator about the feature’s relevance. The 
correlation’s sign indicate if an increase of the label 
is associated to an increase or a decrease of the 
feature. Correlation results are presented in figure 2. 

 

Figure 1: Fisher score of each feature for the 2 class 
problem for valence (high figure) and arousal (low figure).  

 

Figure 2: correlation values between features and valence 
(high figure) and arousal (low figure).  

For valence, the most relevant features for DEAP 

and MAHNOB are respectively the numbers 16 
(zygomatic EMG) and 11 (HRV in HF). For 
zigomatic, the sign of the correlation coefficient is 
positive, probably because a positive emotion 
generates smiles. In contrast, an inverse pattern is 
observed for the high frequency HRV, which 
appears higher for negative valence.  

For arousal, feature 20 (eye blinking rate) is 
relevant for DEAP and corresponds to a decrease of 
the eye blinking rate with arousal. The Fisher and 
correlation scores tend to show that features 9, 10, 
11, are relevant for MAHNOB also. The very low 
frequency HRV decreases whereas low and high 
frequencies increase with arousal. For both 
databases, features 1 and 15 (Average of the GSR 
derivative, skin temperature) appear to be relevant 
for arousal estimation. The correlation sign indicate 
that skin resistance and skin temperature decreases 
with arousal.  

However it should be noted that even the highest 
correlations and Fisher scores stay low. In addition, 
some differences between MAHNOB and DEAP 
may be justified by the fact that MAHNOB does not 
contain EMG and EOG and by the fact that heart 
rate is measured via PPG in MAHNOB whereas it is 
measured by ECG in DEAP. The ECG signal allows 
a better localisation of R peaks than PPG signal. 

5.2 Fisher Score of Individual Features 
on Videos 

In the previous section, small values for correlation 
and Fisher scores were obtained suggesting a weak 
link between features and labels. The difficulty for 
the participant to choose a level of arousal and 
valence could justify this result. Indeed, for each 
video, we noted a large variability in rating between 
participants for each label: the average standard 
deviation of video’s valence and arousal, after 
normalization, are respectively 0.68 and 0.89 for 
DEAP and 0.51 and 0.76 for MAHNOB.  

One approach could be to consider that every 
participant reacts to a given video with the same 
emotion. In that case, each video could be 
considered as an emotional class. In order to analyse 
the relevance of each feature in this perspective we 
have computed the Fisher score of each feature by 
considering each video as an emotional class (videos 
classification task). The results are presented in 
figure 3. For a better visualization of the results, it 
should be noted that scores are plotted using a y 
logarithmic axis due to their large difference in 
range. 

For DEAP, the Fisher scores remain all very 
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low, which suggests that emotional videos used in 
this database do not induce strong emotional 
reactions or that the reaction differs from one 
participant to another. We can also assume that HRV 
in frequency bands is not a relevant measure when 
PPG is used, due to a lack of precision in the 
identification of peaks R. Eye closing rate (feature 
number 20) remains the most relevant feature. 

In contrast, for MAHNOB, the scores are 
actually higher than those obtained with 2 classes 
and this more particularly for features 9, 10 and 11 
(HRV in frequency bands). This result suggests that 
individual physiological reactions are more related 
to the content of the videos than to the ratings of 
emotions using arousal and valence labels.  

 

Figure 3: Fisher scores, each video being considered as 
one class. 

5.3 Bayes Classification 

The results obtained by a selective forward search 
using Naïve Bayes classifier are presented in figure 
4 for each label and for each database. The x axis 
shows the number of features used by the classifier. 
The y axis presents the mean accuracy reached by 
the classifier and its 95% confidence bounds. As can 
be seen, the classification rates are low, only slightly 
higher than random classifiers, but they are 
comparable to those of (Koelstra et al., 2012), which 
were 62% for valence and 57% for arousal for 
DEAP, using 106 features. The same results are 
reached here with one carefully selected feature. 
Those of MAHNOB in (Soleymani et al., 2012) 
were 46% for arousal and 45% for valence for the 3 
class problem (low, medium, high label). They 
cannot be directly compared with our results, which 
are obtained for 2 classes only. Moreover in 
(Soleymani et al., 2012) they decided to establish the 
classes using emotional keywords instead of valence 
and arousal ratings. As our main purpose was to 

compare the feature relevance we chose to consider 
the same approach for both databases. 

As can be seen, the combination of several 
features does not strongly improve the results. In 
Table 3, the selected features are presented in their 
order of selection. The same relevant features as 
those observed in the previous analyses are selected. 
Feature 10 and 11 appear first and second in 
MAHNOB for arousal, and valence. Feature 6 
(standard deviation of heart rate) also seems to be 
interesting. For GSR we find again feature 16 
(zygomatic) for valence and feature 2 (related to 
GSR) for arousal.    

 

Figure 4: classification accuracy with 95% lower and 
upper bound for each database and each label (2 classes) 
with respect to the number of features (forward selection).  

Table 3: Features in selected order by forward search. 

DEAP valence 16     2      
MAHNOB valence 10    11     1    14      

DEAP arousal  2    15    17    20    16 
MAHNOB arousal 10    11     6     

Figure 5 shows that better results are obtained for 
MAHNOB than for DEAP. This can be explained by 
the fact that MAHNOB’s films induced stronger 
emotions than DEAP’s video clips. Another reason 
can be that PPG was not good enough to estimate 
correctly HRV, which is the feature that obtains the 
best results for MAHNOB.  

6 DISCUSSION 

The objective of this work was to determine which 
features extracted from physiological peripheral 
sensors are relevant for emotion assessment. Two 
databases freely available to the research community 
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were used. Several feature selection analysis were 
done.  

The first result is that the classification task using 
valence and arousal labels was not easy, for both 
databases. Indeed correlation coefficients, Fisher 
scores, and classification accuracies were low. One 
reason can be that valence and arousal labels are not 
representative enough of the participants’ 
physiological reaction. Participants may have found 
it difficult to rate their emotional state. This is 
confirmed by the high scores obtained by HRV 
power in three frequency bands on DEAP database, 
when videos are considered as emotional classes. 
This result presumes that better classification results 
could be obtained using other labels than labels 
based on self-evaluation, which are very subjective. 
In (Soleymani et al., 2012) they decided to use 
emotional keywords in order to create three classes 
for valence and arousal. However, classification 
rates were also relatively low. Another reason can be 
that the videos watched by the participants are not 
emotionally stimulating enough and that other 
reactions are superimposed on emotional reactions. 

A second result is that better results were 
obtained with the MAHNOB database than with the 
DEAP database, whatever the criteria used: 
correlation coefficients, classification accuracies and 
fisher scores. Several reasons can justify this result. 
Firstly, we assume that movies (in MAHNOB) 
induced more emotions and less emotional 
variability between participants than video clips (in 
DEAP).  This is coherent with the standard 
deviations of labels that were lower in MAHNOB. 
In addition, higher Fisher scores were observed for 
features HRV and (to a lesser extent) for features 
related to skin response, which are known to be 
sensitive to emotions (Lang et al., 1993).  However, 
it should be noted that HRV estimation in the three 
frequency bands is more accurate when R peaks are 
extracted from ECG signal (available in MAHNOB) 
than from PPG signal (available in DEAP). This 
may partially explain the differences between 
databases. Finally, it is possible that movies and 
video-clips differ by the nature of induced discrete 
emotions. 

It was also interesting to identify the relevant 
features for each label, their variation, and whether 
they correspond to well-known physiological 
reactions. The most important feature seems to be 
the HRV power in three frequency bands. Those 
features are commonly used in emotion estimation 
(Kreibig, 2010). It was shown that power in very 
low frequency band decreases whereas power in low 
and high frequencies band increases with arousal. 

This feature was only relevant for MAHNOB 
perhaps because it was not correctly estimated using 
PPG in DEAP. 

For DEAP, eye blinking rate for arousal and 
variance of zygomatic EMG for valence, were both 
well-known relevant features for respectively 
vigilance and attention (Wei and Lu, 2012; 
Campagne et al., 2005), and smiles (Fleureau et al., 
2012). Unfortunately eye blinking rate was not 
available in MANHOB-HCI database. One 
possibility would be to identify it from EEG frontal 
signal (Roy et al., 2014). Features extracted from 
GSR show a significant correlation with arousal for 
both DEAP and MANHOB databases. This result is 
not surprising given the close relationship found in 
the literature between the skin activity level and 
individual’s emotional state (Lang et al., 1993). 

Finally, in previous studies (Koelstra et al., 2012) 
(Soleymani et al., 2012), the optimal size of the 
feature space for emotion classification had not been 
evaluated. Using a forward search algorithm 
associated with a Bayesian classifier, optimal 
accuracy was achieved only with a few set of 
features (from 1 to 5) and this accuracy is equivalent 
to previous study (Koelstra et al., 2012). 

We also tested other feature selection methods 
extracted from (Zhao et al., 2010). Those methods 
are Chi-square Score (Liu and Setiono, 1995), Gini 
index (Gini, 1912), Information Gain (Cover and 
Thomas, 2012), CFS (Hall and Smith, 1999) and 
FCBF (Yu and Liu, 2003). The results are not 
presented in this paper but lead to similar analysis.     

7 CONCLUSIONS 

In this work, we aimed at identifying user and 
database independent features for emotional 
estimation, using wearable physiological sensors. 
The features related to GSR were found to be the 
only ones relevant and available for DEAP and 
MAHNOB databases (both freely available to the 
research community). Other features were found to 
be more relevant for one of the two databases, such 
as features extracted from ECG in MAHNOB or 
those extracted from EOG and zygomatic EMG in 
DEAP. Those results should be confirmed by new 
experiments, which should use the most complete 
set of sensors possible, including all the signals 
recorded in DEAP and MANHOB databases, in 
order to obtain result comparable with those 
databases.  It would also be interesting to measure 
both PPG and ECG in order to confirm our 
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hypothesis that PPG is not precise enough for HRV 
spectral analysis.  
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