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Abstract: In this work, a genetic programming methodology for co-synthesis of multiprocessor systems is presented. 
Genotype is a tree which nodes include system construction procedures. Thus the design methodology is 
evolving. Next generations are obtained using genetic operators: mutation, reproduction and crossover. 
Unlike other algorithms in presented methodology number of individuals obtained by mutation operator is 
not const. Therefore number of individuals in each population is increasing. The size of final generation is 
found by the algorithm. 

1 INTRODUCTION 

Nowadays embedded systems (Acasandrei and 
Barriga 2012) can be find almost everywhere: 
mobile phones, digital cameras, modern cars, etc. 
Embedded systems are also used to help 
coordination of different teams in crisis management 
(Mahdjoub and Rousseaux 2014). First embedded 
systems were not too much complicated. Therefore 
it was not necessary to find special methodologies 
for designing them. While complexity of embedded 
systems was increasing (Kopetz 2008) more 
effective design methodologies were needed (Martin 
2006, Henzinger, Sifakis 2006). Co-synthesis is a 
process which automatically generates an 
architecture of embedded system using specification 
contained in a task graph. The goal of the process is 
to optimize parameters such cost, time or power 
consumption. Most of existing solutions (eg. Jiang, 
Eles and Peng 2012) assume distributed target 
architecture. The architecture consists of many 
processing elements (PEs). PEs can be divided into 
two groups: programmable processors (PPs) and 
hardware cores (HCs). PPs can execute more than 
one task thus theirs cost is low but they are not very 
fast. HCs can execute only one task thus the time of 
task execution is reduced, but cost of the resource is 
relatively high. 

Co-synthesis process consists of three phases:  
1. resource allocation – selection of number and 
types of PEs and communication channels; 2. task 
assignment – choice of PE for each task and 
transmission between resources; 3. task scheduling – 
determining when each task should begin its 
execution. 

Existing methodologies can be divided on two 
basic groups. The most popular are iterative 
improvement algorithms (Deniziak 2004, Yen and 
Wolf 1995, Górski and Ogorzałek 2014a) which 
start from sub-optimal solution and refine systems 
by making local changes (moving task between PEs, 
allocating or removing PEs from system). Usually, 
as the initial solution, the fastest architecture is 
selected. Unfortunately the results obtained by most 
of these methodologies are still sub-optimal. 

The second group includes constructive 
algorithms (eg. Dave, Lakshminarayana and Jha 
1997). In those methodologies system is built by 
choosing PE for each task separately. Therefore 
those algorithms are tend to stop in local minima of 
optimizing parameters.  

Probabilistic solutions, especially genetic 
algorithms (Chehida and Auguin 2002; Purnaprajna, 
Reformat and Pedrycz 2007) can escape from local 
minima. This group of algorithms contains for 
example simulated annealing (Eles, Peng, 
Kuchciński and Doboli 1997). Especially good 
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results were obtained  using developmental genetic 
programming (Deniziak and Górski 2008). In this 
algorithm genetic programming evolves design 
methodology to obtain the best system. 

Adaptive algorithms are also more and more 
popular in computer system design process 
(Shankaran, Roy, Schmidt, Koutsoukos, Chen, 
and Lu, 2008, Górski and Ogorzałek 2014b). 

Genetic programming (Koza, Bennett III, Lohn, 
Dunlap, Keane and Andre, 1997) extends genetic 
algorithms (Holland, 1992). In genetic programming 
there is a strong the difference between phenotype 
and genotype. The genotype is a tree which consists 
of computer programs. The phenotype is the final 
solution. Genetic programming is wildly used 
amount other things in: machine learning (Krawiec 
2002), design problems like synthesis computational 
circuits (Koza, Bennett III, Lohn, Dunlap, Keane 
and Andre, 1997) and in medicine for example 
in prediction survival in cancer (Giacobini, Provero, 
Vanneschi and Mauri 2014). 

In every genetic methodology number of 
individuals obtained in every population is constant. 
Therefore large number of individuals have to be 
generated to make the algorithm effective. In the 
environment the situation is completely different. 
The number of individuals in most of species 
increases.  

In this article a new approach based on 
developmental genetic programming (Koza 2010) is 
presented. Unlike other methodologies in presented 
algorithm the number of individuals obtained by 
mutation operator in each generation is increasing. 
In section 3 the methodology is described. Sections 
4 and 5 present experimental results (obtained using 
set of benchmarks with 10, 20 and 30 nodes) and 
conclusions. 

2 PRELIMINARIES 

Like in many works (eg. Engelhardt, Dallou, 
Elhossini and Juurlink 2014) we assume, that the 
behaviour of embedded system is described by an 
acyclic, directed graph called the task graph  
G = {V, E}. Each node vi   V represents task, and 
edge ei   E presents dependence between tasks. 
Label dij describes the amount of data that has to be 
transferred between two connected tasks (vi and vj). 
Transmission tij is defined as follows: 

CL

ij
ij b

d
t   (1)

where: bCL is a bandwidth which characterises 
communication link (CL).  

As an example we use task graph proposed by 
Górski and Ogorzalek (Górski and Ogorzałek 2014). 
It is presented on fig. 1. The graph includes 7 tasks. 
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Figure 1: Example of task graph. 

An example of a resource database for the system 
described by the graph above is presented in table 1. 
It contains two communication links (CL1 and CL2) 
and four PEs: two programmable processors (PP1 
and PP2), two Hardware cores (HC1 and HC2). 
Every task is defined by area occupied by this task 
(s) and a time of execution (t). Areas occupied by 
the tasks mean the size of memory needed to execute 
these tasks. Communication links are defined by 
a bandwidth (b) and an area (s) occupied by the link 
connected to PE. Table 1 also includes the area (S) 
occupied by each PE. The area of the tasks 
implemented in HC includes the area occupied by 
the core.  

Table 1: Resource database. 

Task
PP1 

S=200 
PP2 

S=300 
HC1 HC2 

t s t s t s t s 
T0 150 4 120 6 50 180 30 250 
T1 40 3 35 2 14 100 10 140 
T2 - - 320 17 250 200 150 650 
T3 235 10 220 15 140 160 90 200 
T4 165 8 150 10 65 100 40 140 
T5 70 4 40 5 25 100 - - 
T6 23 2 20 1 5 40 2 80 

CL1, 
b=6 

s=2 s=2 s=10 

CL2, 
b=15 

- s=2 s=15 

Task T2 is not compatible with PP1, and task T5 
cannot be implemented in HC2. Communication link 
CL2 is not compatible with PP1.  
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The final architecture of designing system 
contains p communication links and m 
programmable processors and hardware cores, 
(selected from table 1.) which execute n processes. 
Overall area (So) of the system is described by the 
following formula:  
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The goal of co-design is to find an architecture 
with the lowest So value. The value must satisfy time 
constrains. 

3 INITIAL POPULATION 

In genetic programming it is strong difference 
between genotype and phenotype. According to 
genetic programming rules in this methodology 
genotype is a system construction tree, which 
evolves. The phenotype is the final solution. At the 
beginning embryo is created. The embryo is an 
randomly implementation of the first task. The 
number of possible embryos is the number of 
possible PEs in the database. Every next node in the 
genotype describes system constructing decision. To 
ensure that system executes all tasks the structure of 
genotype has to be based on the task graph. Each 
node in the tree must correspond to equal system 
constructing function. The options for constructing 
system are presented in table 2. To check the 
efficiency of proposed methodology we decided to 
use the same system constructing function as were 
proposed by Deniziak and Górski in DGP08 
algorithm (Deniziak and Górski 2008). However 
there are differences in evolution process. Therefore 
we are certain that quality of obtained solutions is 
a result of using presented methodology. The last 
column includes probability of selection of system-
construction options. The initial population contains 
of randomly generated genotypes. П0 is the size of 
initial population: 

0 =  *n*p  (3)

where: n – number of tasks in task graph,  
p – number of possible embryos, α – control 
parameter which determines the number of 
individuals in populations; it is set manually. 

The system is constructed by executing functions 
in order corresponding to the level of the node in the 
genotype tree. Then solutions are sorted by the 
lowest cost. 

Table 2: Options for constructing system. 

Step Option Probability 

PE 

a. Used PE 0.6 
b. The smallest area 0.1 
c. The fastest 0.1 
d. Min (s*t) 0.1 
e. The least used 0.1 

Used PE 

a1. The smallest area 0.2 
a2. The fastest 0.2 
a3. The lowest 
utilization 

0.2 

a4. Idle for the longest 
time 

0.2 

a5. The same as a 
predecessor 

0.2 

CL 

a. Used CL 0.5 
b. The highest b 0.2 
c. The last used 0.2 
d. The smallest area 0.1 

Used CL 

a1. The smallest area 0.3 
a2. The fastest 0.3 
a3. The lowest 
utilization 

0.2 

a4. Idle for the longest 
time 

0.2 

Task 
scheduling 

list scheduling 1 

4 EVOLUTION 

To obtain new population we used standard genetic 
operators: crossover, mutation and reproduction. The 
number of individuals obtained by using genetic 
operators is given: 
 Φ = β*П – individuals obtained by 

reproduction; 
 Ψ = γ*П – individuals obtained by crossover; 
 Ω = δ*П – individuals obtained by mutation; 

Parameters β, γ, δ are used to control the evolution 
process. They are set manually. 

Unlike other methodologies number of 
individuals in each population is not const. Thus:  

1      (4)

Reproduction randomly copies the Φ genotypes 
from the current population. Individuals are chosen 
randomly but with different probability P. 
The probability depends on the position q in rank 
list. It is described as follow: 

c

c

q
P

 



 (5)

Пc in formula above is a size of current 
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population. It can be defined as follows: 

1( ) *c c         (6) 

Crossover chooses randomly the Ψ solutions.  
The crossing point is selected randomly. It is the 
same for both genotypes. Afterwards the sub-trees 
are substituted.  

Mutation is responsible for providing fresh genes 
to the environment. Thus we decide to increase 
number of individuals obtained using mutation 
operator. The operator randomly selects one 
individual and one node, than changes option in this 
node to a different one from the option list. 

Figure 2 shows an example of genotype for the 
task graph of figure 1. 

a4/b 

PP0 

b/a2 

a1/a1 a3/c 

a5/a4 

c/d 

 

Figure 2: Example of genotype. 

After generating new population new rank list is 
created. The process is stopped when cheapest 
solution which satisfies time constrains wasn’t found 
in next ε steps (last ε generations). Parameter ε is set 
manually.  

5 EXPERIMENTAL RESULTS 

Because of  very large computational complexity of 
the co-design problem, the best way to check 
effectiveness of proposed methodology is to 
compare the performance with other existing 
methods. All experiments were carried out on 

benchmarks with 10, 20 and 30 nodes. We compared 
presented methodology with algorithm DGP08 
(Deniziak and Górski, 2008) and algorithm Ewa 
(Deniziak, 2004). DGP08 is genetic programming 
algorithm for co-synthesis. It was compared with 
algorithm Yen-Wolf (Yen and Wolf 1995) for co-
synthesis. Algorithm Ewa was proved to be more 
effective than MOGAC (Dick and Jha, 1998). 
MOGAC is a genetic algorithm for co-synthesis. 
Therefore we believe that this comparison is the best 
to check effectiveness of the proposed methodology. 
Because of probabilistic nature of the 
methodologies, for each graph 30 tries were made. 

In table 3 the comparison results are presented. 
In the table the best and average values of cost and 
execution time for the algorithms are presented. For 
both genetic methodologies parameters α=100, 
β=0,2, γ=0,7 and ε=5. For algorithm DGP08 δ=0,1. 
The time constrains were set as follow: 350 for 
graph with 10 nodes, 500 for graph with 20 nodes, 
800 for graph with 30 nodes. In table 4 values of 
δ parameter for algorithm GP 2015 are given. We 
decided to check efficiency of proposed algorithm 
with δ values 0,2 and 0,3. In all of the experiments 
parameter α=100. 

For graph with 10 nodes the best result obtained 
for all of the genetic methodologies has cost 1590 
and time 326. However average cost is lower for the 
methodology presented in this paper. For DGP08 
average cost is 1602. In our algorithm average costs 
are: 1594 when parameter δ=0,2 and the lowest 1593 
when δ=0,3. The same situation can be observed for 
the rest of graphs. Best average results were 
obtained when parameter δ=0,3. For graph 20 
average cost was: 2652 when δ=0,2 and 2649 when 
δ=0,3, while for DGP08 it was 2669. For both 
genetic methodologies the best obtained cost was 
2649. For bigger graph (with 30 nodes) the results 
indicates on high efficiency of proposed solution. 

The average cost for DGP08 was 3130, while for 
presented approach was 3107 (when δ=0,2) and 
3074 (when δ=0,3). What  is worth  to  underline the 

Table 3: Experimental results. 

Graph Tmax 
Ewa DGP08 GP 2015 

δ 
time cost time cost 

average 
time 

average 
cost 

time cost averag
e time 

averag
e cost 

10 350 204 2975 326 1590 296 1602 
326 1590 308 1594 0,2 
326 1590 316 1593 0,3 

20 500 457 3020 396 2649 396 2649 
396 2649 396 2652 0,2 
396 2649 396 2649 0,3 

30 800 789 5330 792 3081 793 3130 
792 3081 792 3107 0,2 
792 3056 792 3074 0,3 
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average cost obtained by presented algorithm for 
graph with 30 nodes when δ=0,3 (3074) is lower 
than the best obtained result using DGP08 (3081). 
For presented methodology, when δ=0,2, the best 
obtained solution is the same as for DGP08 (3081). 
Results obtained by algorithm Ewa was: time 204, 
and cost 2975 for graph 10, for graph with 20 nodes 
the execution time was 457 while cost was 3020. 
Also for bigger graph (with 30 nodes) the results 
were much worse that obtained by DGP08 and 
GP2015 – obtained time was 789 and cost was 5330. 

6 CONCLUSIONS 

In this paper we present a new methodology based 
on genetic programming for hardware/software co-
synthesis. Unlike other genetic programming 
approaches the number of individuals in populations 
is not const. Moreover the number of individuals  
increases in each population. This is achieved by 
increasing number of individuals obtained using 
mutation operator. 

First obtained results indicates that the results 
obtained by proposed methodology are better than 
obtained using other algorithms. In every genetic 
approach number of individuals in each population 
has to be large. Presented methodology allows to 
generate less individuals in initial population and 
obtain good solutions during evolution process. The 
size of final population will be found by the 
algorithm. 

Some test like t-test, Mann-Whittey test or 
Wilcoxon test (Ruxton, 2006) can be made to 
compare DGP08 and GP 2015, but we were afraid 
that they may underestimate the true significance of 
obtained results.  

The future work will concentrate on examining 
the influence of another genetic operators on quality 
of the results and different representation of 
genotype tree. We will also test different genetic 
operators and chromosomes. 
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