Automated DSL Construction Based on Software Product Lines

Changyun Huang, Ataru Osaka, Yasutaka Kamei and Naoyasu Ubayashi
Kyushu University, Fukuoka, Japan

Keywords: Domain-specific Language, Software Product Line, Language Workbench.

Abstract: DSL (Domain-Specific Language) is one of the important approaches for software abstraction. In the past
decades, DSLs have been provided by expert engineers familiar with domain knowledge and programming
language processors. It is not easy for ordinary programmers to construct DSLs for their own purposes. To
deal with this problem, we propose a language workbench caltggle that can automatically generate a
DSL by only specifying a set of functions needed to the DSL and an execution platform supported by the
DSL. Argyle is based on software product lines and consists of the following two steps: 1) development
of the core assets for constructing a family of DSLs and 2) DSL configuration using these core assets. To
demonstrate the effectiveness of our approach, we developed a prototype DSL for supporting MSR (Mining
Software Repositories), the most active research field in software engineering.

1 INTRODUCTION 2 Argyle: LANGUAGE

: - _ WORKBENCH
DSL (Domain-Specific Language) is one of the

promising approaches to dealing with software ab- Tne key concept of Argyle is to define language as-
straction. An application can be developed at a high sets and combine them to construct a DSL according
abstraction level by using a DSL that encapsulates thei, ,ser requirements. Though the SPL-based DSL
details of domain knowledge and hides the usage of construction has already been proved to be effective
a specific software platform. DSL can improve the (\jernik et al., 2005), there is still a lack of the sys-
efficiency of software development and maintenance (o matic methodology to achieve it. SPL engineering
(Fowler, 2010). However, it is not easy to develop ¢onsists of domain engineering and application engi-
DSLs. In most cases, DSLs are constructed by eXpertneering. In our case, an application is a DSL.
engineers who are familiar with not only application Figure 1 shows the overview of Argyle support-
domams_ but also programming language processors. ing domain analysis, language design, and compiler
In this paper, we proposérgyle a language construction. In domain analysis, we create a feature
workbench based on SPL (Softwa}re Product Line) model based on SPL by analyzing what language as-
(Clements and Northrop, 2001). Using Argyle, a pro- gets are needed to construct a family of DSLs in the
grammer can obtain a DSL for a specific purpose by (4rget application domain such as MSR. In language
only speufymg a set of functions needed to the DSL design, a DSL grammar in the form of BNF (Backus-
and an execution platform supported by the DSL. Ar- Nayr Form) is derived by user requirements (capabil-
gyle automatically generates a DSL grammar and its jijes selection for anticipated DSL functionality). In
compiler by finding a set of language assets satisfy- pg|_ construction, a language processor for the de-
ing the specified requirements from a software prod- vjyeq grammar is constructed using a framework for
uct line targeted to the language development. DSL construction or an extensible programming lan-
The remainder of this paper is structured as fol- 4,age. In current implementation of Argyle, we use
lows. In Section 2, we illustrate the overview of Ar- yiavt a5 3 framework. Domain analysis, language de-
gyle. In Section 3, we explain the design and imple- gjgn and compiler construction correspond to domain
mentation of Argyle. In Section 4, we show & pro- gngineering in SPL. Application development using

totype DSL for MSR (Mining Software Repositories) the generated DSL corresponds to application engi-
to demonstrate the usefulness of our approach. Con-pegring.

cluding remarks are provided in Section 5.

Huang C., Osaka A., Kamei Y. and Ubayashi N.. 247
Automated DSL Construction Based on Software Product Lines.

DOI: 10.5220/0005239902470254

In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 247-254

ISBN: 978-989-758-083-3

Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)

MODELSWARD 2015 - 3rd International Conference on Model-Driven Engineering and Software Development

Domain
Analysis
Showing
Collecting
Environment
Environments Parameters
Setup [& Feature Model Setting
View Described Using
Alloy Language
Showing Y -anguag BNF of DSL
Described Using
Capabilities Xtext Form
Selection [«
View

Collecting
&
Encoding

Users’
Requirements
Described Using
Alloy Language

Program
Using DSL

DSL

Construction

Compiler Construction

A set of DSL functions
needed in an application domain is defined as the

DSL |q
Editor Launching
Collecting
Language Design
Figure 1: Argyle: Language Workbench for DSL Construction.
3 DESIGN AND e Capability Assets.
IMPLEMENTATION OF Argyle

We show the details of domain analysis, language de- o
sign, and compiler construction supported in the lan-
guage workbench Argyle.

3.1 Domain Analysis Support

In Argyle, Feature-Oriented Domain Analysis
(FODA) (Kang et al., 2002) (Kang et al., 1990) is
used to define language assets and the constraints e
among them (Huang et al., 2013). A feature model
in FODA consists of four layers: capability layer;
operating environment layer; domain technology
layer; and implementation technique layer.

Language assets in Argyle are defined according
to FODA layers as follows:

248

assets in the capability layer.

Syntax Assets.A variety of domain-specific op-
erators and reserved words is defined as the assets
in the operating environment layer. By configur-
ing these operators and reserved words, Argyle
generates the syntax of a DSL. In our prototype
DSL for MSR, sel ect is defined as a domain-
specific operator for retrieving a set of data from

a repository.

Data Type Assets.A variety of domain-specific
data types is defined as the assets in the domain
technology layer. These data types are used in the
operators defined as syntax assets. Inthe MSR ap-
plication domain, domain-specific data types such
asProj ect andAut hor are useful to write a pro-
gram for analyzing software engineering data.

Automated DSL Construction Based on Software Product Lines

e Implementation Assets. Code generation tem- language used for describing structures (e.g., feature
plates and software components for executing a model) and an analyzer tool for exploring them, has
program written in a generated DSL are defined as been proved to be effective for describing and find-
the assets in the implementation technique layer. ing structures. In this paper, we call the specification

The constraints such as the appearance order ofl2nguage "Alloy language” and the analyzer tool "Al-
the domain-specific operators, the relation between 0¥ Analyzer” separately. Argyle can easily encode a

the argument types of a domain-specific operator

feature model, constraints, and user requirements into

and domain-specific data types, and the dependencyI0Y code. We introduce the Alloy encoding pat-

among assets have to be defined in a feature model. te

Argyle provides a diagram editor for modeling a
feature diagram consisting of the above four layers.
Domain analysis is performed by expert engineers fa-
miliar with domain knowledge and the theory of pro-

ms.

3.2.2 Translation from Feature Model into Alloy
Language

Two elements (i.e.signaturesand predicatg of the

gramming languages. However, in Argyle, language
design shown in the next can be performed by ordi-
nary programmers. Compiler construction is fully au-
tomated.

Alloy language are mainly used in our encoding. Re-
served wordssig andpred, are used to declare these
two elements. Asignatureis used to define a set of
atoms and may have sorfields in its body that can
be used to establish a relation to the otbignature
The concept of @ignatureis as similar as a class in
Java and dield in a signaturelooks like an attribute
or property in a Java class. On the other haruteal-
icateis used to define the interaction amaosigna-
tures. Usingpredicatein Alloy language is as similar

3.2 Language Design Support
3.2.1 Overview

In Argyle, a DSL is constructed by configuring lan-

guage assets as follows: as using a method in Java.

1. Argyle acquires DSL requirements by letting a The main encoding patterns consist of the encod-
DSL user (programmer) select the necessary func-ing of features (Figure 2), relations (Figure 3), and
tions of the anticipated DSL from capability assets composition rules (Figure 4).
and an execution platform from implementation An abstract signaturéFeature” is defined at first
assets. by using the reserved womabstract. “Feature” has

. According to the above selection, Argyle extracts WO fields: “up” and “select’. The “up” field points
the related syntax assets and data type assets. Afi0 the super feature. If the current feature is selected,
ter that, Argyle configures these assets to generateth® “select” field is set to “Yes” otherwise to “No”. A
the DSL grammar in the form of BNF consisting concrete_feature is defined by extendatggstract sig-
of domain-specific operators, reserved words, and natureusing the reserved Womftends All concrete
data types. Using this DSL, we can write a pro- features also have the above tfieids.

gram that realizes the functions specified in step ' ne relations among features are defined by using
1. predicates. In apredicate “... =>... else ...” signifies

. . the expression if ... then ... else ... and a reserved
. Argyle extracts a set of implementation assets for

he DSL " h bl d word and means a logical conjunction. Eagphedi-
the compiler to generate the executable code .4iq gefines a relation among features by indicating,

from a program written in the DSL generated in - ¢, example, whether these features can be selected at

step 2. the same time or not.

DSL users have only to execute a few simple oper- A feature related to a syntax asset in the operat-
ations in step 1. Even the ordinary programmers with- ing environment layer is distinctive from other fea-
out the deep knowledge of programming language tures, because it is considered as an “Operator” in our
processors can develop a DSL, because step 2 and &ncoding. An “Operator” is a special “Feature” that
can be automatically performed by Argyle. In Argyle, has some newields such as “next”. Thesfelds are
a feature model, constraints among language assetsiysed to define some additional information which are
and user requirements are encoded into logical for- necessary on constructing BNF. For example, “next”
mulas. A generated DSL corresponds to the subsetis used to define the order between two “Operator”s
of these assets satisfying constraints and user requirewhen they appear in a BNF. The details are described
ments. We use Alloy (Jackson, 2006) (Gheyi et al., inside thepredicate*GeneratingRule”.

2006) to obtain the subset(Nakajima and Ubayashi,
2007). Alloy, a name of both a formal specification

249

MODELSWARD 2015 - 3rd International Conference on Model-Driven Engineering and Software Development

abstract sig Feature abstract sig Operator extends Feature
{ up:Feature {
select : Selected } next : Feature
abstract sig Selected {} brod GeneratingRule
- ingRul
sig Yes, No extends Selected {} [pre : Operator, post : Operator]
sig FO, F1, F2 extends Feature {} {
Figure 2: Encoding Features. pre.next = post
}
Fe::';,:ﬁ':n";’e' Alloy Encoding Figure 4: Encoding Composition Rules.
pred Alternative
[sup : Feature, sub : some Feature]
run{
sup.isselected = Yes =>
m onef : Feature | (fin sub FO.select = Yes
and f.isselected = Yes F1.select = Yes
i and f.up = sup
‘ F1 ‘ ‘ F2 Fn ‘ and (sub-f).isselected = No }
| and (sub-f).up = none)

(Alternative) . A . A A
sup.isselected = No => Figure 5: Encoding User Requirements.
sub.isselected = No and sub.up = none
}
pred Mandatory Feature Model Composition BNE

Fo [sup : Feature, sub : Feature] (Relation) Rule
T {
S B sup.isselected = Yes =>
‘ F1 ‘ ‘ F2 ‘ o ‘ Fn ‘ sub.isselected = Yes and sub.up = sup TS <FO> = <F1>|
_ / — <F2>|
Mandatol sup.isselected = No =>
(Mandator) sub.isselected = No and sub.up = none ‘ FJLF2 J ‘ Fn ‘ <Fr|1>
} (Alternative)
m pred Optional
[sup : Feature, sub : Feature] ’j
{ Fo FO next F1 <F0>:=<F1>
O sup.isselected = No => F1 next F2 <F2>
E sub.isselected = No and sub.up = none
sub.isselected = Yes => R D LR <Fn>
3 sup.isselected = Yes and sub.up = sup
(Optional) } (Mandatory)
Figure 3: Encoding Relations. Fo
; ; - FO> 1= <F1>|*”
3.2.3 BNF Generation using Alloy Analyzer Fozimsr
Argyle generates BNF with the help of Alloy Ana- (Qptiona)

lyzer as follows: _ _
. Figure 6: Templates for generating BNF.
1. Set user requirements;
2. Find submodels (a subset of features and theirfiles are mapped to BNFs. Argyle prepares templates

constraints) satisfying the requirements; and for this mapping process. Figure 6 shows the tem-
3. Map the submodel to BNF. plates.

First, user requirements (feature selections or as-3 3 Automated Compiler Construction
set selection) are encoded by setting related features’
select’fields to “Yes”. The code is written inside the Argyle translates the BNF of a generated DSL to

run command as shown in Figure 5. Next, this code Xtext, a Java-based extensible programming language
is inputted to Alloy Analyzer that uses a SAT solver. ook The process is as follows:

The analysis results include the submodels satisfying i
the user requirements. Alloy Analyzer has two out- ® Encode the generated BNF using Xtext; and

put types, diagram and XML file. For auto-process, e Make a code generator to establish correspon-
Argyle uses the XML file which includes the informa- dences between the BNF and the target language
tion for generating the syntax of a DSL. Finally, XML (executable source code).

250

Automated DSL Construction Based on Software Product Lines

Capability - |
| Giatic Source Code|| Source Cade Differencing || Clone Detedtion — " |[Frequont Patiem || Information || Classification With || Sodial Network
Metadata Analysis F Analysis And Analysis Methods Software Matrics ‘ Visualization Mining Retrieval Methads | Supervised Learning Analysis
rget Matrics
Process Metrics Product Metrics
/A0 | Alternative B
or s
/AN Traditional Factors| [Co-change Factors]| Time Factors | [Change Factors
> | optional
Feature that are focused in Modiﬁcaﬂgn Times Madl'l;:ﬂnn Size
| e following explanation g — —
| Added Times || Deleted Times | [AddedLines | [Deleted Lines
Operating DSL
Environment e -
Repository Manager \ Table Operation \ Data Operation
install update || remote || search |[get version | get aulhor‘ get file ‘erl bug ‘
/// |
- =
seLeCT |[FROM | [metrics |["tabie |[EacH |fa] [BEFORE |[date | [AFTER | [date |[BETWEEN] AND | [date |
S
// SN T L
/ - _
e \ . PACKaGE| FiLe |[METHOD
q 7 N - |
Domain d A N] ‘
Revislon Author Method Bu
Technology | L°evon]l Il) BT |
1
I ion| Analysis Tool
mplementatiory |DSLConMon| e ‘
Technique S — 7~
ax Metrics "
Calculation B
Extornal '"l';s"l‘_" Traditional ‘ HPC ‘
1\ s TS
o=l S i
[Xtext | N Peear] .. [Scala | [GPGPU | ... [Hadoop |

Figure 7: A Part of Feature Model for MSR.

Argyle provides an interpreter to translate a BNF done in MSR, deriving necessary data from reposito-

to the corresponding Xtext code

. Argyle also auto- ries is one of the most important work (Dyer et al.,

matically generates the source code of a code genera2013) (Gu et al., 2012). In our case study, Argyle
tor which is used to transform a DSL program into the provides an approach to constructing a simple SQL-
target language (e.g., Java) program that calls imple-like DSL for retrieving related data from repositories

mentation assets. A DSL user (programmer) can use(Yamashita, 2013). Figure 7 shows a part of domain

a DSL editor to write their own DSL programs.

4 CASE STUDY

In this section, we show a case study of constructing
DSL for Mining Software Repositories (MSR) using

Argyle.

4.1 Domain Analysis on MSR

analysis on MSR. This feature model includes lan-

guage assets used to construct SQL-like DSL state-
ments, such as “select ... from ...” and some optional
operators to set period (e.g., “between ... and ...”) and
granularity (e.g., “each ...”).

4.2 Specification of User Requirements

To give user-friendly interfaces to specify user re-
quirements, Argyle provides the following views as
shown in Figure 8: 1) capabilities selection view and
2) environments setup view.

MSR (Shang et al., 2011) is a research field where

practitioners analyze the data

stored in software 4.2.1 Capabilities Selection View (Area 1)

repositories, such as version control systems, bug

tracking systems, and mailing list etc., to discover Argyle provides capability assets in this view that lists
meaningful information to support the software de- what DSLs can be used to do. Each capability as-
velopment. While there are many work needed to be set shown in this view means that Argyle provides

251

MODELSWARD 2015 - 3rd International Conference on Model-Driven Engineering and Software Development

= Java - Eclipse Platform _7.'
File Edit Navigate Search Project Argyle Run Window Help
. BrOrQ~ HEY By~ % TRe Y ' o [&@ Java | i var 7

T CapabilitySelection 2 = O Jj0 EnvironmentSetup &3 = O

&
Clone Detection ¥ |~ W liypical Setup | Custom Setup ™

Source Code Analysis Using GPGPU a2

=

I
»H«

Metadata Analysis Using Hadoop

Software Metrics

|| Product Metrics
[Process Metrics @
|| change Metrics

\7} Co-Change Metrics

Environmental Parameter Setting Unit Description
[[] Block Size 64 ~| MB HDFS blocksize of 64MB for large file-systems.

7| Max Task 2 2 The maximum number of Map/Reduce tasks, which are run simulta

)

[C] Replication Num 3 2 Default block replication. The actual number of replications can be | =

[[] Heap Size 1000 MB The maximum amount of heapsize to use

@

-

|| Data Operation
|| Data Searching [Server Num The number of servers to use.

|| searching Condition
/J Setting Operation

[Project Setting

[| Metrics Setting

5 18

Figure 8: Setting Interfaces.

syntax assets and data type assets needed to realize Table 1: Composition of Alloy Code.
the corresponding capability. Argyle tries to provide
the easy-to-understand description of each capabil- Number of Feature_:s 30
ity, such as “Data Searching” and “Granularity Set- Total Alloy Code (lines) 86
ting”, because we assume that users of Argyle have Reusable Code 28
not enough knowledge about the details of DSL con- Relations Definitions | 16
struction. Users can select capabilities they like by Abstract Signatures Definitionss 9
selecting related check boxes. Composition Rule Definition | 3
None Reusable 47
4.2.2 Environments Setup View (Area 2) Features Definitions 6
Relations Settings 27
Argyle requires users to decide which platform their Composition Rule Settings | 14
DSLs will be executed in. This view is used to deal Others 11

with the execution environment problems. It allows
users not only to decide the environments but also set4 4 DSL Editor and Code Generation
the related parameters of those environments (if nec-
essary). As an example, in Figure 8 there are two
environments Hadoop and GPGPU. To take care of
users who have little knowledge about these environ-
ments, Argyle prepares default parameter settings for
using Hadoop or GPGPU.

Argyle launches a DSL editor for users as shown in
Figure 12. This editor allows users to make their pro-
gram using the DSL whose BNF is generated above.
In this case, a statement such like “select ... from ...
can be used in a program. A program written in the
DSL editor is translated to a programming language
which can be used in the environment that was indi-
, . cated by users through environments setup view. For
After user requirements are specified, Argyle gener- example, users can use the Hadoop platform to calcu-

ates a DSL. o o late the software engineering metrics.
The feature model shown in Figure 7 consisting of

about 30 features takes about 100 lines of Alloy code.
Table 1 shows the details of Alloy code. A part of
Alloy code can be reused for other DSL generations. 5 CONCLUSIONS

Figure 9 shows a submodel derived by Alloy An-
alyzer. This submodel is stored in an XML file that In this paper, we provided a language workbench
is mapped to the BNF. This BNF is also stored in an- called Argyle which is used to support DSL construc-
other XML file with a form shown in Figure 10. Fig- tions. The key idea of Argyle is to define language el-
ure 11 shows a part of description of BNF in Xtext. ements as assets and combine them according to user
Argyle can provide a DSL editor and a code genera- requirements. Argyle gives developers, who want to
tor. use DSLs, an approach to make DSL by themselves

even though they have not enough knowledge about

4.3 DSL Generation using Argyle

252

<alloy builddate="2014-XX-XXXX:XX EST">
<instance bitwidth="0" maxseq="0" command="XX" filename="XX">

<sig label="this/SELECT" ID="7" parentiD="8" one="yes">
<atom label="SELECT"/>

</sig>

<sig label="this/FROM" ID="9" parentID="8" one="yes"™>
<atom label="FROM"/>

<Isig>

<sig label="this/mefrics" ID="10" parent|D="8" one="yes">
<atom label="metrics"/>

</sig>

<sig label="this/table" ID="11" parentID="8" one="yes">

w2 | Mandatory Elements

<sig label="this’/EACH" ID="12" parentID="8" one="yes">
<atom label="EACH"/>
</sig>
<sig label="this/granularity” ID="13" parentlD="8"one="ves"> |

s e =Y Optional Elements

<field label="next" ID="19" parentID="8">
<tuple> <atom label="SELECT"/> <atom label="metrics"/> </tuple>
<tuple> <atom label="metrics"/> <atom label="FROM"/> </tuple>
<tuple> <atom label="FROM"/> <atom label="table"/> </tuple>

-<-1.:uple> <atom label=" EACH "/> <atom label=" granularity "/> </tuple>

<types> <type |D="8"/> <type) 5. .
<fﬁeld>—‘ Composition Rules

<finstance>

<Jalloy>

Automated DSL Construction Based on Software Product Lines

Figure 9: Results of Alloy Analyzer stored in a XML File.

<syntax>

<statement label="select" type="RepositoryTable">
<keyword label="SELECT"/>

<parameter label="metrics" type="String"/>
<keyword label="FROM"/>

<parameter label="table" type="Table"/>

<keyword label="EACH"/>

<parameter label="granularity " type="Granularity"/>
</statement>

=
Figure 10: A part of BNF stored in XML file.

programming language processor.

grammar org.xtext.example.mydsl.MyDsl| with
org.eclipse.xtext.common.Terminals

generate myDsl "http://www.xtext.org/example/mydsl/MyDsI"

Model:

(types+=Type)*

(statements+=Statement)*;

Type:

Projects | Metrics;

Statement:

SelectStatement | SetStatement | OptionalStatement;
OptionalStatement:

EachStatement | AfterStatement | BeforeStatement |
BetweenStatement;

BetweenStatement:

'between’ date1=INT 'and' date2=INT;
BeforeStatement:

'‘before’ date=INT;

AfterStatement:

‘after' date=INT;

EachStatement:

‘each’ granularity=ID;

Metrics:

'Metrics' metricsname=ID;

Projects:

'Project' projectname=ID;

SetStatement:

'set' object=ID 'name’ objectname=ID;
SelectStatement:

'select' metrics=ID ‘from' project=ID (optional ?=
[OptionalStatement])?,

Figure 11: BNF Representation in Xtext.

@ Java - DSLEditor/src/DSLProgram.mydsl - Eclipse Platform

Currently, Argyle has only a small set of defined
language assets. This set needs to be expandedto s

port more user requirements. However, it is difficult

dit ‘Source Refactor Navigate Search
PV B OB YO

DSLProgram.myds! 5 =g

Project projecta
Metrics metricsa

Project projectb
Metrics metricsb

set projecta name EclipseGitData

set metricsa name NunChangesCoChangedFiles
set projectb name GithubData

set metricsb name McCabe

select metricsa from projecta each file after 20 2
select metricsb from projectb each package between 20120202

% Package Explorer
4 & DSLEditor
@ src
=\ JRE System Library
4+ @ sregen
@ metricsajava
) metricsaCalculation.java
@ metricsb.java

4 metricsbCalculation.java

| & Resource [§7Java|# Debug

ouima

to complete this work only by ourselves. The bettel
way is to encourage many programmers to add ne
language assets to Argyle. This is our future work.

ACKNOWLEDGEMENTS

Figure 12: DSL Editor.

REFERENCES

Clements, P. and Northrop, L. (2001).

This research was conducted as part of the Cor

Research for Evolutional Science and Technolog

(CREST) Program, “Software development for pos
petascale supercomputing — Modularity for super-

computing”, by the Japan Science and Technolog ko yier, M. (2010).Domain-Specific Languagedddison-

Agency

lines. Addison-Wesley

Software product

Dyer, R., Nguyen, H. A., Rajan, H., and Nguyen, T. N.

(2013). Boa: A language and infrastructure for ana-

lyzing ultra-large-scale software repositories.3Bth
International Conference on Software Engineering

Wesley Professional.

253

MODELSWARD 2015 - 3rd International Conference on Model-Driven Engineering and Software Development

Gheyi, R., Massoni, T., and Borba, P. (2006). A theory for
feature models in alloy. Ifirst Alloy Workshop

Gu, Z., Barr, E. T., Schleck, D., and Su, Z. (2012). Reusing
debugging knowledge via trace-based bug search. In
12th ACM International Conference on Object Ori-
ented Programming Systems Languages and Applica-
tions

Huang, C., Yamashita, K., Kamei, Y., Hisazumi, K., and
Ubayashi, N. (2013). Domain analysis for min-
ing software repositories -towards feature-based dsl
construction-. Imth International Workshop on Prod-
uct LinE Approaches in Software Engineering

Jackson, D. (2006)Software AbstractionsThe MIT Press.

Kang, K., Cohen, S., Hess, J., Nowak, W., and Peterson,
S. (1990). Feature-oriented domain analysis feasibil-
ity study. Technical report, Carnegie Mellon Univer-
sity/Software Engineering Institute.

Kang, K. C., Lee, J., and Donohoe, P. (2002). Feature-
oriented product line engineerinEEE Software

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific language€M
Computing Surveys

Nakajima, S. and Ubayashi, N. (2007). Lightweight formal
analysis of foda feature diagrams.4th International
Workshop on Rapid Integration of Software Engineer-
ing techniques

Shang, W., Adams, B., and Hassan, A. E. (2011). Using pig
as a data preparation language for large-scale mining
software repositories studies: An experience report.
Journal of Systems and Software

Yamashita, K. (2013). Modular construction of an analysis
tool for mining software repositories. lCM Student
Research Competition at the 13th Aspect-Oriented
Software Development Conference

254

