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Abstract: We outline a methodology for automatic and efficient object-relational mapping (ORM) in the context of 
model-driven development (MDD) of high-performance information systems specified with executable 
UML models. Although there are various approaches to performance tuning, we focus here on the 
persistence layer ̶ the relational database. The relational data model is usually designed following the well-
known normal forms. However, a fully normalized relational model often does not provide sufficient 
performance, and improper relational model design can easily lead to a slow and unusable relational 
database for particular operations. Our ORM approach is intended to exploit smart optimization techniques 
from the relational paradigm that abandon normalization and its positive effects, and trade them off for 
better performance. Our ORM approach hence combines the classical denormalization transformations, 
based on reducing or eliminating expensive database operations by the model restructuring, but applies them 
to a non-redundant conceptual UML model. In this paper, we also present the first step towards this goal: a 
catalogue of ORM transformation patterns. 

1 INTRODUCTION 

There are two broad classes of information systems: 
transactional (OLTP) and analytical (OLAP). OLTP 
information systems, apart from storing live and 
active data, are characterized by intensive short 
online transactions, fast query processing, and 
maintaining strong data consistency in a concurrent 
environment. Data in OLTP information systems are 
usually persisted in OLTP relational databases, since 
they are mature and reliable persistence technology. 
Performance optimization and efficient handling of 
data is tightly coupled with the data model in the 
relational database. In our context, a special UML 
profile, customized for information systems 
modeling, is used for capturing key data and 
operations. In the MDD approach, the data model 
(DDL schema) is automatically generated from the 
UML model by object-relational mapping (ORM).  

In addition to (statically) generating a relational 
database schema, the runtime component of ORM 
has to provide operations of (dynamically) persisting 
data in a relational database during transaction 
processing. Conceptual UML models, that are the 
input into this process, are usually normalized, 
regarding the data aspect, which means there is no 

redundancy. The normal forms, in general, minimize 
effort for ensuring strong data consistency (Codd, 
1971; Maier, 1983). Regarding ORM approaches, 
UML models are often in practice transformed to 
normalized relational data models. However, we 
have witnessed that a fully normalized relational 
data model cannot provide desired scalability and 
performance of a large-scale information system 
with intensive transactional processing. In addition, 
numerous researchers in the domain of relational 
databases argue that in practice, a relational data 
model must be denormalized to fit in a form that is 
handled most efficiently by a relational database. 
They also provide numerous denormalization 
techniques that increase performance of queries and 
reduce or even eliminate expensive database 
operations (Shin and Sanders, 2006; Sanders and 
Shin, 2001; Keller and Coldewey, 1997). These 
techniques have been traditionally associated with 
OLAP systems, which assume none or very little 
updates, and complex and intensive retrieval 
operations on high volumes of data. On the other 
hand, OLTP systems may still benefit from the 
denormalization techniques, although the penalty 
expressed through increased volume of update 
operations for the sake of consistency of redundant 
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data has been traditionally considered as a detractor 
from applying these techniques to OLTP systems.  

The paper is structured as follows. Section 2 
describes the motivation for enhancing ORM to 
exploit database features in a more efficient way, 
according to the knowledge of experts in that area 
and proven optimization techniques. In section 3, we 
give a catalog of ORM transformations for mapping 
object-oriented models to optimized relational data 
models. Section 4 gives the main conclusions and 
addresses directions for future work. 

2 MOTIVATION 

Accessing a relational database in a most efficient 
way and maximizing usage of its most efficient 
features is the key approach for achieving good 
performance. Efficient access to a relational 
database is tightly related to the complexity of 
queries. The complexity of queries is directly 
dictated by the relational model itself. The more 
normalized model is, the more complex queries are 
in general, because of joins, repeating calculations of 
derived data, etc. In the relational database theory, it 
is well known that the normal forms are often 
considered and widely adopted as a principle of a 
good database design that promotes elimination of 
data redundancy, while minimizing effort of 
maintaining data consistency (Agarwal, Keene and 
Keller, 1995).  

In the context of an OO information system that 
persists data in an OLTP relational database, the 
ORM approach has to be sophisticated enough to 
automatically create a relational model that is most 
efficient and optimized (even denormalized) for the 
particular database. Each denormalization technique 
brings both advantages and disadvantages. The 
choice of an appropriate denormalization technique 
highly depends on the nature of the system and data 
access patterns. For example, if a data value is 
derived (computed) from other data values that are 
very infrequently modified, or not modified at all 
after initialization, it will be an excellent candidate 
for storing as a redundant persistent value at all 
places (relational tables) where it is retrieved from 
with other data. Also, constraints in the logical UML 
models can sometimes limit the number of available 
denormalization options. Unlike the other 
denormalization approaches, our approach differs in 
one important detail. While the denormalization is 
considered as a process of restructuring an existing 
normalized relational data model (Shin and Sanders, 
2006; Sanders and Shin, 2001; Keller and Coldewey, 

1997), our approach exploits the knowledge from 
the denormalization techniques and applies them 
directly to create an initially denormalized relational 
model from a (non-redundant) conceptual UML 
model in the context of OLTP information systems. 

Denormalization is a complex process in 
practice, done (or at least instructed and steered) 
exclusively by human experts, who are the only ones 
who understand the semantics of applications and 
the static and dynamic nature of the structural and 
behavioral model of the system. Static aspects of the 
model are based on recognition of structural class 
patterns that are good candidates for mapping to 
denormalized relations. If the class patterns are not 
isolated from other classes in the model, the static 
rules are not always applicable easily, since there are 
many combinations to examine while the model is 
being compiled to the relational model. For example, 
if a complex application does not contain any code 
for actions that access a structure of related data in a 
particular manner, it is of no use to optimize the 
piece of relational model for that particular access. 
This task is error-prone if done manually, without a 
systematic approach. That is one of the reasons why 
we investigate a fully automatic ORM approach, that 
should consider all available denormalization 
options in a systematic way. In spite of all positive 
effects of denormalization, it is worth repeating that 
it makes updates more complex (although they are 
done automatically by the ORM runtime, they still 
put additional workload to the database). It must be 
carried out in a controlled manner, balanced 
carefully between the achieved performance and the 
relational model maintainability. Uncontrolled 
denormalization can lead to an even more 
complicated relational model, derived as a result of 
the denormalization explosion. This can be solved 
by considering the dynamic aspects of the system's 
model, by online data access profiling and 
discovering the most dominant operations in the 
system. A hybrid combination of the static and 
dynamic aspects of the model would lead to a more 
scalable and efficient ORM approach that controls 
the denormalization explosion by focusing on the 
most frequently accessed data. All of these 
optimizations are hidden and transparent for the 
developers, since ORM is responsible for creating 
the appropriate relational model and mapping 
application's operations to the optimized relational 
data model. Finally, what we find extremely 
necessary regarding efficient application of 
denormalization is a comprehensive quantitative 
analysis of denormalization techniques that should 
result in a guide that will provide for each 
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denormalization technique a context in which it is 
most effective. 

3 ORM TRANSFORMATION 
PATTERNS 

As the first prerequisite for the research path, we 
have described in the previous section, we establish 
and describe a catalogue and classification of ORM 
transformations in the described context.  

There are four classes of denormalization 
strategies: (1) collapsing relations, (2) partitioning 
relations, (3) adding redundant properties, and (4) 
adding derived properties (Shin and Sanders, 2006).  

In this chapter, we present transformations of 
generalization/specialization relationships and 
associations (aggregations and compositions, as 
special kinds of associations in UML, are not 
covered separately), relying on the denormalization 
techniques from the relational paradigm. We also 
outline some optimization techniques that are not 
directly related to the structure of the relational 
model, but rather represent optimization tricks. 

3.1 Object Identifier 

Object identifier generation should not be 
centralized in the relational database, as it may 
impose unnecessary database load. It should be 
rather decentralized and stateless. One way to 
accomplish this requirement is to generate an object 
identifier as a GUID. Yet another important aspect 
of object identifier is that may carry the object type 
identifier. That way, it is possible to dynamically 
infer the type of an object without querying the 
database, which leverages scalability of the 
persistence layer and makes the polymorphic queries 
more efficient. In addition, having the object type 
identifier encoded in object identifier, eliminates 
high load of tables near to the root inheritance table 
(Keller and Coldewey, 1997; Keller and Coldewey, 
1998). 

3.2 Mapping Inheritance 

We do not consider multiple inheritance, but only 
single class inheritance. The authors in (Keler, 1995; 
Agarwal, Keene and Keller, 1995) presented a few 
relational model transformations for (efficient) 
mapping of inheritance. In this chapter we combine 
the existing denormalization approaches with 
requirements of ORM. 

One Table per Class: Among probably many 
other places, this approach was presented in (Keller, 
1997; Agarwal, Keene and Keller, 1995), as a 
vertical partitioning. The main idea of the approach 
is to map each class in the model to one table in the 
relational database. Abstract classes also have their 
own tables in the relational model. The tables in the 
database form a tree, with one root table that holds 
object identifiers. Records in each child table are 
linked to the corresponding records in the parent 
table with the object identifier as the foreign key. 
The advantage of such an approach is getting an 
easy-to-maintain and normalized relational model, 
optimized for updates, but not for reads. Queries that 
generalize objects (e.g., a query that searches for all 
instances of a base class, possibly abstract, that 
satisfy a criterion over properties of that base class) 
are straightforward and efficient. Other queries that 
fetch both inherited and specific properties of 
derived classes may be far from simple and efficient. 
The root table, and tables near to the root table, are 
thus often under heavy load of queries, because of 
frequent joins, which may affect the scalability of 
the system. The approach may not be usable in case 
of deep inheritance hierarchies, since multi-way 
joins are required for retrieving basic object 
information (Agarwal, Keene and Keller, 1995). 

One Table per each Concrete Class: Usually, 
there is no need to create separate tables for abstract 
classes, but all their properties are copied to the 
tables of the inherited classes. The properties from 
the abstract class are thus duplicated in the schema, 
or repeated in each table that corresponds to a 
concrete inherited classes (note, however, that 
values are not duplicated, unless an object belongs to 
more than one derived class). The rule may be 
generalized to a sub-hierarchy of abstract classes 
related with generalization/specialization. 
Eliminating tables for abstract classes may improve 
reading performance, as some joins are eliminated. 

One Table per One Inheritance Path: This 
approach is useful in situations when the previous 
two cannot provide sufficient reading performance, 
due to the mentioned heavy load of the root tables 
and multi-way join operations. This approach is 
characterized with producing one table per each 
inheritance path (assuming single inheritance). An 
inheritance path starts from the root class and ends at 
each concrete class, no matter if it is the leaf or not 
(abstract classes are not considered). All inherited 
properties on the inheritance path are collected into 
the table for that path. This approach introduces 
even more redundancy in the relational model (but 
still not on the data), but eliminates joins for 
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retrieving basic object information that are already 
present in the table. As a consequence, the 
elimination of multi-way joins completely eliminates 
heavy load of the root tables. Although the 
bottleneck near the root table is eliminated, the 
relational model now complicates generalized 
polymorphic queries, since more tables must be 
combined/joined to retrieve the desired information 
(Keller, 1997). 

One Table for One Inheritance Tree: This 
approach assumes mapping of a whole inheritance 
tree into one single table. This is also named as the 
typed partitioning, as mentioned in (Agarwal, Keene 
and Keller, 1995). The records in the table unify all 
the properties from all classes in the inheritance 
hierarchy, which eliminates expensive join 
operations and optimizes polymorphic queries, but 
creates a highly denormalized relational model. This 
approach may not show good results in case of deep 
hierarchies, since the table gets too big and 
cumbersome. Since all data are stored in only one 
table, the problem of bottleneck arises again, along 
with a large waste of storage, because of a lot of null 
values. Hence, this approach is recommended only 
in case of shallow inheritance hierarchies and low 
concurrency (Keller, 1997). 

One Table per each Concrete Class with 
Controlled Redundancy of Properties: We 
propose this hybrid approach that leverages 
advantages of the presented approaches and refines 
the "one table per one concrete class" approach, by 
copying properties from a base class table to the 
tables of inherited classes, in order to speed up 
generalized queries. However, instead of copying all 
properties from a base class table to the tables of 
inherited classes, only those base class properties 
that are most often retrieved in combination with the 
inherited class properties in the queries, may be 
replicated. In particular, values of redundant 
properties are copied in several tables (for base class 
to which the property belongs and for derived 
classes for optimized retrieval). This way, the degree 
of denormalization is smaller than in the "one table 
for inheritance path" approach, but performance of 
reads is optimized. In addition, in the “one table for 
inheritance path” approach, producing records with 
great number of columns may also have some 
negative effects on performance of read queries. For 
example, if the database cannot store one record in 
one physical page, then the number of accessed 
pages may be increased. Hence, this selective 
copying of properties from the tables of base classes 
to the tables of inherited classes controls the 
explosion of columns in records and keeps the 

physical model under control. This approach must 
be supported by the online data access profiling. To 
the best of our knowledge, this approach has not 
been published or systematically implemented in an 
automated ORM except in our SOLoist 
(www.soloist4uml.com) framework for model-
driven development (Milicev, 2009). 

3.3 Mapping Associations 

Efficient mapping of associations is another 
challenge for a sophisticated ORM. The multiplicity 
constraint on association ends is usually the main 
factor that influences the selection of a proper 
mapping transformation. In this section, we do not 
consider aggregations and compositions separately, 
since all that works for associations, works also for 
aggregations and compositions (composition has 
implications on the semantics of actions that are not 
relevant for our discussion). 

There are three well known approaches for 
mapping associations, with respect to the 
multiplicity constraint: (1) distinct table approach, 
(2) embedded foreign key approach, and (3) 
embedded class approach (Agarwal, Keene and 
Keller, 1995).  

It is necessary to mention that the 
transformations, presented in this section, are 
considered with one important assumption: we 
examine isolated classes, neglecting their relations 
with other classes in the model and other roles they 
may play in the model. Otherwise, the combinatorial 
complexity of available options and established 
constraints increases significantly. At this moment, 
this is beyond the scope of this paper. 

3.3.1 Mapping Associations 1:1 

Associations of type 1:1 usually relate one main 
class and one dependent class, or both classes may 
represent strong entities, but always related as 1:1. 
All of the three mentioned mappings can be applied 
for this type of associations. 

The embedded Class Approach (1:1): If the 
properties of both classes are often combined and 
retrieved in queries, than this is the most efficient 
transformation. This mapping eliminates frequent 
joins, while keeping the updates still reasonably 
easy. It is important to mention that objects share the 
same record, no matter if one of them is existentially 
dependent or not. It is important to know the aspect 
of the association's semantics and respond 
appropriately on operations of deleting links. 
It is worth mentioning that some ORM frameworks, 
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such as Hibernate, support this feature but on the 
level of class: a class can be annotated as one whose 
instances will be embedded into the instances of the 
other class (on the other side of compositions). 
However, it is important to understand that this is 
actually a property of an association, not of an entire 
class: in our practice, we have come across 
situations in which it was very useful (according to 
the usage of data) to have some instances of a 
certain class, which are aggregated into other objects 
over one composition, embedded into those other 
objects, while the other instances of that class should 
be stored in a separate table. Again, to the best of 
our knowledge, we are not aware of any ORM or 
publication that supports this feature. 

The embedded Foreign Key and the Distinct 
Table Approach (1:1): If properties of one class are 
dominantly retrieved, while objects of the other class 
are rarely accessed, then the normalized models 1 
and 2 may be a better choice, since negative effects 
of frequent joins are minimized, while the 
normalized relation model responds better to further 
changes in the model. 

Mapping Associations 1:n 

The Distinct Table Approach (1:n). This is the 
most flexible way of mapping, but it requires 
expensive joins if the relation is traversed 
frequently. This approach provides the 
implementation of the bidirectional navigability. 

The embedded Foreign Key Approach with 
Unidirectional Navigability (1:n): The embedded 
key approach is the most convenient and efficient 
for this kind of associations. The embedded foreign 
key is incorporated into the table of the dependent 
class. This saves one level of joins, while still being 
flexible and keeps the relational model in a 
normalized form. The problem with this approach is 
that it does not provide the bidirectional navigability 
(on the level of foreign keys, which are stored in 
only table on the n side of the association). 

The embedded Foreign Key Approach with 
Bidirectional Navigability (1:n): As mentioned in 
the case of the embedded key approach, it does not 
provide bidirectional navigability (foreign keys are 
stored in one table only). In a special situation, the 
bidirectional navigability can be implemented even 
without the distinct association table. We may use a 
technique called repeating groups (Shin and Sanders, 
2006). Namely, if the multiplicity of the dependent 
class is low, and with specified maximum 
cardinality, IDs of the dependent objects can be 
incorporated as foreign keys in separate columns in 
the owner object's record (Zaker, Phon-Amnuaisuk 

and Haw, 2009). In our future work, we will be 
experimenting with an ORM approach of 
bidirectional navigability with unlimited maximal 
cardinality. 

The embedded Class Approach (1:n): In the 
case of low multiplicity of the dependent class, it 
may be useful to embed it to the table of the owner 
class. Hence, joins are not needed for traversing the 
association, all property values are available directly 
in the owner object's record. 

Mapping Associations m:n 

The Distinct Table Approach (m:n): The distinct 
table approach is a natural solution for persisting 
links of this kind of associations. Each record of the 
table contains pairs of object identifiers, for objects 
from both sides of the association. Although 
flexible, this approach requires two joins to retrieve 
combined attribute values from the related objects. 
On the other hand, updates remain fast and easy 
(Agarwal, Keene and Keller, 1995). 

Distinct Table Approach with Controlled 
Redundancy (m:n): In the previous paragraph, we 
mentioned that the distinct table approach requires 
two joins to retrieve properties of the related objects. 
Usually, applications need to retrieve only subsets of 
the properties from the related classes. If the 
property values are rarely changed, then it makes 
sense to copy those properties that are accessed most 
frequently to the association table. This way, 
similarly to the hybrid approach of mapping 
inheritance described before, we apply a controlled 
redundancy to keep copies of properties that are 
most often retrieved when the association is 
traversed in the association table. This approach 
eliminates join operations in these cases. As for the 
similar approach for mapping inheritance, we are not 
aware of an implementation or publication of this 
mapping, that we propose. 

The embedded Foreign Key Approach (m:n): 
The embedded key approach may be considered in 
the situation when the multiplicity on at least one 
side is low, known and limited with the upper 
bound. That way, the table of the class at the 
opposite side may contain repeating groups of the 
finite number of object identifiers as the foreign 
keys (Shin and Sanders, 2006). Interesting to 
mention, such a mapping improves performance of 
queries that need to read direct links of an object. If 
both association ends have low and limited 
multiplicities, we may apply the same technique on 
the opposite table, too. That way we get 
bidirectional navigability, compared to the case 
when only one role has low and limited multiplicity. 
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The embedded Class Approach (m:n): The 
embedded class approach is not suitable for 
representing associations of this kind, so we do not 
examine it further. 

3.4 Optimizing Transitive Associations 

Transitive associations are often present in UML 
models and traversed. If the navigation from one 
object to its transitively related object goes through a 
sequence of links, such request is accomplished by 
using multiple joins. Again, if this operation is done 
frequently, it may impose significant slowdown and 
high load of the database. This issue is often solved 
by using pre-joint tables, as recommended in (Zaker, 
Phon-Amnuaisuk & Haw, 2009). That is, objects 
that are accessed together frequently are stored in 
the table for the direct navigation. In addition, this 
optimization can be justified only by the dynamic 
profiling of data access in the relational database. In 
fact, this technique is just a special case of storing 
derived properties (associations in this case). 

3.5 Storing Derived Values Instead of 
Frequent Recalculation 

This transformation provides optimized access to 
derived values. If derived values are calculated 
frequently, and if the basic values change rarely, 
then it is highly recommended to store the derived 
values in redundant columns and retrieve them on 
demand (Shin and Sanders, 2006). This is a large 
category of particular techniques that cover 
attributes as well as associations, including 
functional and recursive ones. Due to the lack of 
space, we will not investigate this category any 
further in this paper. 

4 CONCLUSIONS 

In this paper, we presented a survey of ORM 
transformations aimed for creating optimized 
relational models, specifically structured to 
eliminate expensive database operations in queries. 
Based on the given survey, we plan to implement a 
systematic approach for automatic mapping UML 
models to the optimized relational model, although 
some of the techniques are already present in our 
SOLoist framework as particular solutions. The 
approach is intended to provide static, as well as 
dynamic application profiling that will feed ORM 
with information needed for adapting the relational 
model to support the most dominant data access 

patterns. Finally, one of the most important 
contributions of this research is an initial framework 
for a detailed analysis and comparison of the 
presented ORM approaches based on 
denormalization of the relational model. As a result 
of the analysis, we expect to produce a methodology 
for using the denormalization techniques in a most 
efficient way. 
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