
Polymer
A Model-driven Approach for Simpler, Safer, and Evolutive Multi-objective

Optimization Development

Assaad Moawad1, Thomas Hartmann1, Francois Fouquet1, Grégory Nain1, Jacques Klein1

and Johann Bourcier2

1Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg City, Luxembourg
2IRISA / INRIA, University of Rennes 1, Rennes, France

Keywords: Multi-objective Evolutionary Algorithms, Optimization, Genetic Algorithms, Model-driven Engineering.

Abstract: Multi-Objective Evolutionary Algorithms (MOEAs) have been successfully used to optimize various domains
such as finance, science, engineering, logistics and software engineering. Nevertheless, MOEAs are still
very complex to apply and require detailed knowledge about problem encoding and mutation operators to
obtain an effective implementation. Software engineering paradigms such as domain-driven design aim to
tackle this complexity by allowing domain experts to focus on domain logic over technical details. Similarly,
in order to handle MOEA complexity, we propose an approach, using model-driven software engineering
(MDE) techniques, to define fitness functions and mutation operators without MOEA encoding knowledge.
Integrated into an open source modelling framework, our approach can significantly simplify development and
maintenance of multi-objective optimizations. By leveraging modeling methods, our approach allows reusable
optimizations and seamlessly connects MOEA and MDE paradigms. We evaluate our approach on a cloud
case study and show its suitability in terms ofi) complexity to implement an MOO problem,ii) complexity to
adapt (maintain) this implementation caused by changes in the domain model and/or optimization goals, and
iii) show that the efficiency and effectiveness of our approach remains comparable to ad-hoc implementations.

1 INTRODUCTION

In many domains, such as finance, science, engineer-
ing, and logistics several conflicting objectives need
to be simultaneously optimized. In finance for ex-
ample, the anticipated value of a portfolio should
be maximized, whereas the expected risk should
be minimized. Such problems, involving conflict-
ing objectives, are calledmulti-objective optimiza-
tion (MOO) problems, characterized by potential so-
lutions offering trade-offs between different objec-
tives. Different algorithms can cope with such prob-
lems, e.g. particular swarm optimization (Kennedy
et al., 1995), simulated annealing (Van Laarhoven and
Aarts, 1987), and population based algorithms (Deb
et al., 2002). Multi-objective evolutionary algorithms
(MOEAs) are another class of algorithms, which has
proved to be particularly capable of finding solu-
tions for complex domain-specific optimization prob-
lems with large solution spaces for which typically
no efficient deterministic algorithms exist. However,
MOEAs are difficult to use, require specific and de-

tailed expert knowledge about fitness functions, muta-
tion operators, and genetic problem encodings. Com-
mon encodings consist in mapping a domain-specific
MOO problem into a binary, permutation-based ma-
trix, or graph-based representation (Coello et al.,
2002). The solutions found by MOEAs must then be
decoded, meaning to map them back to the domain-
specific multi-objective optimization problem. This
makes it very challenging to properly apply MOEAs
and may require developers to focus more on the
encoding of a problem than on the problem itself
(Konak et al., 2006). The continuous design process
of today’s software systems makes it even more diffi-
cult to implement and especially to maintain MOEAs.
Each change in the domain and/or in the optimiza-
tion goals requires to adapt the problem encoding and
decoding. This makes it first necessary to identify
which impacts a change has on the problem encoding.
Since the encoding is usually not statically typed, type
checkers cannot be used to indicate potential errors.
As a consequence it is hardly possible to use standard
refactoring techniques to apply domain and/or opti-

286 Moawad A., Hartmann T., Fouquet F., Nain G., Klein J. and Bourcier J..
Polymer - A Model-driven Approach for Simpler, Safer, and Evolutive Multi-objective Optimization Development.
DOI: 10.5220/0005243202860293
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 286-293
ISBN: 978-989-758-083-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

mization goal changes. Instead, the problem encoding
must be adapted manually and independently from the
domain representation. Moreover, optimization prob-
lems are inevitably linked to the growing complexity
of software.

In this paper we present a new MDE approach
to develop MOO layers directly on top of domain
models. Fitness functions and mutation operators can
use these models and their API instead of relying
on complex and error prone encoding steps. Similar
to paradigms like domain-driven design, our model-
driven approach allows developers to focus on the
actual domain-specific optimization problems rather
than on technical encoding details. Our approach also
reduces the gap between MOEA representations and
models, allowing to reuse standard modeling tools
(e.g.model checkers) within fitness functions or mu-
tation operators. Integrated into an open-source mod-
eling framework, our approach can significantly sim-
plify domain-specific MOO development. We eval-
uate our approach on a cloud case study and show
its suitability in terms ofi) complexity to implement
a MOO problem,ii) complexity to adapt (maintain)
this implementation caused by changes in the domain
model and/or optimization goals, andiii) efficiency
and effectiveness of our approach remains compara-
ble to traditional implementations.

This paper is organized as follows. Section 2 in-
troduces MOEA background. In section 3 we provide
a case study, which we further use to present our con-
tribution in section 4 and to evaluate it in section 5.
The related work is discussed in section 6. Finally,
section 7 gives the conclusion and future work.

2 BACKGROUND

In the 1960s, several researchers independently sug-
gested to adopt the principles of natural evolution
(Darwin’s theory) for optimizations. This created the
field of evolutionary algorithm (EA). In EA, a solu-
tion vector is calledindividualor chromosome, which
consist of discrete units, which are calledgenes. Each
gene controls one or more features of a solution. Usu-
ally, a chromosome corresponds to a unique solution
in the solution space. This requires a mapping, called
encoding, between the domain specific solution space
and chromosomes. Usually, the encoding step is com-
plex and can be even more complicated than the actual
optimization problem itself (Konak et al., 2006). EAs
operate on a collection of chromosomes, called apop-
ulation. The population is usually randomly initial-
ized and then evaluated with a providedfitness func-
tion in order to select the“most appropriate”one for

the nextgeneration. After this step, EAs use two
operators to generate new solutions: crossover and
mutation. Thecrossoveroperator takes two chromo-
somes, combines them together and finally creates a
new offspring. Themutationoperator injects random
changes into chromosomes.

The first MOEA was proposed by Shaffer (Schaf-
fer, 1985). MOEAs, unlike EAs, solve problems
involving multiple conflicting objectives and offer a
representative subset of thePareto optimal solution
set, rather than a single optimized solution.“The
Pareto optimal set is a set of solutions that are non-
dominated with respect to each other. While mov-
ing from one Pareto solution to another, there is al-
ways a certain amount of sacrifice in one objec-
tive(s) to achieve a certain amount of gain in the
other(s)” (Konak et al., 2006). There are several algo-
rithms to select which solution subsets of the Pareto
optimal set to keep in order to cover, as diversely as
possible, the different trade-offs between objectives.
The NSGA (Deb et al., 2002) algorithm family (e.g.
NSGA-II, NSGA-III) is amongst the most well known
ones. MOEAs, like conventional EAs, rely on a ge-
netic encoding step. However, besides mutation and
crossover operators, for MOEAs several fitness func-
tions representing the different objectives, need to be
defined, instead of only one fitness function in EAs.
Subsequently, a decision making procedure has to be
called to select one solution from the Pareto subset.

3 REAL-WORLD CASE STUDY

MOEA frameworks are often evaluated against a suite
of mathematical functions with well known charac-
teristics like ZDT, DTLZ and LZ09 (Auger et al.,
2012). These problems are well suited to evaluate
the performance of MOEAs in terms of finding the
best Pareto front and the optimum solution. However,
they are less suitable to represent the complexity of
real-world problems and to evaluate the required ef-
fort for developers to implement and maintain MOOs
for domain-specific problems. In this section we de-
fine a non trivial real-world MOO case study to ap-
ply our approach to. As shown in (Frey et al.,) the
cloud computing domain is an appropriate real-world
case study where MOEAs are used for scheduling and
scaling tasks. Scheduling applications on the cloud is
a non trivial task (Pandey et al., 2010). First of all,
several different cloud computing providers exist on
the market. Each of these offers different comput-
ing specifications (e.g. CPU, memory, storage, and
networking capacity) at different prices and pricing
models (fixed pricing, bidding, etc). Then, different

Polymer�-�A�Model-driven�Approach�for�Simpler,�Safer,�and�Evolutive�Multi-objective�Optimization�Development

287

applications can be deployed on the cloud, each hav-
ing different requirements in terms of hardware (CPU,
RAM, disk, network), security (such as sand-boxing,
redundancy), priority, and latency (distribution on dif-
ferent geographic zones). All of these requirements
can be translated into optimization fitness functions.

For this paper, we define the following case study:
we have a fixed numbern = 7 of applications, each
requiring a specific computational power (in virtual
CPU hours). Further, we assume that these applica-
tions can be parallelized and distributed into smaller
tasks. Then we can rent a variable numberm< 100
of cloud instances from a provided list of available in-
stance modelsM = 47 (we provide as input for each:
number of virtual CPUs and fixed price per hour). An
instance model can be rented several times. We di-
vide each application intom tasks and we assign a
weight to each task (between 0 and 100). The weight
wi j of applicationi on instancej represents the pro-
portion of resources allocated for the applicationi
on the instancej. The optimization objectives are,
i) reducing the average time required to execute all
applications andii) reducing the total price paid on
instances. These two objectives are conflicting: the
more we pay, the more instances we can rent and
the less average time is needed for the execution. In
addition, we define three mutation operators for this
case study:AddInstance(to allocate a new cloud in-
stance),RemoveInstance(to delete a cloud instance),
and ChangeWeight(to randomly change the weight
of an application on an instance). We implement the
same problem with the same input files with our ap-
proach, using models and in a traditional way, using
an array encoding with the jMetal framework (Durillo
and Nebro, 2011). jMetal is an object-oriented Java-
based framework for MOO with metaheuristics. We
use for both implementations apopulationsize= 20
andmaxgenerations= 1000.

4 MODEL-BASED MOO

In this section we describe our model-driven approach
to simplify complex multi-objective optimizations.

4.1 Approach

The classical process of using MOEAsin an appli-
cation can be divided into six steps, which are shown
in figure 1. First, the problem domain must be de-
fined and implemented. This is usually achieved us-
ing tools such as UML or E/R diagrams and standard
programming languages like Java or C/C++ (POJO
based). The second stepis the encoding step. This

Domain

Defintion
Encoding

Fitness Functions

Crossover Operators

Mutation Operators

Step 1: Step 2: Step 3:

Decoding

Step 4:

Configuration

Step 5:

Domain
Usage

Step 6:

MOEA Specific Steps

Continuous Design

Figure 1: Classical steps to use MOEAs.

means that the section of the domain impacted by the
MOO must be mapped to a suitable structure in order
to execute MOEAs. Typically, representations like bi-
nary or int arrays, permutations, matrix, or graphs are
used for this purpose (Coello et al., 2002). Figure 2
shows an example of such a classical encoding (based
on an int array), aligned to our cloud case study. As

1 … m w11 w12 w.. w1n … wm1 wm2 w.. wmn

IDs m x n software weights IDs of instances m x n software weights

 Weights of all software on the first machine

Figure 2: Classical MOO encoding using arrays.

for our case study, the number of reserved instances
m can vary and is subject to optimization, the size of
the array varies as well. For each computing instance,
we need to allocate an integer for theID of the in-
stance (in our case a number from 1 to 47), andn
integers for the weights of then applications. In this
way the encoding consists of an integer array of size:
m× (n+1). As a design choice, we decide that the
first mvalues in the encoding represent theIDs of the
reserved instances and the nextm×n values represent
the weights of the applications. However, this clas-
sical mapping comes with a number of drawbacks.
First, this task is usually not trivial and requires ex-
pertise form both sides, domain experts as well as
MOEA experts. Second, type-safety is lost. Conse-
quently, it is more difficult to find bugs in the encoded
MOEA representation and to maintain it. Last but not
least, such encodings are difficult to read.In a third
stepfitness functions, crossover, and mutation opera-
tors must be defined. Listing 3 shows as an example,
again aligned to our cloud case study, the implemen-
tation of a mutator to remove an instance.

Listing 1: RemoveInstance mutator on array encoding.
class RemoveInstance implements Mutation {

void mutate(int[] cloud) {
int m= cloud.length /(N_SOFT +1);//number of instances
if(m==0) return;
int x= rand.nextInt (m);
int[] newCloud = new int[(m-1)*(N_SOFT +1)];
for(int i=0;i<x;i++) { newCloud [i]=cloud[i] };
for(int i=x+1;i<m+x*N_SOFT;i++){newCloud [i-1]=cloud[i]};

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

288

Application

Modeling API
(generated)

MOEA
(e.g. NSGA-II)

MOEA Optimization Layer

Figure 3: Model-based MOO overview.

for(int i=m+(x+1)*N_SOFT;i<m*(N_SOFT +1);i++){
newCloud [i-1-N_SOFT]=cloud[i]}; cloud=newCloud ; }}

As can be seen in the listing, in order to remove a
machinex from the cloud, we need to remove itsID
from theID section then remove then associated ap-
plicationweightsfrom theweightssection.Next, the
MOEA setup must be configured. This includes the
initialization of the population, its size, and the selec-
tion of an algorithm for the diversification of solutions
(e.g.NSGA-II). In a fifth stepthe solution found by a
MOEA must be interpreted and decoded back to the
domain representation.Finally, the decoded solutions
can be used in the domain-specific MOO problem.

A major challenge that comes along with this
classical processis that in case of refactoring, and
continuous design, all these steps have to be checked
for impacts and potentially must be repeated.

We claim that this process can be significantly
simplified by leveraging model-driven engineering
techniques to allow a domain-specific model en-
coding for MOO problems. The main idea of this
approach is to allow to express the MOO problem, fit-
ness functions, crossover and mutations operators di-
rectly and seamlessly using the domain model, mak-
ing explicit encoding and decoding steps unnecessary.
This allows to throughout use the same models for
both the domain representation and MOO problem
encoding and therefore to avoid this mismatch. By in-
tegrating our approach into the open-sourceKevoree
Modeling Framework (KMF)(Fouquet et al., 2012)
we provide a framework1 to express domain-specific
model encodings for MOEAs in order to discard the
encoding/decodingsteps. Figure 3 shows an overview
of the layers involved in our approach. In MDE the
application layer is typically built using a modeling
API, which is generated form a meta-model defini-
tion (e.g. from an Ecore model). In our approach, we
use MOF based modeling, using textual and graphical
representations. We extend this modeling API with
several interfaces to implement fitness functions, mu-
tation and crossover operators, as well as the popula-
tion creation factory. These interfaces are typed with

1http://kevoree.org/polymer/

the model, which means that they can be implemented
using the modeling API. Listing 2 shows a simplified
version of our interfaces.

Listing 2: Interfaces of the extended modeling API.
interface FitnessFunction <A extends KContainer > {

double evaluate (A model);}
interface MutationOperator <A extends KContainer > {

List <MutationVars > enumerateVars (A model);
void mutate(A model);}

interface CrossoverOperator <A extends KContainer > {
A execute (A modelA , A modelB);}

Figure 4 represents the model encoding of the
MOO problem of our cloud case study. As can be

Figure 4: A cloud meta-model.

seen in the figure, a cloud contains several virtual ma-
chine instances and applications, which can be exe-
cuted on the virtual machine instances. Using stan-
dard model-driven techniques this meta-model can be
transformed into object-oriented code. Listing 3 again
shows the implementation of theRemoveInstancemu-
tator. But this time the operator is implemented di-
rectly on the model encoding instead of an explicit
MOO problem encoding.

Listing 3: RemoveInstance mutator on a model encoding.
class RemoveInstance implements MutationOperator <Cloud > {

void mutate(Cloud could) {
int m=could.getInstances (). size();
if(m==0) return;
int x= rand.nextInt (m);
VmInstance vmtoRemove = could.getInstances .get(x);
could.removeInstances (vmtoRemove); }}

The extended modeling API allows developers
to encode the MOO problem completely in terms
of the domain model. In addition, we provide a
MOEA optimization layer, which initiates the pop-
ulation, calculates the fitnesses, and executes muta-
tion and crossover operators according to their imple-
mentations. We use established algorithms such as
NSGA-II and ε-MOEA for the actual MOO. These
algorithms only operate on the provided fitnesses and
are independent from our model encoding. Our opti-
mization layer provides the fitnesses and executes the
mutations (both on top of models) for the underlay-
ing MOEA layer. The MOEA optimization layer can
be configured to choose one of the supported MOEAs
and to set the maximum number of generations.

This approach enables the execution of MOEAs
on top of models and can significantly simplify the us-
age of MOEAs to tackle domain-specific MOO prob-
lems. The necessary MOEA expertise is hidden in the

Polymer�-�A�Model-driven�Approach�for�Simpler,�Safer,�and�Evolutive�Multi-objective�Optimization�Development

289

framework and allows software engineers to focus on
the domain-specific MOO problem, instead of MOEA
encoding and decoding. First, software engineers can
express the optimization problems in terms of the do-
main model without being MOEA experts. Second,
type-safety is maintained, which improves the main-
tainability of the application. Third, since the prob-
lem is expressed in domain terms the solution is far
more readable. Leveraging type safety and object-
oriented design, MOEAs can shift to complex opti-
mization using several mutation operators. Last but
not least, our approach enables to use standard mod-
eling techniques during the optimization process, and
thus can leverage many tools to verify solutions.

4.2 Polymer Implementation

We implement our framework on top of KMF (Fou-
quet et al., 2012), which is an alternative to the
Eclipse Modeling Framework (EMF), fully support-
ing the Ecore file format but targeting runtime perfor-
mance. We use KMF to generate the modeling code
and API from domain models to support the construc-
tion of MOEA elements (fitness functions and muta-
tion operators) on top. The Polymer framework core
itself on one hand provides the MOEA interfaces de-
scribed in section 4.1 and on the other hand imple-
ments a mapping layer to intermediate between clas-
sical MOEAs and our model-based encoding. There-
fore, Polymer calculates the fitness function score
based on the implementation of the provided inter-
faces, using a classical visitor pattern. The result
of the different fitness functions (plain numbers) are
used as input for classical MOEA Pareto-front se-
lectors. Whenever a MOEA needs to mutate one of
the solutions, Polymer creates a clone of the domain
model and executes one of the implemented mutation
operators (randomly) on this clone. Since cloning of
models is a frequent but costly operation in our ap-
proach we implemented an efficient partial cloning
mechanism, which is described in more detail in sec-
tion 4.3. Like fitness functions, mutation operators
operate directly on the generate modeling API and
can take advantage of model transformations. In this
paper we do not intent to provide a new MOEA algo-
rithm, instead we allow to use different already exist-
ing search algorithms. The novelty of our approach is
to allow the usage of a model-based encoding for do-
main specific MOO problems. Figure 5 summerizes
the implementation concept of Polymer.

4.3 Partial Model Cloning

It is easy to efficiently copy traditional MOEA prob-

Kevoree Modeling Framework
Ecore

Meta-Model

Modeling
API

Polymer
MOEA Optimization Layer

input

generates

MOEA
(e.g. NSGA-II)

Application

implements
MOEA interfaces

uses modeling layer to
implement the domain model
and MOEA interfaces

uses

provides MOEA
interfaces

uses

Domain Model
Clone

creates clones

calculates
fitnesses, executes
mutations and
crossovers

provides fitnesses,
executes required

mutations

MOEA
Interfaces

uses

Figure 5: Model-based MOO implementation.

lem encodings,e.g. binary arrays. However, our
model-based problem encodings are more difficult
and less efficient to copy, since potentially a com-
plete model must be cloned. To reach a compara-
ble efficiency in terms of memory usage and per-
formance, while still offering developers the advan-
tages of working directly on top of domain models,
we provide a partial model cloning mechanism (Fou-
quet et al., 2014). First, for most real-world appli-
cations, we argue that only a fraction of parameters
and fields of domain-specific models are subject to
optimization. A big part of the model consists of im-
mutable fields or reflects static characteristics of the
domain and consequently is outside the search space
of MOEAs. Therefore, whenever we clone a model to
generate another potential solution, we ensure in our
framework to not copy immutable fields but only re-
fer to them. In fact, this mechanism only clones the
mutable parts of a model (partial cloning) instead of
the whole model. For our case study, the application
class can be declared as immutable, because the muta-
tions do not impact this class. In the cloud case study,
the optimization occurs on the rented machine and the
way the weights are distributed. This partial cloning
is completely transparent for developers.

5 EVALUATION

We evaluate our approach on the cloud case study
and show its suitability in terms ofi) complexity to
implement a MOO problem,ii) complexity to adapt
(maintain) this implementation, andiii) show that the
efficiency and effectiveness of our approach remains
comparable to ad-hoc implementations.

5.1 Complexity to Implement

We claim that a major complexity of MOEA based
developments is due to the required mixed expertise,

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

290

Table 1: Implementation complexity for jMetal / Polymer.
M.Loc=MOEA Expert LoC / D.Loc=Domain Expert LoC.

Feature jMetal Polymer
M. LoC D. LoC M. LoC D. LoC

Domain Encoding 1 – – 24

Fitness Operators 13 39 – 39

Mutation Operators 28 32 – 34

Crossover Operators 6 22 – 22

Population Factory 6 16 - 30

MOEA settings 14 – 9 –

Decoding solution 12 – – –

Total 80 109 9 149

on the one hand MOEA and on the other hand the
domain itself. To evaluate the complexity of our ap-
proach compared to classical MOEA development we
implement the cloud case study in both approaches
and count the required lines of code (LoC) associated
for each expertise. We keep the same coding style
for both implementations in order to keep the abso-
lute number of LoC comparable, however the most
important point is the balance between MOEA and
domain expertise. The Polymer implementation takes
158 LoC, while the implementation with jMetal needs
189, as shown in table 1. This difference is mainly
due to the encoding/decoding in the jMetal imple-
mentation. Additionally, it is important to notice that
the 24 LoC for the domain definition of the Polymer
version are reusable for other model-based develop-
ments. For jMetal, in every operator, the genetic en-
coding must be defined by MOEA experts, in order
to be usable by domain experts. That explains the
71 LoC difference for the MOEA experts. For Poly-
mer, MOEA experts have just to decide the core set-
tings (the algorithm and its configuration, number of
generations, number of individuals in the population).
However, the 40 additional lines difference for the do-
main experts in the Polymer implementation are due
to the model structure and manipulations of objects
where in the traditional implementation the structure
is fixed in the array encoding. We can conclude from
this subsection that the Polymer based implementa-
tion successes to reduce the development complexity
by allowing developers to focus on cloud optimization
(the actual domain problem).

5.2 Evolutive Refactoring Robustness

In order to evaluate the necessary refactoring effort
for both platforms, we consider 10 different modifica-
tions (in 3 categories) on the previously defined case

study. We then count the modified lines of code to
adapt the implementation for both frameworks. Ad-
ditionally, we check if the necessary changes can be
pointed out by the Java type checker or not.

In the first category, we remain in the same opti-
mization problem definition, but consider adding/re-
moving fitness functions, mutation, and crossover op-
erators, over the same problem. Both, Polymer and
jMetal are able to check the type of the operators.

In the second category, we remain again in the
same optimization use case but we change some pa-
rameters,e.g. adding/removing an application. In
jMetal it is necessary to manually add/remove this
application from the array of applications in each
crossover/mutation operator and fitness function. In
Polymer, we just need to add/remove this application
from the population creation factory. We do not need
to modify any operator or fitness because the model is
integrally passed to them. Another modification that
falls into this category, is to add an optimization field.
Let’s say we want to optimize over CPU and network
resources of the deployed applications on the virtual
machines. In Polymer, we just have to add a field
“network” in the metaclassesTask, Applicationand
VmInstance. There is no code change in any pre-
viously implemented fitness function, mutation and
crossover operator necessary. However, in the tradi-
tional approach a big change needs to bemanually
done on the encoding. Figure 2 is not enough any-
more to represent the new encoding. Instead, a new
integer needs to be reserved for each application task
on each VM instance. The total number of integers
in the array representing a solution, changes from the
previously calculatedm× (n+1) to the new value of
m× (2n+1). Developers then need to manually up-
dateall previously defined operators in order to take
this structural change in the encoding into account.
In this simple use case implementation, we already
counted as many as43 lines of code affected by this
change. What is even more dangerous, is that it is up
to the encoding designer to define what comes first in
the encoded array, among the v-cpu weight and the
network weight. Type checkers cannot enforce that
the encoding is actually used by its intended meaning
in fitness functions and mutation operators. Table 2
summarizes the modifications.

5.3 Performance and Effectiveness

To evaluate the effectiveness of our approach we run
both implementations (model-based and traditional
MOEAs) 100 times on our cloud case study on a core
i7 computer (2.7Ghz) with 2 GB RAM dedicated for
the optimization process. As shown in figure 6 both

Polymer�-�A�Model-driven�Approach�for�Simpler,�Safer,�and�Evolutive�Multi-objective�Optimization�Development

291

Table 2: Lines of code changed in both frameworks.

Modification jMetal Polymer
LoC T. Check LoC T. Check

Adding Mutator 3 ✓ 1 ✓

Removing Mutator 3 ✓ 1 ✓

Adding Crossover 3 ✓ 1 ✓

Removing Crossover 3 ✓ 1 ✓

Adding Fitness 1 ✓ 1 ✓

Removing Fitness 1 ✓ 1 ✓

Adding an App 10 ✗ 1 ✓

Removing an App 10 ✗ 1 ✓

Adding Network Optim. 43 ✗ 1 ✓

Changing Optim. Problem All - 40% -

approaches lead to similar Pareto fronts. We validate
this using a Mann-Whitney U-Test (statistical test at
0.01 significance level) which give evidence that both
Pareto are comparable. At the core both frameworks
use the same MOEA algorithm, namely NSGA-II.
Therefore, we can conclude that the bias introduced
by the modeling layer does not impact the result.

0 5 10 15
0

20

40

Time fitness in hours

P
ri

ce
fit

n
es

s
($

)

jMetal

Polymer

Figure 6: Pareto fronts for jMetal and Polymer.

In order to evaluate the efficiency of our approach
we measure the time for performing the solution
search and the used memory. All in all, Polymer takes
more time (by an average of 15 %) and memory (by
an average of 20 %). This is due to model manipula-
tions and cloning of models instead of simply copy-
ing arrays. The overhead in performance and mem-
ory is a trade-off to achieve an easier and more main-
tainable MOO development. However, this overhead
decreases in term of percentage, when the complex-
ity or the number of fitness functions to evaluate in-
crease. For each genetic generation step the model
cloning operation has a fixed cost. In order to op-
timize this step we apply the partial model cloning
strategy. When dealing with complex fitness evalu-
ations, the cloning cost and the overhead in perfor-
mance become negligible (less than 5 % for the partial
clone, and less than 15 % for the full clone). Figure

7 shows how the performance overhead (using as ref-
erence zero the traditional ad-hoc encoding) changes
when the fitness functions become more complex to
evaluate. As can be seen in figure 7 the overhead
introduced by the partial cloning and model opera-
tions, become more and more negligible with increas-
ing complexity of the case study. This increase in
complexity can be due to one of three factors: 1) In-
crease in the number of objectives to optimize,e.g.
optimizing network, RAM, disk usage, latency, secu-
rity, redundancy and price at the same time. 2) In-
crease in complexity of previously defined fitnesses,
e.g. a more precise fitness function is implemented.
3) Increase in the complexity of the domain itself,e.g.
adding more virtual machines or more applications to
optimize leads to slower fitness evaluation per genera-
tion. We can conclude, that our approach can compete
with traditional MOEA usage by using heuristics like
partial cloning. We can also see that the overhead be-
comes negligible for complex optimization scenarios,
which are the main target of our approach (because
for them maintainability becomes critical).

0 500 1,000
0

20
40
60
80

100

Fitnesses eval time in ms

O
ve

rh
ea

d
(%

)

Partial Clone

Full Clone

Figure 7: Performance overhead.

6 RELATED WORK

Different encodings have been used in litera-
ture (Coello et al., 2002),e.g. binary, permutation,
matrix, graph, and tree based encodings. They all re-
quire functions to encode, decode, navigate, and get
information from the genetic encoded format. Many
proposals have been presented for which encoding
is suitable for which type of problem (Coello et al.,
2002). For example, graph-based encodings are suit-
able for network optimization problems. Some en-
coding types, like permutation-based encodings, have
the advantage to require only a very small memory
footprint. None of these encodings are suitable for
complex domains containing different types of data
at the same time. Therefore, it is necessary to have
a complex encoding/decoding step to transform the
domain specific multi-objective optimization problem
into a suitable MOEA representation and to transform
the solution back to the domain problem. Recently,

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

292

ideas to apply MDE on MOEAs to simplify the en-
coding steps were presented (Williams and Poulding,
2011) and (Amato et al., 2014). Their idea is to create
an automatic wrapper to transform a model into an ar-
ray encoding and use the traditional approach behind.
We discard the encoding step and use the model itself
as encoding.

7 CONCLUSION

We claim that the usage of MOEAs to solve domain-
specific MOO problems is complicated. This is
mainly due to necessary encoding steps, meaning
that a domain-specific problem must be mapped into
a structure, which is suitable for the execution of
MOEAs. This burdens developers with not only to
understand a domain-specific MOO problem but also
with the technical challenge to properly express this
problem in terms of MOEA encoding. Many appli-
cation domains can benefit from MOOs on top of
models. In this paper we introduced a MDE frame-
work to allow developers to combine MOOs with a
model-driven development process. For this purpose,
we enabled the execution of MOEAs on top of mod-
els and significantly simplified their usage and im-
proved their reusability. We showed that the nec-
essary MOEA expertise is hidden in the framework
and enables software engineers to focus on domain-
specific MOO problems instead of MOEA encoding
and decoding. This has several advantages. First,
MOO problems can be expressed in terms of domain
models without being a MOEA expert. Second, type-
safety is kept, which improves maintainability of the
application. Third, since the problem is expressed in
domain terms the solution is more readable. Our ap-
proach allows to use the same models for domain rep-
resentation and MOO problem encoding to avoid the
mismatch between these representations.

In future work we plan to integrate additional
MOEAs in our framework,e.g. NSGA-III (Yuan
et al., 2014). We also plan to apply the type infor-
mation of models to introduce novel optimizations in
MOEA algorithms (Elkateb et al.,). Finally, we will
investigate the optimization of domain model cloning.
As we have seen model cloning in our approach is still
a bottleneck. A faster mechanism would improve the
performance of our approach.

ACKNOWLEDGEMENTS

The research leading to this publication is supported
by the FNR (grant 6816126), Creos Luxembourg S.A.

and the CoPAInS project (code CO11/IS/1239572).

REFERENCES

Amato, A., Di Martino, B., and Venticinque, S. (2014).
Multi-objective genetic algorithm for multi-cloud bro-
kering. InEuro-Par 2013: Parallel Processing Work-
shops.

Auger, A., Bader, J., Brockhoff, D., and Zitzler, E.
(2012). Hypervolume-based multiobjective optimiza-
tion: Theoretical foundations and practical implica-
tions. Theoretical Computer Science, 425:75–103.

Coello, C. A. C., Van Veldhuizen, D. A., and Lamont, G. B.
(2002). Evolutionary algorithms for solving multi-
objective problems, volume 242. Springer.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. Evolutionary Computation, IEEE.

Durillo, J. J. and Nebro, A. J. (2011). jmetal: A java frame-
work for multi-objective optimization.Advances in
Engineering Software, 42(10):760–771.

Elkateb, D., Fouquet, F., Bourcier, J., and Le Traon, Y. Opti-
mizing multi-objective evolutionary algorithms to en-
able quality-aware software provisioning. In14th In-
ternational Conference on Quality Software.

Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O.,
Plouzeau, N., and Jézéquel, J.-M. (2012). An eclipse
modelling framework alternative to meet the models@
runtime requirements. InModel Driven Engineering
Languages and Systems, pages 87–101. Springer.

Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O.,
Plouzeau, N., and Jézéquel, J.-M. (2014). Kevoree
modeling framework (kmf): Efficient modeling tech-
niques for runtime use.CoRR, abs/1405.6817.

Frey, S., Fittkau, F., and Hasselbring, W. Search-based ge-
netic optimization for deployment and reconfiguration
of software in the cloud. InSoftware Engineering
(ICSE), 2013 35th International Conference on.

Kennedy, J., Eberhart, R., et al. (1995). Particle swarm op-
timization. 4(2):1942–1948.

Konak, A., Coit, D. W., and Smith, A. E. (2006). Multi-
objective optimization using genetic algorithms: A tu-
torial. Reliability Engineering & System Safety.

Pandey, S., Wu, L., Guru, S. M., and Buyya, R. (2010).
A particle swarm optimization-based heuristic for
scheduling workflow applications in cloud computing
environments. InAdvanced Information Networking
and Applications (AINA), 2010 24th IEEE Interna-
tional Conference on, pages 400–407. IEEE.

Schaffer, J. D. (1985). Multiple objective optimization with
vector evaluated genetic algorithms. InProceedings
of the 1st international Conference on Genetic Algo-
rithms, pages 93–100. L. Erlbaum Associates Inc.

Van Laarhoven, P. J. and Aarts, E. H. (1987). Simulated
annealing.

Williams, J. R. and Poulding, S. (2011). Generating models
using metaheuristic search.Sponsoring Institutions.

Yuan, Y., Xu, H., and Wang, B. (2014). An improved nsga-
iii procedure for evolutionary many-objective opti-
mization. InProceedings of the 2014 Conference on
Genetic and Evolutionary Computation, GECCO ’14.

Polymer�-�A�Model-driven�Approach�for�Simpler,�Safer,�and�Evolutive�Multi-objective�Optimization�Development

293

