
Technology Independent Honeynet Description Language

Wenjun Fan, David Fernández and Víctor A. Villagrá
Departamento de Ingeniería de Sistemas Telemáticos, Universidad Politécnica de Madrid,

ETSI Telecomunicación, Avda. Complutense 30, 28040, Madrid, Spain

Keywords: Honeynet Description Language, Honeynet Configuration, Honeynet Management, Network Security.

Abstract: Several languages have been proposed for the task of describing networks of systems, either to help on
managing, simulate or deploy testbeds for testing purposes. However, there is no one specifically designed
to describe the honeynets, covering the specific characteristics in terms of applications and tools included in
the honeypot systems that make the honeynet. In this paper, the requirements of honeynet description are
studied and a survey of existing description languages is presented, concluding that a CIM (Common
Information Model) match the basic requirements. Thus, a CIM like technology independent honeynet
description language (TIHDL) is proposed. The language is defined being independent of the platform
where the honeynet will be deployed later, and it can be translated, either using model-driven techniques or
other translation mechanisms, into the description languages of honeynet deployment platforms and tools.
This approach gives flexibility to allow the use of a combination of heterogeneous deployment platforms.
Besides, a flexible virtual honeynet generation tool (HoneyGen) based on the approach and description
language proposed and capable of deploying honeynets over VNX (Virtual Networks over LinuX) and
Honeyd platforms is presented for validation purposes.

1 INTRODUCTION

Honeypot is an important tool to analyze the
adversary’s behaviour. The definition of honeypot is:
A honeypot is an information system resource whose
value lies in unauthorized or illicit use of that
resource (Spitzner, L., 2003). A honeynet is a
network of honeypots. A honeynet can consist of
high-interaction honeypots or low-interaction
honeypots or both of them. High-interaction
honeypot is designed to capture extensive
information on threats. Opposite to low-interaction
honeypot which just emulates the operating systems
and services, high-interaction provides real systems,
application, and services to lure adversaries’ snoop
and attack. Honeynet creates a highly controlled
network, which system administrator can control,
and monitor all activity that occurs inside it.

However, one of the biggest challenges we face
with most security technologies, including honeynet,
is configuration. Especially for the dynamic
honeynet (Spitzner, L., 2010), it is very important to
reconfigure the honeynet when the network
environment is changed. For example, a honeynet is
deployed to clone a target network, if the target

network changes its configuration, then the honeynet
has to be reconfigured too. Another case in point is
that the IRS (Intrusion Response System) can divert
the intrusion traffic into the honeypots to do
investigation. The intrusion traffics also can impact
the network environment. Thus, one issue of IRS is
to dynamically create and configure the honeypots.

However, it is a complex task to create and
configure the dynamic honeynet manually. Thus, it
is necessary to use an automated honeynet tool to
create, configure, and deploy the dynamic honeynet.
Nevertheless, in this kind of automated honeynet
tool we need a network description language to
make the configuration of the honeynet.

Network description language is used to describe
the topology, configuration, and other information of
a network. In the network security community, there
isn’t a network description language against the
network of honeypots. As we all know, honeypot
can be established based on the physical device.
However, with the advantages of virtualization
technology, honeynet also can be installed in one
host system. What’s more, virtual network is a built-
in feature of linux kernel, and many more virtual
network tools, such as mininet, libvirt by linux
bridge, openvswitch, etc. are available. Thus, it is

303Fan W., Fernández D. and A. Villagrá V..
Technology Independent Honeynet Description Language.
DOI: 10.5220/0005245503030311
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 303-311
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

necessary to consider creating a flexible honeynet
generation tool that can deploy honeynet over
different platforms based on a technology
independent honeynet description language.

In this paper, a Common Information Model
(http://dmtf.org/standards/cim) like technology
independent honeynet description language
(TIHDL) is proposed for describing the scenario of
honeynet. Based on the TIHDL core, a honeynet
request, configuration and management language is
made. This language is used in a flexible virtual
honeynet tool, which can comprise a combination of
heterogeneous platforms for deploying honeynet and
also can deploy hybrid honeynet that mixes the low-
interaction honeypots and high-interaction
honeypots on one virtual network.

The organization of this paper is as follows: in
section 2, the technology independent honeynet
description language is proposed; in section 3, the
architecture of our system is demonstrated; in
section 4, a proof of concept and the validation are
made; in section 5, a conclusion is made, and some
future work is proposed.

2 HONEYNET DESCRIPTION
LANGUAGE

2.1 A Typical Honeynet

In this part, one typical honeynet is presented. Using
this typical honeynet, both the adversary’s and
system administrator’s behavior are depicted. Figure
1 shows the typical honeynet. There is an internal
subnet that is protected by a firewall and a DMZ
subnet that is used to deploy honeynet. In front of
the honeynet there is a containment gateway.

Figure 1: A typical honeynet.

On one hand, from the adversaries’ perspective,
several steps should be done to compromise a

computer system. First, fingerprinting of the system
is exposed by some scanning tools, e.g. Nmap
(http://nmap.org/) and xprobe2
(http://www.aldeid.com/wiki/Xprobe2). In this step,
an intruder can collect the information of the name
and version of the operating system, the IP address,
the open TCP/UDP ports, and the service provided.
Second, the intruder can search the available
vulnerabilities of the target system according to the
information of the first step. In the second step,
Nessus (http://www.tenable.com/products/nessus) is
always a good choice. Third, the intruder can use
some tools, e.g. Metasploit
(http://www.metasploit.com/), to exploit the target
system.

On the other hand, from the system
administrator’s viewpoint, some protective measures
must be put into effect. There is a containment
gateway called Honeywall which is used to monitor
the honeypots, detect the intrusion traffics, observe
and record the adversaries’ behavior when they
compromise the honeypots. At the same time, it also
can restrict the outgoing traffics, which means the
adversary is confined to compromise other system
from the compromised honeypot. Honeywall is a
gateway device that separates the honeypots from
the rest of the world. Any traffic going to or from
the honeypots must go through the Honeywall. This
gateway is traditionally a layer 2 bridging/switching
device, meaning the device should be invisible to
anyone interacting with the honeypots. From the
diagram, it can be observed that the honeywall has 3
interfaces. The first 2 interfaces (eth0 and eth1) are
what segregate the honeypots from everything else,
and they are bridged interfaces that have no IP stack.
The 3rd interface (eth2, which is optional) has an IP
stack allowing for remote administration.

2.2 The Requirement of Honeynet
Description

Table 1: The characteristics for honeynet description.

Network

Application Layer Protocol Service
Transport Layer TCP/UDP port

Network Layer
IP address

IP Routing Topology

Data Link Layer
Network Interface

Mac Address
Physical Layer Device Type

System Operating System

Name and Version of
Operating System

Name and Version of
Software Installed

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

304

From both the adversary’s and administrator’s point
of view, the characteristics that must be considered
for honeynet description are figured out. The
characteristics that have to be used for honeynet
description are listed in Table 1. We classify them
from the angles of the network TCP/IP stacks and
the operating system.

We can view this table from bottom to top. The
first two characteristics are the name and version of
the operating system and the installed software.
These two parameters are important for OS and
software that always have the vulnerabilities unless
they have been patched. Fingerprinting tool can
easily detect the OS information that consists of
name and version, after that adversary can exploit
the vulnerability. Admittedly, system can be updated
and patched in time. However, the 0day exploits can
compromise the system before it gets patched. The
third characteristic is the device type, because in a
typical honeynet, there are different devices such as
router, containment gateway and honeypot system.
They should be identified clearly. Furthermore, the
Mac address is used to identify every network
interface on the devices. However, some interfaces
do not have IP stack but they are linked with other
interfaces, thus we need the network interface link to
describe this sort of relationship. Moreover, we must
know the IP address of each system, and the routing
topology. The adversary needs them to find a target
system to compromise, and the system administrator
needs them to deploy the honeynet. In addition, the
systems on internal network always provide services,
which always bind ports. As we all know, one
particular attack or misconfiguration always aims at
one kind of service. The adversary can use the

vulnerabilities of service to compromise the system.
Thus, another parameter is the sort of service. There
are several services can be deployed on server, such
as Web service, FTP service, DNS service, Mail
service, VoIP service, etc. Besides, a provided
service is always combined to an open port. Thus,
the last two characteristics are the open port and the
service.

All in all, these nine characteristics are only the
basic requisite for typical honeynet description. The
desired honeynet description has to be able to
describe these nine characteristics at least.

2.3 A Survey of Existing Network
Description Languages

Even though, there are some description languages,
which can be used to describe either networks or
systems. For example, ns-3 (http://www.nsnam.org/),
a network simulator, provides a complete language
for simulating network, and SysML
(http://www.omgsysml.org/), the System Modeling
Language, offers a flexible and expressive language
for system engineering. However, security issues
always makes up of network security and computer
system security. Thus, for honeynet description, it is
necessary to elect a language that describes both
network and system. Now that the requirement items
for honeynet description are proposed. We can use
them to study the existing network description
languages. We investigated ten network description
languages. They are YANG (Bjorklun, M., 2010),
NDL (Grosso, P., et al., 2007), NML (Ham, J.J. van
der, et al., 2013), INDL (Ghijsen, M., et al., 2012),

Table 2: A survey of existing network description languages for honeynet description.

 YANG of
NETCONF

NDL
/NML
/INDL

NDML+ of
CANDY

VXDL BNF style template
language of Honeyd

CIM Rspec of
SFA

GLUE
2.0

Device Type + + + + O + + +
Mac address - O - O + + O O
Network interface
Link

- + + + - + + -

IP address + O - O + + + +
IP routing topology O - - - + + O +
Transport layer port + - - - + + - -
Application O - O + - + O +
Service O - O O O + + +
Name and version of
Software installed

O - - + - + O +

Name and version of
operating system

O - + + + + + +

Legend: “+” means “available”; “O” indicates “limited available”; “-” represents “not available”

Languages

Requirements

Technology�Independent�Honeynet�Description�Language

305

NDML+ (Luntovskyy, A., et al., 2008), VXDL
(Koslovski, G. P., et al., 2009), Template language
of Honeyd (Provos, N., 2004), CIM, Rspec of SFA
(http://www.protogeni.net/trac/protogeni/wiki/RSpe
c) and Glue 2.0 (Andreozzi, S. et al., 2009).

The result of the survey of the existing network
description languages are demonstrated in Table 2.
From the survey of these existing languages, it is
apparent that CIM is the best choice for honeynet
description. However, CIM only meets the basic
requisite for honeynet description, and it lacks some
other useful information, e.g. the level of interaction
of honeypot. Furthermore, CIM is not a
configuration language. So it can’t be adopt directly
to configure the scenario of honeynet. Several
characteristics of configuration have to be provided
in the desired language. Thus, the best way is to
create a new CIM like technology independent
honeynet description language.

3 HoneyGen

In this section, a flexible virtual honeynet generation
tool (HoneyGen) is presented. The architecture of
HoneyGen is shown in Fig. 2. Through the whole
HoneyGen architecture, the main components are
the request processor, the configuration engine, the
catalog of honeynet template, the specific translation
module and the deployment tools. Besides, the
request description, TIHDL and the development
tool configuration are employed separately in each
step for the honeynet scenario generation.

3.1 The XML Syntax of TIHDL

Figure 3 is the core of TIHDL. This core includes 12
classes and 11 associations. All of the associations
are totally employed from the corresponding CIM
models. Some classes are immediately adopted from
the corresponding CIM models, such as the class
ComputerSystem, OperatingSystem, Software,
Service, and ProtocolService. Some classes inherit
from the corresponding CIM classes, e.g. the class
NetworkInterface inherits from the CIM class
NetworkPort, the class Net inherits from the CIM
class ConnectivityCollection, and the class
Honeynet inherits from the CIM class Network. At
last, the other three classes ContainmentGateway,
Router and Honeypot are proposed by TIHDL and
inherit from the CIM class ComputerSystem.

Figure 2: The architecture of HoneyGen.

Figure 3: The core of TIHDL.

Based on the core of TIHDL, a honeynet request,
configuration and management language schema
using XML syntax is made. The XML schema of
CIM isn’t adopted for several reasons. First, the
XML schema of CIM is complex and not easy to
know well for the users who are not familiar with
CIM. Second, many elements of XML schema of
CIM is redundant for honeynet description, but it
lacks some requisite elements, e.g. the level of
interaction. Third, it is not convenient to use the
XML schema of CIM to describe the scenario when
the users make a request. For example, the users

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

306

even have to describe every association. Forth, it is
also need to add some more attributes for request
and reconfiguration in the XML schema. An
example of honeynet scenario based on the XML
schema of TIHDL can be depicted as follows:

<honeynet>
<name>test_dit</name>
<net id=“1”>

 <name>net0</name>
</net>
 <net id=“2”>

 <name>net1</name>
 </net>

<net id=“3”>
 <name>net2</name>

 </net>
<net id=“4”>

 <name>net3</name>
 </net>

<router id=“1”>
 <name>r1</name>
 <if id=“1” net=“net0” >
 <name>eth0</name>
 <mac_addr>00:00:00:ee:db:11</mac_addr>
 <ipv4>192.168.1.10/24</ipv4>
</if>
<if id=“2” net=“net1” >
 <name>eth1</name>
 <mac_addr>00:00:00:ee:db:12</mac_addr>
 <ipv4>10.1.0.1/24</ipv4>
</if>
<if id=“3” net=“net2” >
 <name>eth2</name>
 <mac_addr>00:00:00:ee:db:13</mac_addr>
 <ipv4>10.2.0.1/24</ipv4>
</if>
<route id=“1”>
 <dst>default</dst>
 <gw>192.168.1.1</gw>
</route>
<operating_system>
 <name>ubuntu</name>
 <version>12.04</version>
</operating_system>

</router>
<containmentgateway>

<name> honeywall</name>
<if id=“1” net=“net1” >

 <name>eth0</name>
 <mac_addr>00:00:00:ee:db:14</mac_addr>

</if>
<if id=“2” net=“net3” >

 <name>eth1</name>
 <mac_addr>00:00:00:ee:db:15</mac_addr>

</if>
<if id=“3” net=“net2” >

 <name>eth2</name>
 <mac_addr>00:00:00:ee:db:16</mac_addr>
 <ipv4>10.2.0.2/24</ipv4>

</if>
<operating_system>
 <name>Roo</name>
 <version>1.4</version>
</operating_system>

</containmentgateway>
<honeypot id=“1”>

 <name> pc1</name>
 <interaction_level>high</interaction_level>
 <if id=“1” net=“net3”>
 <name>ethernet adapter</name>
 <mac_addr>00:00:00:ee:db:17</mac_addr>
 <ipv4>10.1.0.2/24</ipv4>

</if>
 <operating_system>
 <name>Windows XP professional</name>
 <version>sp2</version>
 </operating_system>
 <software id=“1”>
 <name>FoxMail</name>
 <version>5.0</version>
 </software>

</honeynet>

This technology independent honeynet
description has 4 nets, 1 router, 1
containmentgateway and 1 honeypot. HoneyGen has
its own configuration file where the user can specify
some platform related parameters, i.e. set Honeyd as
the low interaction honeypot, indicate KVM based
virtual machine as the high interaction and specify
the Honeywall as the containmentgateway. In this
description, the containmentgateway is a Honeywall,
so it has one layer 3 interface and two layer 2
interfaces. The honeypot namely pc1 is installed
Windows XP professional Sp2. The pc1 is also
installed a software called FoxMail5.0, which has
the buffer overflow vulnerability.

3.2 Catalog of Honeynet Template

The catalog of honeynet template is preset as a
repository in this system. The TIHDL is used to
describe the honeynet template. The name of the
template file represents the template name in the
repository.

3.3 Request Processor

The request processor is the trigger of HoneyGen. It
provides an API that allows the user to call for
honeynet scenario. When it receives a request, it will

Technology�Independent�Honeynet�Description�Language

307

check the request syntax and the values of the
elements. If everything is correct, it will activate the
tool to generate the honeynet on demand. The
request processor provides a flexible rule to receive
the honeynet request. First, it can accept the request
that describes every honeypot system and all of the
values of the elements. Second, it also can accept the
request that only provides a template name.

3.4 Configuration Engine

Configuration Engine is used to process the request
from request processor. If the request only provides
a template name, it will search the template in the
repository according to the template name and then
produce the configuration file. What’s more
important, our configuration engine can reconfigure
the configuration of the honeynet on the fly. All of
the elements (e.g. net, router, honeypot, if) with
complex type in the XML schema have an attribute
called “request”, which can be set to four values:
create, add, del and set. If the user wants to modify
the configuration, the attribute “request” must be
specified.

3.5 Transformation Module

The general configuration file cannot be used to
deploy honeypots, but it can be translated to be a
specific configuration file that can be recognized by
the specific deployment tools. Thus, transformation
module is developed to take this responsibility. In
our tool, Honeyd and VNX (Fernandez, D., et al.,
2011) are elected as the deployment tools to take the
responsibilities of deploying low-interaction
honeypots and high-interaction honeypots. The
configuration of VNX scenario is based on XML
syntax, thus it does not need to do any syntax change.
However, the Honeyd template language is BNF
(Backus–Naur Form) based, and the Honeyd
configuration template is text based. So, the
transformation module of Honeyd must map the
general XML based configuration file to the text
based Honeyd configuration template.

3.6 Deployment Tools

As we all know that there are many kinds of
virtualization software can be used to deploy virtual
honeypots, such as VMware, Xen, Honeyd, etc. In
our development tool, Honeyd and VNX are elected
as the frameworks to deploy low-interaction
honeypots and high-interaction honeypots.

Honeyd is a low-interaction honeypot

production, which can emulate distributed honeypots
and services. However, there are many stand-alone
honeypots need a distributed deployment tool to
hold and deploy them. On the other hand, high-
interaction virtual honeypot also needs guest
operating system and virtual machine as the
deployment carrier to contain it. In our
implementation, VNX is employed to provide guest
virtual machine and virtual network for the high-
interaction honeypots and the stand-alone low-
interaction honeypots. VNX uses qcow2 format file
system to startup the virtual machine. The services
can be installed on the root file system previously.

Besides, honeypot deployment tool should have
the capability for reconfiguring the scenario on the
fly. Honeyd has a doorway called Honeydctl to
communicate the inner workings of Honeyd.
Honeydctl can be used to reconfigure the templates
on the fly. All commands used in the regular
configuration file of Honeyd template are supported
after “honeydctl>”, however, this is also the
shortcoming of Honeydctl. The user has to input the
commands interactively, but instead of interactively
interacting with Honeydctl, an automatic capability
of reconfiguration is desired. In fact, the author of
Honeyd leaves us a UNIX socket located in
/var/run/honeyd.sock. Using this socket, we can
create a client socket to communicate with the inner
workings of Honeyd, in other words, we can
reconfigure the Honeyd templates by the client
socket with a script that consists of Honeyd
commands.

On the other hand, the author of VNX developed
the dynamic configuration capability. The user only
needs to write a reconfiguration file based on XML
syntax, later he can use VNX to automatically
reconfigure the scenario by processing the
reconfiguration file.

4 IMPLEMENTATION

In this section, our HoneyGen is validated by
employing Honeyd and VNX to deploy honeynet.

4.1 Validation

The validation experiment is outlined in Figure 4.
Both Honeyd and VNX were validated to be able to
deploy the different scenarios based on the
transformation modules. The average transformation
time is less than 1s, which is very quick. It is not
necessary to manually make the honeynet scenario,
only needs to send a primitive request, and then the

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

308

honeypot deployment will be done. After
deployment, the user can reconfigure the scenario in
term of requirements, and it is very convenient.
Besides, the users can also customize their own
honeynet template and store them in the repository.

Practically, due to the benefits of the
technologies of VLAN and Open vSwitch (OVS),
we can add the virtual honeypots into any target
network. Figure 4 also shows the way to tag
different virtual honeypots into different production
networks. The VM1 is tagged on the internal
network while the VM2 and VM3 are integrated into
the DMZ network.

Figure 4: Validation experiment setup.

In addition, several root file systems of
honeypots were customized by us for different use
cases. Table 3 shows the customized root file
systems of honeypots with the functions.

By using these customized file systems of
honeypots. Our tool implemented several use cases.
The first one was the typical honeynet as figure 1
illustrated, where the containment gateway is the
Honeywall. The second use case, we deployed a
KVM based cuckoo sandbox
(http://www.cuckoosandbox.org/), which is used to
analyze the malware and untrusted program as a
client honeypot. In the third case, we deployed a
scenario which contained a number of Ubuntu LXC-
based file systems, which are used to investigate
different network intrusions. The TIHDL can
describe all of these use cases.

Table 3: The file systems of honeypots.

OS Honeypot Function

Roo 1.4 Honeywall ContainmentGateway

WinXP pro
sp2

Honeybot Capture and interact
unsolicited traffic

Win7 pro sp1 Cuckoo
Sandbox

Automated malware
analysis

Ubuntu
11.10

REMnux 5 Reverse-Engineering
Malware analysis

Ubuntu
12.10 LXC

Dionaea,
Glastopf,
TinyHoneypot

Trap malware and
web attacking,
keystroke record

4.2 Performance Evaluation

VNX can deploy virtual machine based on KVM or
LXC. In the case of virtual machine based on KVM,
VNX can emulate various operating systems. Thus,
we can use KVM based virtual machine to deploy
high-interaction honeypots on demand. The problem
of this method is the performance. One example is
demonstrated in Fig.5. It costs 40.02s to start up one
KVM based virtual honeypot in our host. We also
found that after the honeypot switching on, the cost
of virtual memory descended to 726MB. However,
the physical memory used situation is quite stable
after16.87s, it maintained on more or less 160MB,
and at the end it stayed on 206MB.

Figure 5: Performance test for one KVM-based VM.

On the other hand, the virtual machine based on
LXC only can emulate the Linux operation system
that uses the same Linux kernel with the host. Thus,
this method lacks fidelity, but it has a high
performance even under a large-scale deployment.
As far as we know, several low-interaction honeypot
productions, such as Dionaea
(http://dionaea.carnivore.it/) and Glastopf
(http://glastopf.org/) are stand-alone honeypot

Technology�Independent�Honeynet�Description�Language

309

productions. So we install them in the file system of
the LXC-based virtual machine. After that, we can
quickly and largely deploy the distributed LXC-
based virtual honeypots.

For evaluation of the proposed development tool
VNX, we recorded the performance data when we
implemented the deployment. The system
parameters of the host node were: CPU, 4 Intel(R)
Core(TM) i5-3470 CPU @ 3.20GHz; RAM, 16GB;
OS, Ubuntu 13.10; Kernel, Linux 3.11.0-26-generic.
We took five parameters into account to evaluate the
performance: RES (Physical memory used from the
process), VIRT (Virtual memory used by the
process), %CPU (The percentage of CPU used by
the process), %MEM (The percentage of RAM used
by the process), TIME+ (The total time of active of
this process).

We deployed 10 honeypots on a DMZ subnet
alongside a target network. The host system
launched 10 processes, and each process
corresponding to each honeypots. We recorded the
largest value among these 10 processes with those
five parameters, and the results were: TIME+, 1:08;
RES, 206m; VIRT, 864m; %CPU, 118; %MEM 1.3.
The total time for starting up 10 honeypots is less
than 5 minutes. But it is a long delay for intrusion
traffic redirection into the honeypots. Thus, it is
better to keep the high-interaction honeypots
running when the redirected intrusion traffics come.

Nevertheless, when we deployed ten LXC-based
virtual honeypots, the values of these five
parameters were: TIME+, 0:00.68; RES, 37m;
VIRT, 168m; %CPU, 22.5; %MEM, 0.2. Form this
result, we found that the startup delay of LCX-based
virtual honeypots was very short, less than 1 second
for 10 virtual honeypots to boot up, and the resource
occupation was also quite little. So, if the fidelity of
the virtual honeynet is not the most important
consideration, for the large-scale virtual honeypots
deployment and immediate intrusion response by
interesting traffics redirection, the LXC-based
virtual honeypots is the better choice.

5 CONCLUSIONS

In this paper, a new approach for the creation and
management of honeynets based on the use of a
technology independent honeynet description
language has been presented. The language is a CIM
like flexible language designed to describe
honeynets, with a simple syntax easy to understand.
It takes into account the characteristics and the
special requirements of Honeynets. Besides, a

flexible virtual honeynet tool named HoneyGen that
uses the specification language to create and modify
honeynets has been developed as a tool to validate
all the ideas presented. The results of the
experiments made show that the HoneyGen can be
used to quickly and flexibly deploy virtual
Honeynets based on two different deployment
platforms: VNX and Honeyd.

For the future work, there are plans to extend the
HoneyGen tool to other deployment platforms like
cloud infrastructures management tools, to study the
automatic model-driven based translation process
and to employ this approach in some real security
project and deploy the honeynet in some production
network to investigate network intrusion.

ACKNOWLEDGEMENTS

This work is funded by the Spanish MICINN
(project RECLAMO, Virtual and Collaborative
Honeynets based on Trust Management and
Autonomous Systems applied to Intrusion
Management, with code TIN2011-28287-C02-01.

REFERENCES

Spitzner, L., 2003. Honeypots Definitions and Value of
Honeypots. From http://www.tracking-hackers.com.

Spitzner, L., 2010. Dynamic Honeypot. From
http://www.symantec.com/connect/articles/dynamic-
honeypots.

Bjorklun, M., 2010. YANG-A Data Modeling Language
for the Netowork Configuration Protocol (NETCONF).
RFC 6020.

Grosso, P., Dijkstra, F., Ham, J. van der, and Laat,
C.T.A.M., 2007. Network Description Language --
Semantic Web For Hybrid Networks. In The TERENA
Networking Conference.

Ham, J. van der, Dijkstra, F., Łapacz, R., and Brown, A.,
2013. The Network Markup Language (NML) A
Standardized Network Topology Abstraction for Inter-
domain and Cross-layer Network Applications. In The
TERENA Networking Conference.

Ghijsen, M., Ham, J. van der, Grosso, P., and Laat, C.,
2012. Towards an Infrastructure Description Language
for Modeling Computing Infrastructures. In IEEE 10th
International Symposium on Parallel and Distributed
Processing with Applications (ISPA).

Luntovskyy, A., Trofimova, T., Trofimova, N., Gütter, D.,
and Schill, A., 2008. To a Proposal towards
Standardization of Network Design Markup Language.
In International Network Optimization Conference
(INOC'07), Spa, Belgium.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

310

Koslovski, G. P., Primet, P. V.-B., and Charão, A. S.,
2009. VXDL: Virtual Resources and Interconnection
Networks Description Language. In Networks for Grid
Applications, Vol. 2 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and
Telecommunications Engineering, Springer Berlin
Heidelberg.

Provos, N., 2004. A Virtual Honeypot Framework. In
SSYM'04 Proceedings of the 13th conference on
USENIX Security Symposium.

Andreozzi, S., Burke, S., Ehm, F., Field, L., Galang, G.,
Konya, B., Litmaath, M., Millar, P., and Navarro, JP,
2009. GLUE Specification v. 2.0. From
http://www.ogf.org/documents/GFD.147.pdf.

Fernandez, D., Cordero, A., Somavilla, J., Rodriguez, J.,
Corchero, A., Tarrafeta, L., and Galan, F., 2011.
Distributed virtual scenarios over multi-host Linux
environments. In 5th International DMTF Academic
Alliance Workshop on Systems and Virtualization
Management (SVM).

Technology�Independent�Honeynet�Description�Language

311

