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Abstract: Epigenetic modifications are associated with the regulation of co/post-transcriptional processing and 
differential transcript isoforms are known to be important during cancer progression. It remains unclear how 
disruptions of chromatin-based modifications contribute to tumorigenesis and how this knowledge can be 
leveraged to develop more potent treatment strategies that target specific isoforms or other products of the 
co/post-transcriptional regulation pathway. Rapid developments in all areas of next-generation sequencing 
(DNA, RNA-seq, ChIP-seq, Methyl-CpG, etc.) have provided new opportunities to develop novel 
integration and data-mining approaches, and also allows for exciting hypothesis driven bioinformatics and 
computational studies. Here, we present a program that we developed and summarize the results of applying 
our methods to analyze datasets from patient matched tumor or normal (T/N) paired samples, as well as cell 
lines that were either sensitive or resistant (S/R) to treatment with an anti-cancer drug, 5-Azacytidine 
(http://sourceforge.net/projects/chiprnaseqpro/). We discuss additional options for user-defined approaches 
and general guidelines for simultaneously analyzing and annotating epigenetic and RNA-seq datasets in 
order to identify and rank significant regions of epigenetic deregulation associated with aberrant splicing 
and RNA-editing. 

1 INTRODUCTION 

Deregulation of epigenetic modifications either 
mimics the effects of genetic changes, or provides 
additional heritable alterations that contribute to the 
development and progression of many cancers 
(Feinberg et al., 2006). Epigenetic regulation is not 
dependent upon simple binary states of a single type 

of modification nor is it a summation of the 
activities of regulating methyltransferases. Rather, it 
is dependent upon the interplay of both DNA and 
histone level modifications that make up complex 
“combinatorial codes” (Jin et al., 2012; Cieślik and 
Bekiranov, 2014). Epigenetic modifications have a 
profound impact on co/post-transcriptional 
processes, which also have been identified as having 
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an important role in cancer progression. For 
example, modulation of the levels of the histone 
modification H3K36me3 (trimethylated histone H3 
lysine 36) either by overexpression, or by silencing 
of the SETD2 methyltransferase directly effects 
alternative splicing of associated exons (Luco et al., 
2010; Simon et al., 2014). One of these alternatively 
spliced mRNAs, FGFR2, commonly undergoes an 
isoform switch from a “normal IIIb” FGFR2 
transcript isoform to a mesenchymal “IIIc” form in 
~90% of kidney renal clear cell carcinomas (ccRCC) 
(Zhao et al., 2013).  The mechanisms determining 
how epigenetic modifications influence differential 
mRNA splicing are unknown and may involve 
modified histone protein mediated recruitment of 
components of the splicing machinery, or on the 
DNA level, may involve a regulatory role of mobile 
sequence elements (e.g. Alu) that are known to 
mediate “exonization” (Makalowski et al., 1994; 
Ast, 2004). Alu elements are reportedly enriched for 
DNA-methylation as well as active (e.g. 
H3K36me3) and repressive associated histone 
methylation marks (Huda et al., 2010). It is known 
that in some cases, histone modifications involved in 
transposable element regulation serve as a “seed 
region” from which the marks can spread into 
adjacent genes (Kidwell and Lisch, 2000; Feschotte, 
2008). Alu elements are also involved in mediating 
the post-transcriptional process of RNA-editing and 
if oriented in opposition, are a favored substrate for 
the ADAR enzymes (Athanasiadis et al., 2004; 
Bazak et al., 2014). Computational comparative 
studies have revealed that >90% of all A->I 
substitutions occur within Alu elements present in 
mRNAs (Kim et al., 2004; Levanon et al., 2004; 
Athanasiadis et al., 2004), and there are over a 
hundred million sites (Bazak et al., 2014).  Although 
the functional implications of Alu-associated RNA 
editing are still largely unknown, it is known that 
these variations influence splice site modification 
(Rueter et al., 1999), mRNA stability (Wang et al., 
2013), and may affect transport. In addition, RNA-
editing sites have a known role in regulating cell 
proliferation during the progression of cancer (Paz et 
al., 2007; Choudhury et al., 2012; Chen et al., 
2013). Deeper understanding regarding how aberrant 
epigenomic modifications regulate gene expression 
and co/post-transcriptional changes during the 
development and progression of many cancers 
continues to unfold.  Here, we present methods 
packaged as a Python program used for comparative 
analysis of paired patient matched tumor or normal 
(T/N) samples, as well as cell lines that were either 

sensitive or resistant (S/R) to treatment with the anti-
cancer drug, 5-Azacytidine in order to:  1) identify 
regions exhibiting shifts in epigenetic modification 
peaks between two paired samples, 2) classify 
indicators of co/post-transcriptional mis-regulation 
associated with epigenetic deregulation as the 
abundance of aberrant splicing events and frequency 
of RNA editing variations within identified regions 
and, 3) assess the significance of differences for 1) 
and 2) between paired samples in order to prioritize 
regions for further clinical studies. 

2 METHODS AND RESULTS 

2.1 Source of Material for 
Comparative Studies of Epigenetic 
Deregulation and  
Co/Post-Transcriptional 
Modifications 

Comparative epigenetic and transcriptional datasets 
can come from a number of sources. The two most 
commonly studied epigenetic modifications involve 
the binding of proteins (e.g. histones) to DNA and 
the methylation of cytosine nucleotides (e.g. CpG 
dinucleotide). Differential library preparations are 
used to characterize diverse types of histone 
methylation patterns that are commonly associated 
with repressive or enhanced states of chromatin and 
gene expression. Transcriptome datasets are 
typically generated by either microarray or RNA-seq 
technologies. RNA sequencing is more suitable for 
studies focused on assessing the effects of aberrant 
epigenetic regulation on transcriptional processing 
since it enables assessment of the presence and 
abundance of novel transcript isoforms, in addition 
to known transcripts (Zhao et al., 2014). Read 
counts also provide a means to calculating more 
absolute levels of expression and reduce signal-to-
noise ratios that are often problematic when 
assessing hybridization experiments (Zhao et al., 
2014). DNA sequencing (either at the genome or 
exome level) can be used to do comparative filtering 
from RNA variation datasets when identifying 
known or novel candidate RNA editing sites. With 
regard to parameters influencing studies of 
epigenetic regulation of co/post-transcriptional 
processes, we discuss below some of the key issues 
for dataset generation and processing. 
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Figure 1: Workflow to expedite identification of diagnostic biomarkers or clinical targets (Champion, 2014). 

2.2 Complying with the  
“Garbage-In-Garbage-Out” 
Concept 

Each additional data source used for broad 
comparative analysis increases the demand to 
comply with the Garbage-In-Garbage-Out (GIGO) 
concept. The percentage and distribution of millions 
of sequencing reads successfully aligned to a 
reference genome greatly impacts predictions of 
peak enrichment (ChIP-seq), differential transcript 
isoform modeling and abundance (RNA-seq), and 
sequence variation identification (DNA and RNA-
seq). Standardizing thresholds for sequencing 
quality, number of mismatches allowed per 
alignment, and placement of reads mapping to 
multiple genomic locations are steps to introducing 
consistency that reduces noise when comparing 
diverse datasets. Along these lines, community 
established “best practices” optimize each 
independent workflow, which translates to high 
quality comparative datasets when interpreting 
convergence of diverse variables (The Encode 
Project Consortium, 2011; Landt et al., 2012; The 
Broad Institute of MIT and Harvard, 2014).  
Different categories of ChIP-seq tag enrichments, or 
“peaks”, determine which algorithms or parameter 
settings are best for optimization of true signal 
prediction. Narrow peaks are characteristic of 
sequence specific transcription factor binding or 
RNA polymerase II transcription start site specificity 

whereas broader peak domains are characteristic of 
most histone marks that span a nucleosome sized 
region or larger chromatin domain (Pepke et al., 
2014). In our studies (Figure 1A), SICER was used 
to identify extended domains of ChIP enrichment by 
adjusting the window scan with gaps allowed 
parameter to the recommended size of 
approximately one nucleosome and linker (~200 
bps) (Zang et al., 2009).  Number of read pairs from 
each peak region in IP and that from the 
corresponding region in input was normalized to a 
library size of 10 million (FPTM) and the input-
subtracted FPTM values were used for differential 
binding analysis. False Discovery Rates (FDRs) 
were determined from poisson p-values and 
enrichment predictions were further filtered 
according to a threshold cutoff (FDR<0.01). For our 
genome-wide DNA methylation studies, we used the 
Infinium Human Methylation450 BeadChip 
(Illumina, 2014) and normalized results using subset 
quantile within-array normalization (SWAN) 
(Maksimovic et al., 2012). Since there are known 
gender specific epigenetic modifications, many 
studies typically remove all X/Y associated data 
points in order to analyze them separately. However, 
we recommend doing this as a final step in the 
analysis process since the inclusion of these data 
points allow for a more accurate p-value adjustment 
for multiple testing. Comparisons of epigenetic 
deregulation and co/post-transcriptional processes 
are at the gene level, such that the total region of 
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epigenetic modification affecting identified 
transcript isoforms, sequence elements, and 
variations is a summation of all significant peaks 
within the ORF (Figure 1A).  

Differences in alignment methods are also 
fundamental to ensuring “best practices” of variant 
calling in DNA versus RNA sequencing datasets 
(The Broad Institute of MIT and Harvard, 2014). 
Correct processing of RNA splice junctions, 
avoidance of using soft-clipped bases, and 
specialized confidence thresholds minimizes false 
positive or negative variation calls. In addition, 
RNA-seq library preparation protocols for creating 
cDNA from RNA commonly use random hexamers 
for the priming step, thus increasing the likelihood 
of errors in the terminal 6bp of the read. A 
combination of existing GATK parameters (e.g. 
FisherStrandFilter, ReadPosRankSumTest (The 
Broad Institute of MIT and Harvard, 2014)) provide 
best practice filtering approaches instead of 
customized methods that likely remove true positive 
RNA editing sites (RVboost (Wang et al., 2014)).  
Aggressive removal of shared sequence variations 
between RNA and comparative DNA datasets is a 
first step to identifying known and novel RNA 
editing sites (Figure 1B). In addition to variations 
identified using DNA sequencing generated from 
same individual/cell line collections, DNA SNPs 
were also identified from public population 
databases (1000 Genomes, HapMap, dbSNP, 
BGI200/Danish, ESP6500 European and African 
datasets) (dbSNP, 2014; HapMap, 2010; ESP6500, 
2014; 1000 Genomes, 2014). Mapping identified 
RNA sequencing variations to existing or 
customized RNA editing databases and resources 
expedites identification of known RNA editing sites 
(Champion, 2014; Ramaswami and Li, 2014; Kiran 
and Baranov, 2010; Li et al., 2009) (Figure 1C).  
Computational prioritization of candidate novel 
RNA editing sites includes evaluation of the 
proximity of identified RNA sequencing variations 
to splice sites or paired Alu elements in opposite 
orientation.    

RNA-seq alignment methods, such as Tophat 
(Trapnell et al., 2010), have been developed to 
handle mapping of reads spanning exon-exon splice 
junctions (Pepke et al., 2014).  Cufflinks uses a 
bipartite graphing method to assess a “minimum-
cost-maximum-matching” of bundled fragments 
from Tophat read alignments in order to build a 
parsimonious set of transcript models (Trapnell et 
al., 2010). Cufflinks then also provides an 
estimation of expression levels using established 
methods (Li et al., 2010; Jiang and Wong, 2009). 

We also binned predicted transcript isoforms 
according to their scored minor FPKM/major FPKM 
ratio in order to identify and compare differences in 
transcript isoform abundances (Figure 1A). Unlike 
other available algorithms, cufflinks also allows for 
the identification of novel as well as known 
transcripts, and exhibits superior estimates of 
accuracy as measured by the median value of 
relative errors in percentage across all genes when 
compared to other methods (Nicolae et al., 2011). 
Novel transcript predictions are essential for studies 
of aberrant co/post-transcriptional processes.  
Identifying novel transcripts associated with 
epigenetic deregulation is useful for the discovery of 
“isoform-switching” events that are associated with 
drug resistance or cancer progression, similar to the 
mesenchymal “IIIc” FGFR2 isoform abundant in 
ccRCC. Correlating the abundance of novel 
transcripts identified with regions of epigenetic 
deregulation is useful for assessing levels of aberrant 
transcription (e.g. “transcriptional-noise”), and 
exploring possible regulatory roles of the Nonsense-
Mediated-Decay (NMD) pathway during cancer 
progression (Gardner, 2011; Frischmeyer and Dietz, 
1999). In addition to evidence that epigenetic 
deregulation mediates aberrant splicing, these 
processes also affect the rate of transcription (Veloso 
et al., 2014; Eswaran et al., 2013); although, the 
functional implications of differences in transcript 
isoform abundances with regards to tumorigenesis or 
drug response are largely unknown. Differences in 
“methodological-flow” can also be used to expedite 
specific outputs from these types of studies. For 
example, transcriptome-profiling studies aimed to 
characterize global regulatory shifts in transcript 
splicing or abundance would be better done using a 
transcriptome-to-peak analysis workflow.  
Conversely, identification of diagnostic biomarkers 
or potential clinical targets is expedited by starting 
with epigenetic deregulated regions (Figure 1A) in 
order to identify aberrant target transcript isoforms, 
or RNA-editing site variations associated with 
phenotype progression. 

2.3 Bioinformatics Methods to 
Integrate Epigenetic and  
Co/Post-Transcriptional Datasets 

Historically, methods that integrate epigenetic and 
microarray expression datasets were developed to 
characterize transcriptional regulons. There are 
many available tools and methods available for 
comparative analysis via correlative clustering of 
significant shifts in epigenetic modification patterns 
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with differential gene expression (e.g. Rcade, 
TransView (Bioconductor Software Packages, 
2014)). However, unique to our approach is the 
inclusion of additional variables of co/post-
transcriptional mis-regulation associated with 
changes in epigenetic modifications. Although 
important biological relationships between the 
variables used to evaluate epigenetic influences on 
transcriptional processes exist, we find that pairwise 
Spearman correlations (R Development Core Team, 
2011) between most of the variables assessed in our 
studies are not significant (Figure 2, Frequency of 
non-Alu (A.) and Alu (B.) repeats, C. Frequency of 
RNA editing sites, D. Adjusted Peak Length Shift, 
E. ORF size, F. Frequency of novel transcript 
isoforms). An exception is the expected positive 
correlation between the distribution of Alu elements 
(B.) and RNA editing sites (C.) within a given 
region (Figure 2). 

 
Figure 2: RNA-editing sites and Alu-elements are the only 
two variables that are significantly correlated in regions of 
epigenetic modification shifts. 

Therefore, application of any multi-variable co-
clustering approaches would likely be inadequate 
and unnecessarily exhaust computational resources.  
Rather, we find that first clustering independent 
variables followed by a comparative assessment of 
significant differences between two conditions (e.g. 
T/N, R/S) across a given region using the Student 
unpaired t-Test followed by estimation of FDR using 
a beta-uniform mixture model (R Development Core 
Team, 2011), provides biologically meaningful 
results and is useful for ranking the identified 
regions of aberrant epigenetic modification and 
co/post-transcriptional deregulation (Figure 3).  
Finally, functional clustering of candidate clinical 
targets identified by our comparative studies into 
predicted interaction networks and biological 
pathways identified several genes regulating cell 

 
Figure 3: P-values equal to or less than 0.01 are within the 
range of desired false discovery rate as estimated by a 
beta-uniform mixture model. Significant p-values were 
used to select regions for further functional analysis using 
network interaction and biological pathway prediction 
algorithms.  

cycle progression and mRNA processing, which 
further supports the validity of our methodologies 
and provides an additional level of prioritization for 
future diagnostic biomarker or clinical target 
development (Table 1). 

3 CONCLUSIONS AND 
PERSPECTIVES 

Advanced sequencing techniques and well-
considered bioinformatics methods provide 
unprecedented opportunities for in depth 
comparative studies of paired (T/N or R/S) datasets 
in order to understand the regulatory roles of 
epigenetic modifications on co/post-transcriptional 
processes, and how deregulation of these functional 
relationships promotes drug resistance and 
contributes to the progression of cancer. Our studies 
using a developed program to identify regions 
exhibiting significant epigenetic modification 
changes and aberrant co/post-transcriptional 
processing exemplifies one of the workflows we 
presented and provides evidence that studies such as 
these yield meaningful results of potential high 
impact for subsequent diagnostic biomarker or 
therapeutic target design endeavors. 
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Table 1. Genes exhibiting significant epigenetic 
modification shifts associated with aberrant co/post-
transcriptional processing in a 5-Azacytidine resistant 
human erythroleukemia cell line, but not in a myeloid 
progenitor cell line, cluster into predicted interaction 
networks and functional biological pathways. 

Biological 
Pathway p-value FDR 

Frequency 
of Genes in 

Pathway 
Mitotic 

Metaphase and 
Anaphase 0 

<1.00E-
03 10 

Mitotic 
Prometaphase 0 

<5.00E-
04 8 

Processing of 
Capped Intron-
Containing Pre-

mRNA 0 
3.33E-

04 8 

RNA transport 0.0001 
1.48E-

02 7 
PLK1 signaling 

events 0.0003 
2.06E-

02 4 
IL6-mediated 

signaling events 0.0003 
2.22E-

02 4 
Deadenylation-

dependent 
mRNA decay 0.0004 

2.24E-
02 4 

mRNA 
surveillance 

pathway 0.0004 
2.15E-

02 5 
Role of 

Calcineurin-
dependent 

NFAT signaling 
in lymphocytes 0.0005 

1.97E-
02 4 

Regulation of 
retinoblastoma 

protein 0.001 
3.95E-

02 4 
IL2 signaling 

events mediated 
by STAT5 0.001 

3.87E-
02 3 

Mitotic G2-
G2/M phases 0.0013 

4.66E-
02 5 

IFN-alpha 
signaling 
pathway 0.0015 

4.74E-
02 2 

EPO signaling 
pathway 0.0016 

4.91E-
02 3 

ACKNOWLEDGEMENTS 

We would like to thank Ian Davis, W. Kimryn 
Rathmell, Kathryn E. Hacker and Jeremy M. Simon 
for assistance with genotyping of tissue. We would 
like to thank Amylou Dueck for advice regarding 
statistical analysis of preliminary studies. 

The results published here are in whole or part based 
upon data generated by The Cancer Genome Atlas 
managed by the NCI and NHGRI. Information about 
TCGA can be found at http://cancergenome.nih.gov. 

FINANCIAL SUPPORT 

T.H.H. is supported by funding from the ASCO 
Young Investigator Award from the Kidney Cancer 
Association, the Action to Cure Kidney Cancer 
Organization, the MD Anderson Hematology-
Oncology Fellowship, a Mayo Clinic CR5 grant, 
Mayo Clinic Center for Individualized Medicine 
Epigenomics Translational Program and a Kathryn 
H. and Roger Penske Career Development Award to 
Support Medical Research. This work is supported 
in part by the Mayo Clinic Center for Individualized 
Medicine Epigenomics Translational Program 

REFERENCES 

1000Genomes. Accessed November, 2014. Available 
from: http://www.1000genomes.org/data#DataAccess.  

Ast, G., 2004. How did alternative splicing evolve?, Nat 
Rev Genet, vol. 5, no. 10, pp. 773-782. 

Athanasiadis, A, Rich, A & Maas, S., 2004. Widespread 
A-to-I RNA editing of Alu-containing mRNAs in the 
human transcriptome. , PLoS Biol, vol. 2, p. e391. 

Bazak, L, Haviv, A, Barak, M, Jacob-Hirsch, J, Deng, P, 
Zhang, R, Isaacs, FJ, Rechavi, G, Li, JB, Eisenberg, E 
& Levanon, EY., 2014. A-to-I RNA editing occurs at 
over a hundred million genomic sites, located in a 
majority of human genes, Genome Res., vol. 24, pp. 
365-376. 

Bioconductor Software Packages. Accessed November, 
2014. Available from : 
<master.bioconductor.org/packages/release/bioc. 

Champion, MD., Accessed November, 2014. ChIP-RNA-
seqPRO: A strategy for identifying regions of 
epigenetic deregulation associated with aberrant 
transcript splicing and RNA-editing sites. Available 
from: 
<http://sourceforge.net/projects/chiprnaseqpro/>. 

Chen, L, Li, Y, Lin, CH, Chan, TH, Chow, RK, Song, Y, 
Liu, M, Yuan, YF, Fu, L, Kong, KL, Qi, L, Li, Y & 
Zhang N, TA, Kwong DL, Man K, Lo CM, Lok S, 
Tenen DG, Guan XY., 2013. Recoding RNA editing 
of AZIN1 predisposes to hepatocellular carcinoma., 
Nature Medicine, vol. 19, no. 2, pp. 209-16. 

Choudhury, Y, Tay, FC, Lam, DH, Sandanaraj, E, Tang, 
C, Ang, BT & Wang, S., 2012. Attenuated adenosine-
to-inosine editing of microRNA-376a* promotes 
invasiveness of glioblastoma cells., J Clin Invest, vol. 
122, no. 11, pp. 4059-76. 

BIOINFORMATICS�2015�-�International�Conference�on�Bioinformatics�Models,�Methods�and�Algorithms

168



 

Cieślik, M & Bekiranov, S., 2014. Combinatorial 
epigenetic patterns as quantitative predictors of 
chromatin biology., BMC Genomics, vol. 15, p. 76. 

The ENCODE Project Consortium, 2011. A users guide to 
the encyclopedia of DNA elements (ENCODE)., PLoS 
Biol, vol. 9, no. 4, p. e1001046. 

dbSNP. version 137. Accessed November, 2014. 
Available from: <http://www.ncbi.nlm.nih.gov/snp/> 

ENCODE. DataStandards. Available from: <https:// 
genome.ucsc.edu/encode/protocols/dataStandards/>. 

ESP6500. Accessed November, 2014. Available from: 
<evs.gs.washington.edu/EVS/>. 

Eswaran, J, Horvath, A, Godbole, S, Reddy, SD, Mudvari, 
P, Ohshiro, K, Cyanam, D, Nair, S , Fuqua, SAW, 
Polyak, K, Florea, LD, Kumar, R., 2013. RNA 
sequencing of cancer reveals novel splicing 
alterations, Scientific Reports, vol. 3, p. 1689. 

Feinberg, AP, Ohlsson, R & Henikoff, S., 2006. The 
epigenetic progenitor origin of human cancer, Nature, 
vol. 7, pp. 21-33. 

Feschotte, C., 2008. Transposable elements and the 
evolution of regulatory networks., Nat Rev Genet, vol. 
9, pp. 397-405. 

Frischmeyer, PA & Dietz, HC., 1999. Nonsense-mediated 
mRNA decay in health and disease., Hum Mol Genet, 
vol. 8, no. 10, pp. 1893-900. 

Gardner, LB., 2011. Nonsense mediated RNA decay 
regulation by cellular stress; implications for 
tumorigenesis, Mol Cancer Res, vol. 8, no. 3, pp. 295-
308. 

HapMap. Accessed November, 2014. Available from: 
<http://hapmap.ncbi.nlm.nih.gov/> 

Huda, A, Mariño-Ramírez, L & Jordan, IK., 2010. 
Epigenetic histone modifications of human 
transposable elements: genome defense versus 
exaptation., Mob DNA. , vol. 1, no. 1. 

Illumina. Infinium Human Methylation450 Bead Chip. 
Accessed November, 2014. Available from: 
<http://res.illumina.com/documents/products/datasheet
s/datasheet_humanmethylation450.pdf>. 

The Broad Institute of MIT and Harvard. GATK Best 
Practices. Available from: <https:// 
www.broadinstitute.org/gatk/guide/best-practices>  

Jiang, H & Wong, WH., 2009. Statistical inferences for 
isoform expression in RNA-Seq, Bioinformatics, vol. 
25, no. 8, pp. 1026-1032. 

Jin, B, Ernst, J, Tiedemann, RL, Xu, H, Sureshchandra, S, 
Kellis, M, Dalton, S, Liu, C, Choi, JH & Robertson, 
KD., 2012. Linking DNA methyltransferases to 
epigenetic marks and nucleosome structure genome-
wide in human tumor cells., Cell Rep, vol. 2, no. 5, pp. 
1411-24. 

Kidwell, MG & Lisch, DR., 2000. Transposable elements 
and host genome evolution, Trends Ecol Evol, vol. 15, 
pp. 95-99. 

Kim, DD, Kim, TT, Walsh, T, Kobayashi, Y, Matise, TC, 
Buyske, S & Gabriel, A., 2004. Widespread RNA 
editing of embedded alu elements in the human 
transcriptome., Genome Res., vol. 14, no. 9, pp. 1719-
25. 

Kiran, A & Baranov, PV., 2010. DARNED: a DAtabase of 
RNa EDiting in humans., Bioinformatics, vol. 26, no. 
14, pp. 1772-6. 

Landt, SG, Marinov, GK, Kundaje, A, Kheradpour, P, 
Pauli, F, Batzoglou, S, Bernstein, BE, Bickel, P, 
Brown, JB & Cayting P, CY, DeSalvo G, Epstein C, 
Fisher-Aylor KI, Euskirchen G, Gerstein M, Gertz J, 
Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, 
Karmakar S, Kellis M, Kharchenko PV, Li Q, Liu T, 
Liu XS, Ma L, Milosavljevic A, Myers RM, Park PJ, 
Pazin MJ, Perry MD, Raha D, Reddy TE, Rozowsky J, 
Shoresh N, Sidow A, Slattery M, Stamatoyannopoulos 
JA, Tolstorukov MY, White KP, Xi S, Farnham PJ, 
Lieb JD, Wold BJ, Snyder M., 2012. ChIP-seq 
guidelines and practices of the ENCODE and 
modENCODE consortia., Genome Res., vol. 22, no. 9, 
pp. 1813-31. 

Levanon, E, Eisenberg, Y, Yelin, E, Nemzer, R, 
Hallengger, M, Shemesh, R, Fligelman, ZY, Shoshan, 
A, Pollock, SR & Sztybel, D., 2004. Systematic 
identification of abundant A-to-I editing sites in the 
human transcriptome, Nat Biotechnol, vol. 22, pp. 
1001-1005. 

Li, B, Ruotti, V, Stewart, RM, Thomson, JA & Dewey, 
CN., 2010. RNA-Seq gene expression estimation with 
read mapping uncertainty, Bioinformatics, vol. 26, no. 
4, pp. 493-500. 

Li, JB, Levanon, EY, Yoon, JK, Aach, J, Xie, B, Leproust, 
E, Zhang, K, Gao, Y & Church, GM., 2009. Genome-
wide identification of human RNA editing sites by 
parallel DNA capturing and sequencing., Science, vol. 
324, no. 5931, pp. 1210-3. 

Luco, RF, Pan, Q, Tominaga, K, Blencowe, BJ, Pereira-
Smith, OM & Misteli, T., 2010. Regulation of 
alternative splicing by histone modifications., Science, 
vol. 327, no. 5968, pp. 996-1000. 

Makalowski, W, Mitchell, GA & Labuda, D., 1994. Alu 
sequences in the coding regions of mRNA: a source of 
protein 

variability. , Trends Genet, vol. 10, pp. 188-193. 
Maksimovic, J, Gordon, L & Oshlack, A., 2012. SWAN: 

Subset-quantile within array normalization for 
illumina infinium HumanMethylation450 BeadChips., 
Genome Biol, vol. 13, no. 6, p. R44. 

Nicolae, M, Mangul, S, Măndoiu, II & Zelikovsky, A., 
2011. Estimation of alternative splicing isoform 
frequencies from RNA-Seq data., Algorithms Mol 
Biol, vol. 6, no. 1, p. 9. 

Paz, N, Levanon, EY, Amariglio, N, Heimberger, AB, 
Ram, Z, Constantini, S, Barbash, ZS, Adamsky, K, 
Safran, M, Hirschberg, A, Krupsky, M, Ben-Dov, I, 
Cazacu, S, Mikkelsen, T, Brodie, C, Eisenberg, E & 
Rechavi, G., 2007. Altered adenosine-to-inosine RNA 
editing in human cancer., Genome Res., vol. 17, no. 
11, pp. 1586-95. 

Pepke, S, Wold, BJ & Mortazavi, A., 2014. Computation 
for ChIP-seq and RNA-seq studies, Nat Methods, vol. 
6, no. 11, pp. S22-S32. 

Ramaswami, G & Li, JB., 2014. RADAR: a rigorously 
annotated database of A-to-I RNA editing, Nucleic 

Bioinformatics�Strategies�for�Identifying�Regions�of�Epigenetic�Deregulation�Associated�with�Aberrant�Transcript�Splicing
and�RNA-editing

169



 

Acids Res. , vol. 42, no. (Database Issue), pp. D109-
13. 

Rueter, SM, Dawson, TR & Emeson, RB., 1999. 
Regulation of alternative splicing by RNA editing, 
Nature, vol. 399, pp. 75-80. 

Simon, JM, Hacker, KE, Singh, D, Brannon, AR, Parker, 
JS, Weiser, M, Ho, TH, Kuan, PF, Jonasch, E, Furey, 
TS, Prins, JF, J.D., L, Rathmell, WK & Davis, IJ., 
2014. Variation in chromatin accessibility in human 
kidney cancer links H3K36 methyltransferase loss 
with widespread RNA processing defects., Genome 
Res., vol. 24, no. 2, pp. 241-50. 

R Development Core Team. R: A language and 
environment for statistical computing. Available from: 
<http://www.r-project.org>    

Trapnell, C, Williams, BA, Pertea, G, Mortazavi, A, 
Kwan, G, van Baren, MJ, Salzberg, SL, Wold, BJ & 
Pachter, L., 2010. Transcript assembly and 
quantification by RNA-Seq reveals unannotated 
transcripts and isoform switching during cell 
differentiation., Nat Biotechnol, vol. 28, no. 5, pp. 
511-5. 

Veloso, A, Kirkconnell, KS, Magnuson, B, Biewen, B, 
Paulsen, MT, Wilson, TE & Ljungman, M., 2014. 
Rate of elongation by RNA polymerase II is associated 
with specific gene features and epigenetic 
modifications, Genome Res., vol. 24, no. 6, pp. 896-
905. 

Wang, C, Davila, JI, Baheti, S, Bhagwate, AV, Wang, X, 
Kocher, JP, Slager, SL, Feldman, AL, Novak, AJ, 
Cerhan, JR, Thompson, EA & Asmann, YW., 2014. 
RVboost: RNA-Seq variants prioritization using a 
boosting method., Bioinformatics. 

Wang, IX, So, E, Devlin, JL, Zhao, Y, Wu, M & Cheung, 
VG., 2013. ADAR regulates RNA editing, transcript 
stability, and gene expression., Cell Rep, vol. 5, no. 3, 
pp. 849-60. 

Zang, C, Schones, DE, Zeng, C, Cui, K, Zhao, K & Peng, 
W., 2009. A clustering approach for identification of 
enriched domains from histone modification ChIP-Seq 
data, Bioinformatics, vol. 25, pp. 1952-1958. 

Zhao, Q, Caballero, OL, Davis, ID, Jonasch, E, Tamboli, 
P, Yung, WK, Weinstein, JN & Yao, J., 2013. Tumor-
specific isoform switch of the fibroblast growth factor 
receptor 2 underlies the mesenchymal and malignant 
phenotypes of clear cell renal cell carcinomas., Clin 
Cancer Res., vol. 19, no. 9, pp. 2460-72. 

Zhao, S, Fung-Leung, W-P, Bittner, A, Ngo, K & Liu, X., 
2014. Comparison of RNA-Seq and Microarray in 
Transcriptome Profiling of Activated T Cells, PLoS 
One, vol. 9, no. 1, p. e78644. 

 

BIOINFORMATICS�2015�-�International�Conference�on�Bioinformatics�Models,�Methods�and�Algorithms

170


