
LCL
A Graphical Meta-Language for Specification of Language Constraints

Terje Gjøsæter
Department of ICT, University of Agder, Grimstad, Norway

Keywords: Meta-languages, Meta-modelling, Language Constraints.

Abstract: The Object Constraint Language (OCL) is commonly used for constraints in meta-model-based language spec-
ifications. However, it may be advantageous to have a domain-specific constraint meta-language optimised for
language specifications. A survey of OCL usage in language specifications has been performed, in order to
gain an understanding of common constraint patterns. This is used as a starting point for defining a new
meta-language for language constraints, Language Constraint Language (LCL), that has an intuitive graphical
syntax.

1 INTRODUCTION

There has recently been much focus on domain-
specific languages (DSLs) - computer languages fo-
cusing on a particular problem domain, that can be
rapidly created and deployed (Kelly and Tolvanen,
2008). This puts strong demands on the efficiency and
usability of tools and technologies for creating com-
puter languages. A popular approach is to generate
language tools from language specifications. Com-
puter language specifications are (more or less) for-
mal and complete descriptions of a computer lan-
guage. They can be used as blueprints for manually
developing tools for handling the language, or if a
specification is sufficiently formal and complete, it
may be used for automatically generating language
tools. These tools may for example be code or dia-
gram editors, and interpreters, compilers or code gen-
erators for executing the statements in the language
instance or transforming them into executable form.

There are different approaches to creating tools for
computer languages. Compiler theory concerns de-
veloping compilers, i.e. tools for turning a language
instance into another (usually executable) form. It
has its strength in defining optimised compilers for
large textual general purpose languages. On the other
hand, the focus among language designers is shifting
towards creating small DSLs. These languages may
have a graphical or textual presentation (concrete syn-
tax), and they are often based on existing languages
and may be preprocessed / embedded / transformed
into other languages for execution, instead of being

compiled with a traditional compiler. This new trend
requires new approaches, therefore speed of tool de-
velopment and agile approaches to language develop-
ment are increasingly important. Model-driven ar-
chitecture (MDA) is a general modelling approach,
that also has some advantages when it comes to defin-
ing DSLs. An important advantage of MDA for lan-
guage development is that it provides the language de-
signer with support for rapid development and auto-
matic prototyping of language support tools, and al-
lows for working on a high level of abstraction. This
approach allows the language designer to focus on the
language being developed, while still being able to
use the definition for generating tools such as editors,
validators and code generators.

Following the MDA approach to language devel-
opment, it is important that the technologies used are
well suited to the language development domain, and
that they allow the language designer to operate on
a high level of abstraction. In the following sec-
tions, we will examine technologies that are being
used for defining constraints in language specifica-
tions, and in particular the most commonly used of
these that is the Object Constraint Language (OCL)
(OMG, 2005). Based on our findings on the usage
of constraints in language specifications, we will pro-
pose an alternative approach to defining constraints
that is customised for language design.

The rest of the article is organised as follows: Sec-
tion 2 covers general background of language speci-
fication, and Section 3 covers constraints in more de-
tail. In section 4, we describe a survey on usage of

329Gjøsæter T..
LCL - A Graphical Meta-Language for Specification of Language Constraints.
DOI: 10.5220/0005250603290337
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 329-337
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



constraints in language specifications, that leads to
two different candidate approaches for defining a new
language constraints language. In section 5, we pro-
pose an alternative approach for handling language
constraints; and in sections 6, the benefits and limita-
tions of the proposed language are discussed. Related
work is discussed in 7, and finally 8 contains a sum-
mary of the article as well as plans for future work.

2 LANGUAGE SPECIFICATION

There are different ways to divide the aspects of a
language specifications. In traditional compiler the-
ory, we often refer to concrete and abstract syntax,
and static and dynamic semantics. In meta-modelling,
the structural aspect is often referred to as the meta-
model, and we may find cases where the term meta-
model also include other language aspects like con-
straints. In (Nytun et al., 2006), a language defini-
tion is said to consist of the following aspects: Struc-
ture, Presentation and Behaviour, and we also include
Constraints and Mapping for completing the picture.

Structure defines the constructs of a language and
how they are related. This language aspect is often
named abstract syntax. Constraints bring additional
constraints on the structure of the language, beyond
what is feasible to express in the structure itself. This
is related to what is called static semantics in tradi-
tional compiler theory. Presentation defines how in-
stances of the language are presented to the developer.
This can be the definition of a graphical or textual
concrete syntax. Behaviour explains the dynamic se-
mantics of the language. This can be a transformation
into another language (denotational or translational
semantics), or it defines the execution of language in-
stances (operational semantics). Mapping binds to-
gether specifications for structure with specifications
for presentation and for behaviour.

In a meta-model-based language specification en-
vironment, it is common that each language aspect
is handled by a separate domain-specific language,
also called a meta-language, with tools for generating
the needed code. In the popular environment Eclipse,
structure may for example be defined by the ECORE
language, and code generation handled by the Eclipse
Modeling Framework (EMF)(Steinberg et al., 2008).
There are several plug-ins available that cover other
language aspects. These typically provide their own
aspect-specific meta-language(-s) and tools that inte-
grate the code generated from the aspect specifica-
tion in the EMF-based structure code, thus providing
a complete editor/execution environment for the lan-
guage being developed.

3 LANGUAGE CONSTRAINTS

Language constraints can put limitations on the struc-
ture of a well-formed instance of the language. This
aspect of a language definition mostly concerns log-
ical rules or constraints on the structure that are dif-
ficult to express directly in the structure itself. Nei-
ther meta-models nor grammars provide all the ex-
pressiveness that is needed to define the set of wanted
language instances. However, there is an overlap be-
tween the structure and constraint aspects of a lan-
guage. Some language features may obviously belong
to one of them, but many features could belong to ei-
ther of them, depending on choice or on the expres-
siveness of the technology used to define the structure.

What we typically want to express with con-
straints in a compiler-based language specification is
logical rules and restrictions (static semantic condi-
tions) related to elements of the language structure.
Often, these constraints are expressed in code using a
general purpose programming language, and in some
cases in a separate logic language. These logical rules
may be attached to attributes in an attribute grammar.

IBM’s SAFARI (an IDE development meta-tool)
and MontiCore (a framework for development of
domain-specific languages) have some support for
constraint handling. Many tools handling attribute
grammars can also handle constraints defined on the
attributes, e.g. with code or logical expressions.

While meta-models are constructive definitions of
what objects a language instance can consist of, con-
straints allow to narrow down the possible instances
of a meta-model class. A meta-model constraint ex-
pressed is thereby usually written in the context of a
class, and only constrains the set of possible instances
(objects) of this class. A constraint forms a logical ex-
pression. It takes an instance of the context class as
input and evaluates to a boolean value, assessing the
instance as either a valid, or an invalid instance. Only
the models that exclusively consist of valid objects are
valid language instances.

In general-purpose modelling as well as meta-
modelling, model constraints allow the modeller to
restrict the possible valid instances of a model by
defining logical expressions over elements of the
model. This is commonly done in e.g. UML with
the Object Constraint Language (OCL) (OMG, 2005).
OCL is a formal language for describing expressions
on UML models. These expressions typically spec-
ify invariants and pre- and post- conditions that must
hold for the system being modelled. OCL can also ex-
press queries over objects described in a model. OCL
is designed to present the expressiveness of predicate
logic, in a programming language like syntax. Re-

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

330



lated tools allow to check whole models or single
objects, based on the constraints associated with the
model’s meta-model classes. Meta-model-based lan-
guage tools usually do not check a model within a
separate tool, but are integrated into model editors.
Plugins that provide support for OCL constraints in
Eclipse include MDT OCL (Willink, 2012), Dresden
OCL (Birgit Demuth and Claas Wilke, 2009), and the
EMF Validation Framework (EMF-VF).

There are some important issues of constraints
that are not handled by the OCL language, i.e. the se-
riousness of breaking a constraint, and when it should
be checked. These issues will have to be dealt with in
the implementation.

3.1 Constraints in the UML 2
Infrastructure Specification

The UML 2.3 Specification consists of two com-
plementary specifications: Infrastructure and Super-
structure. The UML infrastructure specification de-
fines the foundational language constructs required
for UML 2.3, and the UML Superstructure defines
the user level constructs required for UML 2.3 (OMG,
2007). The primary language used for defining con-
straints in this specification is OCL. The following
quote from (OMG, 2007) describes the use of con-
straints in the UML infrastructure specification:

The well-formedness rules of the meta-
class, except for multiplicity and ordering
constraints that are defined in the diagram at
the beginning of the package sub clause, are
defined as a (possibly empty) set of invariants
for the metaclass, which must be satisfied by
all instances of that metaclass for the model
to be meaningful. The rules thus specify con-
straints over attributes and associations de-
fined in the metamodel. Most invariants are
defined by OCL expressions together with an
informal explanation of the expression, but in
some cases invariants are expressed by other
means (in exceptional cases with natural lan-
guage).

The usage of OCL constraints in the UML specifi-
cation is also supported by auxiliary functions defined
in the specification.

3.2 Constraints in the SDL Specification

The SDL specification (ITU-T, 1999) is organised by
topics described by an optional introduction followed
by titled enumeration items for:
a) Abstract grammar, described by abstract syntax

and static conditions for well-formedness.
b) Concrete textual grammar. This grammar is
described by the textual syntax, static conditions and
well-formedness rules for the textual syntax, and the
relationship of the textual syntax with the abstract
syntax.
c) Concrete graphical grammar, described by
the graphical syntax, static conditions and well-
formedness rules for the graphical syntax, the
relationship of this syntax with the abstract syntax.
d) Semantics, that gives meaning to a construct,
provides the properties it has, the way in which it is
interpreted and any dynamic conditions which have
to be fulfilled.
e) Model, that gives the mapping for notations that
do not have a direct abstract syntax and modelled in
terms of other concrete syntax constructs.
f) Examples.

The SDL specification does not use OCL or other
dedicated constraints languages for constraints. The
constraints are instead expressed in English and take
the form of sentences referring to elements of the
grammars. They are mostly well-formedness rules for
the concrete grammars, but there are occasionally also
constraints for the abstract syntax. However, it must
be noted that the document “ITU-T Recommendation
Z.100 Annex F: SDL Formal Semantics Definition”
(ITU-T, 2007) provides formal semantics for SDL in-
cluding a formal description of constraints.

4 CATEGORISATION OF
CONSTRAINTS USAGE

A survey of the usage of constraints in two differ-
ent language specifications, the UML infrastructure
specification (OMG, 2007) and the SDL specification
(ITU-T, 1999), has given insights that may be taken as
a starting point for creating a higher abstraction level
approach to language constraints. Two different ap-
proaches are tested, the first approach is focused on
classifying and grouping the constraints with the pur-
pose of finding common semantic patterns that can be
applied to a language specification. The second ap-
proach investigates possible structural commonalities
among constraints that can be exploited.

4.1 Semantic Approach

The first approach attempted was based on grouping
and classifying constraints into sets of common con-
straint types that could be used as a basis for a li-
brary of common constraint patterns that could be ap-

LCL�-�A�Graphical�Meta-Language�for�Specification�of�Language�Constraints

331



plied to a language specification. If successful, this
approach could significantly lower the complexity of
defining language constraints by allowing the lan-
guage developer to pick and apply the relevant con-
straint patterns for the language to be developed. We
started with an initial set of expected constraints cate-
gories, based on previous experience with language
constraints: Name-space-related constraints, Type-
related constraints, Structural constraints and Syn-
tactic matching.

By going through the constraints in the UML In-
frastructure specification (OMG, 2007) and attempt-
ing to sort them into these categories, more cate-
gories were discovered that were added to the initial
set. As the survey progressed, the categories were re-
evaluated and adjusted until a stable set of categories
was established. Then, the SDL specification was ex-
amined and used for verifying the adequacy of the set
of categories.

The total number of constraints in the UML in-
frastructure specification is 67. The main categories
of constrains discovered in the specification are:

Namespace handling (5)
Example: All the members of a Namespace
are distinguishable within it (9.14.2.1 of (OMG,
2007)).

Type handling (9)
Example: If this operation has a return parameter,
type equals the value of type for that parameter.
Otherwise type is not defined (11.8.2.6 of (OMG,
2007)).

Structural constraints (25)
Example: Generalization hierarchies must be di-
rected and acyclical. A classifier cannot be both a
transitively general and transitively specific clas-
sifier of the same classifier (9.19.1.1 of (OMG,
2007)).

Context constraints (1)
Example: Subsetting may only occur when the
context of the subsetting property conforms to
the context of the subsetted property (11.3.5.3 of
(OMG, 2007)).

Helper functions for constraints (not counted)
Example: The query allFeatures() gives all of the
features in the namespace of the classifier. In
general, through mechanisms such as inheritance,
this will be a larger set than feature (9.4.1.1 of
(OMG, 2007)).

Dynamic semantics constraints (27)
Example: If this operation has a return parameter,
isOrdered equals the value of isOrdered for that
parameter. Otherwise isOrdered is false(11.8.2.3
of (OMG, 2007)).

We note that three new categories are identified
(the last three in the list above), and one expected cat-
egory that is removed (syntactic matching) after a lack
of related constraints identified.

The SDL specification (ITU-T, 1999) has also
been examined, and when it comes to abstract syntax,
the constraints fall into the categories above. How-
ever, it is noticeable that while the UML specifica-
tion uses constraints to cover the limitations of MOF
for defining structure, the SDL specification uses con-
straints to cover the limitations of grammars, for ex-
ample for simulating associations with multiplicity.
For concrete textual and graphical syntax, there are
two additional categories of constraints detected:

Location of elements
Typically takes a form like <element A> is to the
right of <element B> or <element A> is inside
<element B>.

Mapping handling
Typically takes the form <concrete element> rep-
resents <abstract element>.

However, we encountered complications when
trying to divide the categories further into simple
(positive or negative) patterns that can be handled by
a new constraint language. Most of the constraints are
falling into a rather vague structural constraints cate-
gory, where it is difficult to isolate common patterns.
With this in mind, a different approach is attempted,
as described in the following.

4.2 Structural Approach

The majority of the analysed constraints are in the
form of implications, with object patterns on the right-
and left-hand sides of the implication, in many cases
combined with logical operations. By analysing the
constraints, we find that more complex constraints in-
volving logical operations like AND and OR, can be
handled by rewriting or splitting up the constraints.

We note that constraints tend to be local, concern-
ing an object and its attributes and references; but it
may also be more complex, making it necessary to
look at a bigger picture. For the non-local constraints,
some require looking at the parent node in the graph
structure, some require iterative navigation to parent
nodes, and a few are completely global, requiring
more complex querying of objects. Constraints may
also contain external references, referring to some-
thing outside the specification, e.g. filenames, mod-
ules, or editors. However, this type of constraints can
also not be handled by OCL. In the UML specifica-
tion, the initial quick survey detected 86 local con-
straints, 29 parent constraints, 3 iterated constraints

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

332



and 20 global constraints. However, the constraints
that were initially put into the global category tended
to be the most complex and difficult to understand,
and since global patterns are harder to express as ob-
ject diagrams, we performed a second closer analy-
sis of the initially thought global ones that uncovered
that all of them actually more correctly fall into ei-
ther local, parent or iterated categories, and in a few
cases the statement is not a constraint at all but e.g.
a explanatory statement for the reader. The final re-
sults are 68% local patterns, 22% parent patterns, 6%
iterated patterns, 0% global patterns and 4% not a
testable constraint. A brief survey of the SDL specifi-
cation shows a similar trend in the distribution of the
results, although there are less local patterns and more
parent and iterated patterns found in this case: 50%
local patterns, 30% parent patterns, 20% iterated pat-
terns, 0% global patterns. Note that non-constraints
statements were not counted in the SDL specification.
This indicates that a structural approach may handle
the great majority of real-world language constraints,
and therefore be valid for real-world usage.

4.3 Do we Really Need a New DSL for
Language Constraints?

While OCL is more specialised for the task of defin-
ing constraints than general-purpose programming
languages, it may still be argued that we are on a rela-
tively low abstraction level, using a quite general logi-
cal language for something much more specific. OCL
has a wide feature set that handles a wide range of
model types, and many of these features will normally
not be needed in a language specification.

Although OCL clearly is up to the task of defin-
ing constraints in a language specification, it also
makes sense to create a domain-specific language not
because we need features that general purpose lan-
guages cannot offer, but because we would like to re-
duce unneeded complexity. Therefore, a DSL for lan-
guage constraints called LCL (Language Constraint
Language), is proposed. It aims to be a simple, intu-
itive and easy to use alternative to OCL (or code), that
covers the needs of the language developer.

4.4 The Chosen Approach

We have found that simple series of object pattern im-
plications will cover the majority of the cases encoun-
tered during this survey. A typical constraint will then
consist of 3 parts; context pattern, one or more con-
dition patterns, and finally a check pattern. The con-
text pattern part is setting the context or applicabil-
ity criteria for the constraints in much the same way

as in OCL. An advantage over OCL may be that we
are able to express more complex contexts than OCL’s
single element context. The context pattern is always
positive, while the condition patterns may be positive
or negative as needed, to express that the given pattern
must or must not be present in the model for the impli-
cation to be valid. These patterns functions to restrict
the possible sets of elements that the constraint ap-
plies to and may also introduce additional connected
elements. The last pattern in the implication series
is the check pattern. This functions as an evaluation
point where we get the result of the constraint evalua-
tion; True if the implication series is valid, and False
otherwise. Based on the evaluation result, a response
to the user is generated. This approach is further de-
scribed in the following section.

5 A NEW META-LANGUAGE FOR
LANGUAGE CONSTRAINTS

From examining OCL usage in language specifica-
tions, we gained insights that are used as a foundation
to define a new DSL for language constraints. A con-
straints language based on object patterns is proposed,
that also supports handling of constraints checking is-
sues like when to check, and what to do if a constraint
is broken.

5.1 Structure of LCL

Figure 1 shows the basic structure of the Language
Constraints Language (LCL). The two main parts of
the language are the Constraint with its connected
ObjectPattern classes, and the CheckHandling
class. The attributes of the CheckHandling class de-
termine when a constraint should be checked, how se-
vere a breakage is, what to do if it is broken, and an
optional message to the user.

Figure 1: The Structure of the Language Constraints Lan-
guage.

LCL�-�A�Graphical�Meta-Language�for�Specification�of�Language�Constraints

333



The ObjectPattern part is here abbreviated into
a single class for reasons of space and clarity, but
does actually represent a simple object description
language similar to UML object diagrams, enhanced
with recursive associations for iterated patterns.

The Constraint has three associations corre-
sponding to the three elements of the constraint; the
context, the conditions and the check. The context
pattern may only reference a PositivePattern,
that represents an object diagram pattern that has to
be present in the model for the constraint to apply.
The conditionPatterns association points to a se-
quence of positive or negative patterns that further de-
tails the scope of the constraint in the form of an im-
plication chain. The checkPattern finally provides
the positive or negative pattern that will be evaluated
to be true or false based on the previous implication
chain.

5.2 Presentation of LCL

A graphical presentation for LCL may take the form
of a sequence of boxes containg object patterns, as
shown in Figure 2. Each box contains an object dia-
gram representing the relevant pattern, with a plus or
minus sign in the corner of the box determining if it
contains a positive or negative pattern.

The illustrated constraint is taken from section
9.21.1 of (OMG, 2007): “If a NamedElement is not
owned by a Namespace, it does not have a visibility.”
In OCL, it is expressed as: namespace->isEmpty()
implies visibility->isEmpty(). In the LCL ex-
ample, name of the constraint is given in the top of the
diagram, “NamedElementVisibilityConstraint”. The
box on the left hand side contains the context pat-
tern. This pattern is positive, as context patterns al-
ways have to be. This is signified by the “+” in the
upper right corner. The “+” means that the constraint
applies if the pattern is found in the given model that
it is attached to. In this example, the context is the
existence of a NamedElement. The NamedElement is
given the variable name a so we can refer to it in later
patterns. The next pattern is a negative pattern, ex-
pressing that the constraint applies if the NamedEle-
ment from the previous pattern does not contain an
association to a NameSpace. The last pattern is the
check pattern, giving the final criteria that the con-
straint will be evaluated based on. It states that given
the previous restrictions, the Visibility attribute of
the NamedElement must have a value NULL. Note
that the check handling parameters are not shown in
the constraint examples provided here.

5.3 Semantics of LCL

In a nutshell, the semantics of LCL can be separated
into two parts, the evaluation of the constraints, and
the handling of checking and reporting results. There
are 5 main steps in handling a constraint:

� CheckHandling: based on the checkHanding
properties of the Constraint, evaluation of the
Constraint is triggered.

� Context: search the model for objects that fit the
criteria given by the contextPattern, and select
these for further evaluation.

� Conditions: for each pattern in the conditionPat-
terns sequence, restrict the set of objects accord-
ingly.

� Check: evaluate the final implication towards the
checkPattern, and return a True or False result ac-
cordingly.

� Report: based on the checkHanding properties of
the Constraint, a message to the user is generated,
and appropriate action is triggered.

Interpretation of positive and negative patterns:

� A positive pattern is valid if and only if all ele-
ments of the pattern are present in a structurally
equivalent form in the model to be evaluated.

� A negative pattern is invalid if and only if all el-
ements of the pattern are present in a structurally
equivalent form in the model to be evaluated.

On object names in patterns:

� Names are introduced to identify objects between
patterns in a constraint.

� Names are limited in scope to a single constraint.

� Different object description b= different objects
unless name is equal.

� Negative patterns cannot introduce object names.

� Need also object description reference! (i.e. refer
to more info of an object)

5.4 Additional Examples of LCL
Constraints

The first example, taken from section 11.8.2 of
(OMG, 2007), shows how a complex constraint can
be expressed as two different constraints in LCL: “If
this operation has a return parameter, type equals
the value of type for that parameter. Otherwise
type is not defined.” In OCL, it is expressed as:
type = if returnResult()->notEmpty() then
returnResult()->any().type else Set endif.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

334



Figure 2: Example constraint in LCL.

Figure 3: Type checking constraint in LCL.

In LCL, we divide it into two constraints as shown in
Figure 3, both first setting the context to Operation
objects. The first limits the set to operations having a
returnParameter, while the second constraints covers
operations without such a parameter. The last part
of each constraint then in the first case requires the
associated type to be the same, while in the second
case, the operation should not have a type, as given in
the corresponding negative pattern.

The second example is taken from section 13.1.8
of (OMG, 2007)and states that “A stereotype must be
contained, directly or indirectly, in a profile.” OCL
solves this using a specialised function, expressed
as profile = self.containingProfile(). In
LCL (see Figure 4), we can use this example to
demonstrate both a minimal constraint with only two
patterns, the context and the check pattern; and use
of the iterated association shown using an association
with a star in the middle. This means that the element

Figure 4: Containment constraint in LCL.

must be directly or indirectly associated with the
other element. In this case, showing that a Stereotype
must be directly or indirectly contained in a Profile.

The third example from section 9.19.1 of (OMG,
2007), states that “Generalization hierarchies must be
directed and acyclical. A classifier cannot be both
a transitively general and transitively specific classi-
fier of the same classifier.” This is expressed in OCL

LCL�-�A�Graphical�Meta-Language�for�Specification�of�Language�Constraints

335



Figure 5: Generalisation hierarchies constraint in LCL.

as not self.allParents()->includes(self). In
LCL, it can be expressed as shown in Figure 5, us-
ing again an iterated connection, but this time an iter-
ated generalisation in a negative pattern showing that
a Classifier can not directly or indirectly generalise
itself.

6 DISCUSSION

The chosen solution primarily focusses on concep-
tual issues and does not provide a complete language
with all aspects fully specified. However, refinement
of LCL into a complete language specification, and
further implementation into a usable language, would
not be very difficult given the relative simplicity of the
provided solution.

The solution provides the possibility to handle
language constraints on a higher level of abstraction,
and allows the language developer to define when to
check each constraint and what to do if it is broken.
Solutions like adding higher abstraction level func-
tions to OCL (i.e. LCL as an internal DSL in OCL)
or to add support for constraint check handling could
also partly solve the problem, but it is considered im-
portant that a constraints language should be as sim-
ple to use as possible, and that is a strength of defin-
ing LCL as an external DSL. If a wanted constraint
is not possible to express with the implications and
object diagrams supported by LCL, should then the
use of OCL be allowed? It would be constructive
to first determine if the newly requested constraint is
actually one that could be split up into manageable
parts, or if wanting the constraint is the result of bad
design decisions by the language designer. We note
for example that expressions support is a feature that
is present in OCL but missing from LCL. However,
while it is clearly needed in a general purpose con-
straints language, the survey of language constraints
shows that the need for expressions in language con-
straints is small and the constraints can usually be ex-
pressed in other ways.

The approach is intended to make defining lan-

guage constraints easier. With a graphical approach
and a high level of abstraction, it should be less prone
to bugs than by using OCL or similar logical lan-
guages, or even general purpose programming lan-
guages. A full logical language may in most cases be
overkill for the issues to be handled by language con-
straints, when a more simple and easy to understand
language would be sufficient. This design should help
the language developer avoid errors and bugs related
to malformed or logically incorrect constraints, and
will lower the requirement for programming skills of
the language developer and allow him to operate on
a higher level of abstraction. The chosen approach
would be particularly suited for DSL developers; a
graphical approach is more easy to grasp for non-
programmers and therefore facilitates communication
with domain experts during development of DSLs.
An additional advantage to LCL is that it is easy to
learn as it is just a minor extension to an already well-
known object diagram notation.

Real-world usage is needed to determine if this ap-
proach is able to cover the needs of a language devel-
oper in its current form, or if it has to be extended,
e.g. with more complex implication patterns.

7 RELATED WORK

A limited but significant amount of related work can
be found. Among others, there are articles related
to language workbenches and their technologies that
are worth noting as they may also cover constraints
support in these workbenches. Research related to
domain-specific constraint(-like) languages outside of
the language domain may also be interesting for com-
parison across domains. Finally, research on general
purpose constraint languages may also be relevant.

In the first category, The State of the Art in Lan-
guage Workbenches by Erdweg, van der Storm, et al.
gives an interesting overview of the participants in
the 2013 Language Workbench Competition, where
it describes the features supported in several language
workbenches and gives some insights on how the dif-
ferent workbenches support constraints; ranging from
no support, to support for specific types of constraints
like type enforcement through dedicated declarative
languages, but in many cases ether relying on pro-
grammatic handling or semantically rich meta-models
(Erdweg, Sebastian and van der Storm, Tijs and Völ-
ter, Markus and Boersma, Meinte and Bosman, Remi
and Cook, William R and Gerritsen, Albert and Hul-
shout, Angelo and Kelly, Steven and Loh, Alex and
others, 2013). Visser and Eelco’s Separation of Con-
cerns in Language Definition propose an approach to

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

336



separation of concerns in language definition that in-
cludes high-level declarative meta-languages that in-
cludes constraints (Visser, 2014).

In the second category, Mens, van der Straeten
and d’Hondt cover model consistency checking in
Detecting and resolving model inconsistencies us-
ing transformation dependency analysis (Mens et al.,
2006) with an interesting approach using transforma-
tion rules that have some similarity to the graphical
presentation of LCL, although it has a different goal
from the current issue of constraints enforcement in
language specifications.

The third category includes Jaffar and Mahler’s
Constraint logic programming: a survey that gives
an overview of constraint logic programming, from
which domain-specific constraint languages may find
inspiration (Jaffar and Maher, 1994).

8 SUMMARY AND FUTURE
WORK

A survey of OCL usage in language specifications has
been performed, in order to gain an understanding that
is used to define a new approach for language con-
straints. A solution based on structured object pattern
implications is proposed, that also supports handling
of constraints checking issues like when to check, and
what to do if a constraint is broken. The proposed so-
lution allows language designers to focus on language
features rather than complex logical expressions. It
may be particularly useful for DSL developers be-
cause of its familiar graphical syntax that make con-
straints in LCL both easy to understand and easy to
explain to stakeholders that may be less familiar with
logical expression languages.

There are still open issues left for future work.
A full formal specification of all aspects of the pro-
posed constraints language is needed. A textual con-
crete syntax is being developed as an alternative to
the graphical diagram-based presentation. A pro-
totype implementation of LCL is already ongoing,
adding constraints support to the LanguageLab lan-
guage workbench (Gjøsæter and Prinz, 2012) that will
be tested on Master students studying computer lan-
guage theory and design next year. Based on experi-
ences from this prototype, the approach will be further
refined and adapted to the needs of DSL developers.

REFERENCES

Birgit Demuth and Claas Wilke (2009). Model and Object
Verification by Using Dresden OCL. In Proceedings
of the Russian-German Workshop Innovation Infor-
mation Technologies: Theory and Practice, July 25-
31, Ufa, Russia, 2009, page 81. Ufa State Aviation
Technical University, Ufa, Bashkortostan, Russia.

Erdweg, Sebastian and van der Storm, Tijs and Völter,
Markus and Boersma, Meinte and Bosman, Remi and
Cook, William R and Gerritsen, Albert and Hulshout,
Angelo and Kelly, Steven and Loh, Alex and others
(2013). The state of the art in language workbenches.
In Software Language Engineering, pages 197–217.
Springer.

Gjøsæter, T. and Prinz, A. (2012). Languagelab 1.1 user
manual. Technical report, University of Agder.

ITU-T (1999). SDL - ITU-T Specification and Descrip-
tion Language (SDL-2000). ITU-T Recommendation
Z.100.

ITU-T (2007). Recommendation Z.100 Annex F: SDL For-
mal Semantics Definition. International Telecommu-
nications Union (ITU), Geneva.

Jaffar, J. and Maher, M. J. (1994). Constraint logic program-
ming: a survey. The Journal of Logic Programming,
19–20, Supplement 1(0):503 – 581. Special Issue: Ten
Years of Logic Programming.

Kelly, S. and Tolvanen, J.-P. (2008). Domain-Specific Mod-
eling. Wiley-Interscience.

Mens, T., Van Der Straeten, R., and D’Hondt, M. (2006).
Detecting and resolving model inconsistencies using
transformation dependency analysis. In Model driven
engineering languages and systems, pages 200–214.
Springer.

Nytun, J. P., Prinz, A., and Tveit, M. S. (2006). Auto-
matic generation of modelling tools. In Rensink, A.
and Warmer, J., editors, ECMDA-FA, volume 4066 of
Lecture Notes in Computer Science, pages 268–283.
Springer.

OMG (2005). OCL 2.0 Specification. Object Management
Group. ptc/2005-06-06.

OMG (2007). UML Infrastructure Specification, V2.1.2.
Object Management Group. ptc/06-10-06.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E.
(2008). EMF: Eclipse Modeling Framework. Eclipse
Series. Addison-Wesley Professional, second edition.

Visser, E. (2014). Separation of concerns in language def-
inition. In Proceedings of the Companion Publica-
tion of the 13th International Conference on Modular-
ity, MODULARITY ’14, pages 1–2, New York, NY,
USA. ACM.

Willink, E. D. (2012). An extensible ocl virtual machine and
code generator. In Proceedings of the 12th Workshop
on OCL and Textual Modelling, OCL ’12, pages 13–
18, New York, NY, USA. ACM.

LCL�-�A�Graphical�Meta-Language�for�Specification�of�Language�Constraints

337


