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Abstract: In bioinformatics, landscapes of phylogenetic trees for an alignment of sequence data are defined by a discrete
state combinatorial space. The optimal solution in such a space is the best-fitting tree which provides insight
on the evolutionary relationship between taxonomic groups. The underlying structure of this space is poorly
understood. The Ant Colony Optimization (ACO) algorithm is applied in a novel manner to sample phyloge-
netic tree landscapes in order to understand more about this structure. The proposed implementation provides
a probabilistic model for exploring this combinatorial space. This probabilistic model allows us to circumvent
the complexity that arises due to increasing the number of sequences. In order to evaluate its performance,
quantities of resultant solutions were judged in order to determine how much of the space can be sampled.
The results show that the algorithm is robust to the starting location and consistently samples a majority of the
search space.

1 INTRODUCTION

Trees have been used to a great extent in biology to
graphically represent evolutionary relationships be-
tween species, subpopulations, and genes. These
trees are generally semi-labelled, binary, and rooted,
but they can also be multifurcating or unrooted. They
descend from a root node, bifurcate at other nodes
and end at leaves labelled by the names of operational
taxonomic units (OTUs). Internal nodes are thus in-
ferred ancestors of these OTUs. Traditionally, these
trees were inferred from morphological similarities,
where two species that shared the most characteristics
were considered siblings or homologous and shared
a common ancestor that was not the ancestor of any
other species. More recently, the inference of these
so-called phylogenetic trees is done from sequence
alignment data.

This inference or tree reconstruction is a central
problem in computational biology and is known to be
NP-complete (Foulds and Graham, 1982). Biologists
have to therefore use approximate optimization algo-
rithms with certain starting points and certain random
moves between trees where resulting trees can vary
from run to run. Many such methods exist for the
construction of phylogenetic trees. All share a fitness
function f that scores the fit of a particular tree with

a sequence alignment. Examples of fitness functions
include likelihood and parsimony (Fitch, 1971).

A phylogenetic landscape or tree space refers to
the combinatorial space of all possible phylogenetic
tree topologies for a set of n leaves or taxa. This
forms a discrete solution search space and finite graph
G = (T;E) viewed as a function of its vertices. The
finite set E refers to the neighborhood relation on
T , a set of tree topologies or configurations (Bastert
et al., 2002; Charleston, 1995; Stadler, 1996). Tran-
sitions between states in this space are bidirectional
and represent transformation from one tree topology
to another by a tree rearrangement operator. We use
the the Subtree Prune and Regraft (SPR) operator
which describes a transfer of a node in a phylogenetic
tree from one parent node to a new parent (Felsen-
stein, 2004). The phylogenetic tree space is central to
an example of a combinatorial optimization problem
P = (T; f ). The set of all possible feasible assign-
ments T is known as the search space. Each element
of the set is a candidate solution. The optimal solution
in tree space is the solution t� 2 T with maximum fit-
ness function value f (t�)� f (t)8t 2 T .

Because the structure of this space is still poorly
understood, and distinguishing elements of this space
are still being discovered (Sanderson et al., 2011),
we sought to find a method to sample large areas of
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this space in an effort to discover large numbers of
trees that comprise them, the structure of the graph
that connects these trees, and how this configuration
of trees and edges can be utilized to improve exist-
ing approximate methods. To this end, we chose the
Ant Colony Optimization (ACO) algorithm and im-
plemented for use in exploring the space so as to sam-
ple it for trees and structure.

The ACO algorithm is a metaheuristic related to
swarm intelligence. It models the foraging behaviour
of ants with a collective behaviour to find paths be-
tween food sources and their nests. The biologi-
cal mechanism for this involves the deposition of a
certain concentration of pheromones by ants as they
search for food based on whether or not a path they
are on leads to food. In the ACO algorithm, edges in
a graph are paths, and paths of higher pheromone con-
centrations are chosen with higher probability by ant
agents as they traverse the space. Therefore, cooper-
ative interaction emerges to solve for shortest paths
through a parametrized probabilistic model (Blum
and Roli, 2003). A solution to the optimization prob-
lem can be expressed in terms of a feasible path, or
ant trail, on this graph (Blum and Roli, 2003; Dorigo
et al., 1999; Luke, 2013).

The first phase of the algorithm involves ant gen-
eration and activity. This includes the stochastic
movement of ants based on edge weights. The sec-
ond phase is when pheromone evaporation takes place
(Dorigo et al., 1999). Pheromone evaporation de-
scribes the decay of pheromone intensity over time.
This avoids too rapid convergence towards a sub-
optimal region (Dorigo et al., 1999).

The characteristic of a candidate solution is left
problem-specific (Luke, 2013). While moving, ants
keep in memory the path it follows. This forms a par-
tial solution to the problem. When an ant has built a
candidate solution to the problem, it will retrace its
path back to the source node and die (Dorigo et al.,
1999).

2 METHODS

2.1 PLACO

Our primary objective is to sample the phylogenetic
tree space. Therefore, sampling of the space should
avoid poorly scoring regions unless such regions are
necessary for ants to visit in order to move to a re-
gion of near globally optimal fitness. In order to do
so in an effective and timely manner, it would also be
beneficial to avoid consideration of all possible trans-
formations for a topology and only sample a subset of

them.
We construct an algorithm based on the simple

ant colony optimization metaheuristic introduced in
(Dorigo et al., 1999). In this algorithm, labelled as the
Phylogenetic Landscape Ant Colony Optimization
(PLACO) algorithm, a single population of ant agents
explore a space G by visiting its trees. Pheromone
trails are expressed as edge weights proportional to
the change in f between one tree and the next. Each
ant in the system performs a random walk to adjacent
vertices in the graph until they run out of a quantity
we define as energy. An ant that runs out of energy
returns to the colony by retracing its path and subse-
quently dies.

In both directions that an ant travels, away from
and back to the colony, pheromone trails are deposited
as an increase to edge weights. This corresponds with
topology fitness along the forward path, but along the
path in the return trip this is a function of the fittest
topology visited. This can be computed to be equal to
an exponentiation of the change in f (t) from an origin
topology to the next. We present the weight on the
edge between ti and t j as Dwi j = 2( f (t j)� f (ti)). Neg-
ative changes in the fitness function will result in a
smaller concentration of pheromones to be deposited
by ants.

Avoiding the computation of all neighboring re-
configurations to a topology can allow this heuristic
to effectively scale to large n, as the degree of a ver-
tex ti 2 T in such a case increases proportionally to the
square of n. When feasible solution components are
discovered along the vertex set of G, ants located at ti
will tend to consider a set of topologies that does not
encompass all topologies in its neighborhood. To do
this, we propose that traversal in the space is reduced
to a binary decision to move to an existing neighbor
that has already been visited or to jump to a random
unexplored vertex. This is a probabilistic decision in-
fluenced by the weights of existing edges and an ini-
tial weight for all of the unvisited edges that can be
possibly formed.

Movement expenditure of energy L is calculated
by Equation 1 as an ant travels along a path. More of
an expenditure of energy is made if the path has not
yet been explored. Otherwise, a fractional amount is
expended depending on the edge weight. Notice that
highly travelled paths are virtually free to traverse.

Li j =

(
1=wi j; if existing path
1; if unvisited path

(1)

This sequence of items should result in an algo-
rithm (Algorithm 1) that is capable of scaling to large
input and performing an adaptive search of the graph
analogous to a breadth first search in unexplored re-
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gions of the graph, and depth first search where there
is a strong pheromone concentration.

Algorithm 1: Phylogenetic Ant Colony Exploration.

Require: Phylogenetic Landscape G = (T;E) for n
taxa

Require: Starting Colony Location in T
Require: e Evaporation Constant, 0 < e� 1
Require: max Maximum Number of Ant Agents
Require: init  Starting Pheromone Concentra-

tion, init > 0
ants Population of Ant Agents
while still exploring do

createAnt(ants;n) . Generate new ant.
for ant in ants do . Perform all ant

movements.
if ant.getEnergy() > 0 then

moveAntForward(G;ant)
else

moveAntBackward(ant)
if ant.isDead() then

Remove ant from ants
end if

end if
end for
for edge in E do . Evaporate all pheromones.

edge.reduceWeight(e)
end for

end while

2.2 Performance Evaluation

In order to test the effect of a number of free pa-
rameters in the proposed algorithm on its to sample
the space, the proposed algorithm was run on exist-
ing sequence data. The algorithm was applied to both
empirical biological sequence data (n = 23) as well
as synthetic sequence data (n = 9), of which the full
search space can be explored, in order to compare
both the difference arising from different taxon set
size and simulation. Stamatakis and Albright et al.
both claim that simulated phylogenetic tree data tends
to be less complex than real biological data. As a re-
sult, the landscapes that result from simulated data are
not entirely representative in terms of the complex-
ity that may result from actual data (Albright et al.,
2014; Stamatakis, 2014). This hypothesis will be in-
vestigated when considering the results of the experi-
ments.

The data used for evaluation was involved in
a phylogenetic examination done by Meehan et al.
which was used to investigate complex phylogenetic
properties of the Lachnospiraceae family (Meehan

and Beiko, 2013). 16S RNA sequence information
regarding a selection of species in this family was
used as input for phylogenetic tree reconstruction in
the proposed algorithm.

Definition Let the free parameters for the proposed
method be denoted e for an evaporation constant, m
for the maximum number of possible ant agents, i for
the exponent of the initial pheromone concentration
of edges such that 2i is the starting weight, and t0 cor-
responds to the starting topology.

After running a series of experiments, 45 land-
scapes were created for both the empirical and syn-
thetic data, each with unique sets of parameter val-
ues, testing the parameters e, m and i, to thoroughly
span the domain of possible values for each parame-
ter. These were all given a starting topology that cor-
responds to one that scores well as found by a heuris-
tic known as FastTree (Price et al., 2009). For a selec-
tion of the landscapes with parameters that searched
the widest portion of the space, replicate runs will be
performed with identical parameters and with a vari-
ation in starting location t0. For all experiments, the
number of iterations was kept fixed at 10000.

Various quantities on resultant explored graphs
were recorded. These quantities include the range
of fitness function values, for which we use log-
likelihood, range of node degree, number of trees,
and their graph diameter. Log-likelihood was cal-
culated using the C phylogenetic likelihood library
(http://www.libpll.org). Node degree refers to the
number of edges connected to a given node. Another
evaluation metric involves considering the number of
different splits among explored trees as a measure
of diversity in tree topologies. A greater number of
splits, or bipartitions of trees, implies a greater di-
versity of trees found. Consideration of these prop-
erties should determine the breadth of sampling that
was done across the space.

A final test that was carried out on the explored
landscapes involved ranking all found trees by their
log-likelihood. Then, we defined a confidence set
of trees amongst the top 10% of these trees from re-
sults of the Approximately Unbiased (AU) test. The
AU test is a procedure which provides a selection of
trees which is most likely to to include the true tree
amongst a selection of trees (Shimodaira, 2002). The
AU test was applied to these selections of trees using
the CONSEL application (Shimodaira and Hasegawa,
2001).
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Table 1: Replicate Run Landscape Quantities. The s and x̄ noted by each quantity indicates these are standard deviations
and averages of each measure respectively. Let A represent the confidence set of trees computed by the AU Test. � Parameters
are triplets where (a) e = 0:25; i = �8;m = 5, (b) e = 0:50; i = 0;m = 10, (c) e = 0:75; i = 0;m = 10, and (d) e = 0:00; i =
8;m = 10. † The number of bipartitions refers to the number of unique clades or topological splits in the trees.

Data Type Set� s Num. s Max Degree s Avg. x̄ Avg. s Max x̄ jAj
Bipartitions† Log-Likelihood Log-Likelihood Log-Likelihood

Empirical
n = 23

(a) 4726 23.7 95.7 -12384.7 138 20
(b) 10579 104 149 -12406.4 74.5 31
(c) 13080 210 128 -12368.7 38.9 34

Synthetic
n = 9

(d) 0.376 9.00 17.0 -11014.7 14.6 2
(b) 0.855 8.90 13.3 -11016.0 9.68 3
(c) 0.519 8.67 19.3 -11016.5 21.1 3

Table 2: Varied Starting Topologies Run Landscape Quantities. The s and x̄ noted by each quantity indicates these are
standard deviations and averages of each measure respectively. Let A represent the confidence set of trees computed by the
AU Test. � Parameters are triplets where (a) e = 0:25; i =�8;m = 5, (b) e = 0:50; i = 0;m = 10, (c) e = 0:75; i = 0;m = 10,
and (d) e = 0:00; i = 8;m = 10. † The number of bipartitions refers to the number of unique clades or topological splits in the
trees.

Data Type Set� s Num. s Max Degree s Avg. x̄ Avg. s Max x̄ jAj
Bipartitions† Log-Likelihood Log-Likelihood Log-Likelihood

Empirical
n = 23

(a) 10883 63.2 616 -12955.5 739 16
(b) 25297 182 257 -12512.3 182 37
(c) 16210 171 602 -12743.7 538 27

Synthetic
n = 9

(d) 0.870 13.3 14.4 -11005.9 22.2 2
(b) 2.140 17.3 18.2 -11014.3 14.7 3
(c) 1.630 15.9 21.4 -11010.8 36.6 3

3 RESULTS

When investigating different sets of e, m and i param-
eters, it was found that the diameter for every land-
scape appears to remain constant regardless of how
parameters were varied. The diameter of the phylo-
genetic space is meant to be q(n), and the diameters
found were slightly less than n. The diameter for em-
pirical data landscapes were found to be equal to 15-
16 nodes, and for the synthetic data landscapes it was
5. The fact that these values are smaller than expected
is hypothesized to be due to the existence of subopti-
mal regions that are not reached by the PACO algo-
rithm.

What does appear to differ regards the quantity
and range of scores for trees visited between these
different topologies. The number of trees and biparti-
tions found differed mostly when e and m were varied.
There appears to be a significant proportionality be-
tween the number of ants and how many bipartitions
are found. A greater quantity of ants implies more
work being done at every iteration of the algorithm.
Furthermore, these ants also interact with each other
through the deposited pheromone applied on edges.

The evaporation constant appears to significantly
affect the quality of fitness of the topologies the ant
agents visit. The best collection of trees is found
around a constant of e = 0:5, but extreme e values
leads to a drop in the ability of the algorithm to ex-
plore the most relevant regions of the space. This dra-
matically reduces the relative fitness of found trees.
Pheromone concentrations across edges effectively
encode a long-term memory of ants upon the surface.
It is surmised that evaporation provides the algorithm
the ability to forget poor regions and reinforce the ex-
ploration of higher likelihood regions.

We selected three triplets of parameters where
search properties were satisfactory and kept them
fixed to test for robustness of the search. Across
replicate runs with these selections (Table 1), we find
similar properties of broad exploration through the
space. All of the replicate runs consistently gener-
ated landscapes with a large number of trees. How-
ever, when we investigate results from the empirical
data, a large deviation exists amongst the replicate
runs for the number of bipartitions and the maximum
degree found in the search space. The former devi-
ation signifies variation in the algorithm’s ability to
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find a great diversity of trees across the runs. The lat-
ter suggests inconsistent behavior when ants are caus-
ing edges to be created, possibly due to differently
scored trees being visited. Despite this, the difference
in log-likelihood is small and the nodes where the de-
gree is largest are those that score higher. Therefore,
while different breadths of tree diversity is being ac-
quired, and while different trees are being visited be-
tween replicate runs, the ability of the algorithm to
sample similarly scoring trees and regions does not
appear to change. Notice, also, that this inference is
less relevant if we discuss the synthetic dataset.

Being a smaller search space, the algorithm ap-
pears to sample the trees found in the smaller space
thoroughly. Respectively, the algorithm explored a
number of the possible trees in the empirical land-
scape on the order of 10�15% and of the synthetic
dataset on the order of 1%. As the number of trees in
the space is equal to O(n!), this shows that although
the algorithm is not searching a very large proportion
of all possible trees, it is sampling a number of them
that is sufficient to acquire a shape of the landscape.

When choosing different starting topologies (Ta-
ble 2), the deviations in number of bipartitions and
average log-likelihood are magnified between both
empirical and synthetic data. It appears that when a
different, possibly worse starting topology, is chosen,
more iterations need to be done in order to acquire
more of a diversity in splits and to bring resultant
landscapes consistently into regions of better scoring
topologies. However, when a good path is found, the
energy expenditure function should mitigate this ef-
fect.

When the AU test confidence sets of trees were
computed for, the number of trees found to be present
in these sets were similar for respective sets of param-
eters and for both emperical and synthetic data. Even
when starting topologies were varied, the number of
trees found to be part of these sets did not seem to be
reduced from those found by starting at a well-scoring
topology. This suggests a tendency for the search to
find well-scoring regions of trees.

4 CONCLUSION

This metaheuristic was designed to sample a large
number of regions of interest of the search space with
a reasonable number of iterations and amount of time.
In order to acquire an understanding of its perfor-
mance, a number of parameters possessed by the al-
gorithm can be tuned. We found that evaporation was
effective in steering the search to well-scoring regions
of the space, the number of ant agents extended the

number of trees found, and that the highest scoring
trees in the search were visited more often as indi-
cated by their increased degree.

Two rounds of experimentation were carried out
including a first round testing for different triplets of
parameter values. The second round of experimen-
tation saw the investigation of replicate runs and the
starting topology being varied. All results show that,
when exploring both empirical and synthetic data, we
can make three claims about the performance of the
proposed algorithm. Firstly, the PLACO algorithm is
capable of broadly exploring the combinatorial space
in spite of the number of taxa. Secondly, across repli-
cate runs we find consistent behaviour but variation in
quality of trees. This implies a sparse but broad search
where different topologies are being found. Thirdly,
it does not matter where the algorithm starts in order
to acquire a wide ranging set of trees and to sample
properties of and the shape of the space.

Future work investigate the maintenance of multi-
ple populations in the space. For example, we could
build into the algorithm an ability for it to iteratively
create colonies. This can accomplish to more densely
move across the space and focus on regions of partic-
ular interest.
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