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Abstract: This work describes a practical solution for the problem of cryptographic key establishment and secure com-
munication in the context of the Internet of Things, in which computational efficiency is a fundamental re-
quirement. A symmetric-key establishment protocol based on AES, Poly1305-AES, time synchronization,
Elliptic Curve Diffie-Hellman and sensor IDs is proposed to achieve data confidentiality, authentication, in-
tegrity and prevention from replay attacks. Such a protocol was implemented in the EPOS operating system in
the form of a network layer that transparently provides trustfulness. Tests were executed on the EPOSMoteII
platform and the analysis of the results shows that the implementation is adequate to be used in the scenario
of embedded systems with low processing power.

1 INTRODUCTION

The idea of an Internet of Things (IoT) is quickly
materializing through the adoption of RFID as a re-
placement for barcode along with the introduction of
Near Field Communication (NFC) devices that are
able to interface our daily-life objects with the Inter-
net. However, the next steps towards a global network
of smart objects will drive us through several large-
scale, interdisciplinary challenges. In particular, se-
curity and privacy are issues that must be consistently
addressed (Atzori et al., 2010) (Elkhodr et al., 2013)
before IoT can make its way into people’s lives.

Things in IoT will interact with each other and
with human beings through a myriad of communi-
cation technologies. This communication will often
happen wirelessly, and will almost always be sub-
ject to interference, corruption, eavesdropping and all
kinds of cybernetic attacks. Most of the encryption
and authentication techniques developed for the orig-
inal Internet – the Internet of People – to handle im-
personation, tampering, and replay attacks, in theory,
can also be applied to the IoT. It is important to recog-
nize, however, that these conventional solutions will
not always be adequate for the IoT, making it an open
area of research (Elkhodr et al., 2013). The micro-
controllers used in smart objects will seldom be able
to put up with the requirements. Furthermore, IoT
will be subject to particular conditions not so often

faced by today’s Internet devices. Some things will
send messages that will trigger immediate reactions
from other things that directly control the environ-
ment. Capturing and reproducing one such valid mes-
sage, even if it is encrypted and signed, could lead
complex systems such as roadways, factories, and
even whole smart cities to misbehave. Some things
will harvest energy from the environment for hours
before they can say something to the world, and when
they speak, one will have to decide whether or not to
believe in what they say without having a chance to
further discuss the subject (at least not for a couple
of hours). Conventional solutions such as transaction
authentication and channel masking (Fu et al., 2003)
are of little help in this context.

In previous works, we introduced a trustful infras-
tructure for the IoT conceived with these pitfalls in
mind (Fröhlich et al., 2011; Fröhlich et al., 2013). In
this paper, we detail the design and implementation of
a key component of that infrastructure: key establish-
ment. In that infrastructure, trustfulness is tackled at
MAC layer by extensive use of the Advanced Encryp-
tion Standard (AES) hardware accelerators now avail-
able in most IEEE 802.15.4 implementations. The
adoption of this widespread symmetric-key algorithm
as the foundation of the infrastructure’s trustfulness
brings several practical benefits (e.g. performance
and power consumption), but brings also the major
drawback of symmetric-key encryption: both parties
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must share a secret key. Generating the keys before
deployment and storing them for subsequent distri-
bution would lessen the infrastructure security to the
level of key management, involving humans. Gen-
erating the keys at servers and sending them to the
smart things over the network would also make room
for additional attacks, since decrypting the message
containing the key at any time would reveal the key it-
self. Therefore, the proposed key bootstrapping strat-
egy also makes use of Elliptic Curve Diffie-Hellman
(ECDH) for distributed key generation, and precise
clock synchronization in a communication protocol
that exploits previously-known sensor information to
overcome such challenges with no need for third-
parties.

The remaining of the paper is organized as fol-
lows: Section 2 presents the related works. In Sec-
tion 3, we describe the main components that were
used as building blocks for the trustful IoT infrastruc-
ture. In Section 4 we expose how we combine the
building blocks and propose a key establishment and
trustful communication protocol, which is analysed in
Section 5. Section 6 concludes the paper.

2 RELATED WORK

TinySec (Karlof et al., 2004) defines a link-layer
security architecture for Wireless Sensor Networks
(WSNs), providing encryption and authentication.
TinySec supports two different security options: au-
thenticated encryption (TinySec-AE) and authentica-
tion only (TinySec-Auth). In authenticated encryp-
tion mode, TinySec encrypts the data payload accord-
ing to the Skipjack block cipher and authenticates the
packet with a Message Authenticity Code (MAC).
The MAC is computed over the encrypted data and
the packet header. In authentication only mode, Tiny-
Sec authenticates the entire packet with a MAC but
does not encrypt the data payload. The inclusion of
a MAC to ensure authenticity and integrity has a cost
on radio usage and consequently in energy consump-
tion, because the hash values commonly represent a
long sequence of bits – the length of a MAC deter-
mines the security strength of a MAC function (Sun
et al., 2010). TinySec achieves low energy consump-
tion by reducing the MAC size, hence decreasing the
level of security provided. TinySec also does not at-
tempt to protect against replay attacks and does not
discuss how to establish link-layer keys. TinySec is
implemented in TinyOS and runs on Mica, Mica2,
and Mica2Dot platforms, each one using Atmel pro-
cessors. TinySec has 3000 lines of nesC code , and
the implementation requires 728 bytes of RAM and

7146 bytes of program space.
MiniSec (Luk et al., 2007) is a secure network

layer protocol for WSNs that attempts to solve the
known problems of TinySec. MiniSec accomplishes
this by combining three techniques. First, it employs
a block cipher mode of operation that provides both
privacy and authenticity in only one pass over the
message data. Second, MiniSec sends only a few
bits of the Initialization Vector (IV) – a block of bits
used by some operating modes to randomize the en-
cryption, producing distinct ciphertexts from the same
plaintext over time – while retaining the security of a
full-length IV per packet. In order to protect against
replay attacks and reduce the radio’s energy consump-
tion, it uses synchronized counters, but only sending
the last bits of the counter along with each packet.
However Jinwala et al. showed that such scheme re-
quires the execution of costly resynchronization rou-
tines when the counters shared are desynchronized
(packets delivery out-of-order) (Jinwala et al., 2009).

Related protocols for key establishment include
a fast scheme based on Elliptic Curve Cryptogra-
phy presented in (Huang et al., 2003). They use the
idea of combining symmetric and asymmetric opera-
tions, proposing what the authors call a hybrid pro-
tocol, which offloads work from the sensors by mak-
ing the gateway work more. (Pan et al., 2011) shows
that some of their security claims do not hold since
the gateway could recover a sensor’s secret long-term
key, and proposes an improved version.

The idea of a sensor-ID based protocol is explored
in (Li-ping and Yi, 2009), and a rough estimation of
time and bandwidth costs indicates that this can be
an efficient approach. In these works, however, ei-
ther the sensor needs to be pre-loaded with specific
and sensitive information or an external security man-
ager is assumed to distribute certificates to sensors
through an alternative, secure out-of-band channel.
The present work contrasts by aiming at reducing this
pre-deployment effort and proposing a practical solu-
tion for key establishment.

3 PROTOCOL BUILDING
BLOCKS

3.1 EPOS

EPOSMote is an open hardware project (EPOS,
2014). The project’s main objective is delivering a
hardware platform to allow research on energy har-
vesting, biointegration, and MEMS-based (Micro-
ElectroMechanical Systems) sensors. Figure 1 shows
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Figure 1: EPOSMoteII SDK side-by-side with a R$1 coin.

EPOSMoteII, the model used in this work. It features
a 32-bit, 26MHz ARM7TDMI-S processor, 128kB of
flash memory, 96kB of RAM and an IEEE 802.15.4-
compliant radio transceiver. EPOS (Embedded Paral-
lel Operating System) is the running operating system
of choice, which is implemented in C++.

3.2 PTP

The proposed protocol makes use of timing synchro-
nization to add principles of temporality to the secure
communication. In previous work, we implemented
EPOS’ timing protocol (Oliveira et al., 2012), which
delivers clock time across a wireless sensor network
in conformance with the IEEE 1588 standard, the Pre-
cision Time Protocol (PTP). A central node (the gate-
way) equipped with a GPS receiver propagates its pre-
cise clock time to slave nodes as illustrated by Fig-
ure 2. Since in the wireless scenario propagation is
done broadcasting messages, listening nodes can pas-
sively take advantage of protocol interactions to re-
calibrate whenever they observe valid PTP messages
in the network, greatly reducing the total traffic gener-
ated. EPOS’ PTP can keep a PAN synchronized with
sub-millisecond precision.

Figure 2: Overview of messages exchanged by EPOS’ PTP.

3.3 Hardware AES Acceleration

The Advanced Encryption Standard is a symmetric-
key algorithm considered to be resistant against math-
ematical attacks. It consists of a block cipher contain-
ing a 128-bit block size, with key sizes of 128, 192,
and 256 bits. AES is a very popular cryptographic

engine and is included in the IEEE 802.15.4 stan-
dard, so that many devices for the Internet of Things
(including EPOSMoteII) have hardware acceleration
for AES available. The use of hardware accelera-
tion for cryptographic algorithms not only enhances
the performance of security systems but also leaves
the computing resources available to a more useful
work (Chang et al., 2010). Therefore, we make ex-
tensive use of the widespread hardware-assisted se-
curity mechanism to derive keys, sign, encrypt and
decrypt all necessary data. The implementation in
EPOSMoteII uses a fixed key size of 128 bits and is
extremely efficient (Fröhlich et al., 2011).

3.4 Poly1305-AES

Poly1305-AES (Bernstein, 2005) is a state-of-the-
art Message Authentication Code algorithm that uses
AES (thus taking advantage of hardware accelera-
tion) to compute a 16-byte authenticator according to
Equation 1, where:

� c is of length q, and is derived from the message,

� k;r are two secret keys, each of length 16,

� n is a nonce,

� AESk(m) is the ciphertext produced by running
AES using message m and key k as input.

Poly(c;k;r;n) =

(((c1 � rq + � � �+ cq � r1) mod (2130�5))

+AESk(n)) mod 2128 (1)

Poly1305-AES is proven to be secure if AES is se-
cure (Bernstein, 2005), and can be implemented with
comparative efficiency.

3.5 Diffie-Hellman

Elliptic Curve Diffie-Hellman (ECDH) over Prime
Curves (Fp), widely considered more robust and ef-
ficient than the traditional Diffie-Hellman scheme
(NSA, 2009), is used in the present work. The proto-
col, however, is agnostic as to which underlying arith-
metics for Diffie-Hellman is used.

4 SECURE KEY
BOOTSTRAPPING PROTOCOL

The proposed protocol adds two-way authentication
to a typical Diffie-Hellman scheme, and also allows
an additional secret to be shared between a sensor and
the gateway: a deployment time window. It relies on
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unique sensor IDs, AES, Poly1305-AES and synchro-
nized clocks. The following conditions are assumed
to be valid by the protocol. Some of these are dis-
cussed further in Section 5.

� Each sensor has a unique identifier on the net-
work. This identifier needs not have a specific for-
mat. It can be, for instance, the microprocessor’s
serial number.

� Sensors are capable enough to perform assymetric
cryptography operations when they join the net-
work.

� There is a node called gateway which is a local,
trusted and controlled machine.

� Secure communication is only necessary between
sensor and gateway. In WSNs, usually, most (or
all) communication happens between sensors and
gateway only.

� Sensors have persistent memory for holding a
cryptographic key; i.e. sensors are assumed not
to “forget” keys (e.g. due to a power loss) once
they are established.

The first three conditions are inherent to the protocol,
while the others are stated to limit the scope of the
present work.

The following notation is used through the rest of
this paper:

� IDa: Unique identifier of sensor a.

� Autha: A hash computed from IDa, for instance
AES(IDa; IDa).

� (Ya;Pa): Public and private (respectively) Diffie-
Hellman key-pair of sensor a.

� (Yg;Pg): Gateway’s DH key-pair.

� DH(Pa;Yb): a Diffie-Hellman operation, which
calculates a Master Secret Kab. In our implemen-
tation, this denotes an Elliptic Curve point multi-
plication by a scalar.

� Poly(a;b;c;d): The result of running the
Poly1305-AES algorithm using a;b;c;d as pa-
rameters (Equation 1).

� M1 �M2: Concatenation of messages M1 and M2

� fMgk: Message M encrypted under symmetric
key k, e.g.: AES(M;k).

� T : The current time window of the network,
which is the timestamp truncated to a fixed,
network-wide interval length. The windows shall
be long enough to accommodate a message’s
transmission and reception.

The protocol is divided into 3 phases: Initial-
ization, Key Establishment and Authentication, after

DH_Request(Yg)

DH_Response(Ys)

Clock Sync.

Auth_Request(Auth, OTP)

Auth_Granted({ID}KT)

SensorGateway

Figure 3: Overview of messages exchanged for key estab-
lishment and authentication.

Sensor Gateway

Diffie
Hellman

Master
Secret

PTP

Poly

Time
Stamp

ID

Diffie
Hellman

Master
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PTP

DB

Poly

IDs, 
Auths

Time
Stamp

Auth OTP AuthOTP

Figure 4: Overview of the interactions between several of
the protocol’s building-blocks.

which nodes can start communicating trustfully. Fig-
ure 3 illustrates the messages exchanged and Figure 4
presents an overview of the interactions between the
various building-blocks, as detailed in the following
sections.

4.1 Initialization

Each trusted sensor is assigned a unique identifier.
The ID need not have any particular form, as long as
it is unique in the network. It can be the device’s se-
rial number, for instance. The IDs of each sensor to
be trusted must be loaded in the gateway, and is dele-
gated to the user to do this in a secure way, since the
gateway is assumed to be a trusted, controlled local
machine. Sensors also have an Auth code, which is a
known hash function of the ID, and the gateway has a
database corresponding Auth codes with IDs.

When a sensor is deployed, it listens to the Diffie-
Hellman parameters of the network (which may op-
tionally be pre-loaded, since they are public and usu-
ally known before deployment), generates its Diffie-
Hellman key-pair, synchronizes its clock with the net-
work and remains idle until the gateway asks for au-
thentication. Once the user loads the IDs in the gate-
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way, it is ready to issue a DH_Request(Yg) command,
moving on to the next step.

4.2 Key Establishment

Key establishment is carried out as a traditional
Diffie-Hellman protocol. The first message is sent by
the gateway and is denoted DH_Request(Yg). The part
in parenthesis indicates a variable value sent along
with the message (in this case, Yg). This message
can be broadcast or transmitted to a particular node.
When a DH_Request(Yg) message arrives at the des-
tination, the receiving sensor s must respond with
DH_Response(Ys) and then calculate the symmetric
key Ksg = DH(Ps;Yg), which we call Master Secret.
Similarly, upon receiving the response the gateway
calculates Ksg = DH(Pg;Ys). At this point, sensor and
gateway share a symmetric key. However, since no
authentication aspects have been involved so far, they
have no evidence that this key is shared with a trustful
node in the network.

4.3 Authentication

The authentication step’s purpose is twofold: it pro-
vides evidence to the gateway that the sensor is au-
thentic (i.e. holds a valid and unique ID) and vice-
versa, then ties the previously calculated Ksg to this
valid ID, validating the Master Secret. In order to do
this, the sensor calculates a One-Time Password OT Ps
as in Equation 2 and sends to the gateway the message
Auth_Request(Auths;OT Ps).

OT Ps = Poly(Ksg� IDs;Ksg; IDs;T ) (2)

Upon receiving an expected
Auth_Request(Auths;OT Ps) message, the gateway
verifies if there is a Master Secret pending authen-
tication which is implicitly contained in OT Ps. The
process starts with a database query for IDs via Auths.
Then, for each Kag pending authentication, the gate-
way calculates OT Pa = Poly(Kag � IDs;Kag; IDs;T )
(using for every calculation the T indicating the
moment the Auth_Request message was received)
and checks if OT Pa = OT Ps. If and only if OT Ps is
found, the gateway has evidence that Kag is in fact Ksg
and was shared with an authentic sensor identified by
IDs; it then associates the ID with the Master Secret
for future communication with s.

Finally, the gateway transmits the last message:
Auth_Granted(fIDsgKTsg ), to provide to the sensor
evidence that this node is an authentic gateway (i.e.
is the only other node that knows IDs). KTsg is a dis-
posable key derived from the Master Secret with the
mechanism explained in Section 4.4.

Upon receiving Auth_Granted(fIDsgKTsg ), the
sensor is able to derive KTsg as well and decrypt the
message to check if IDs is correct. If it is, the sensor
starts trusting the Master Secret. Otherwise, it shall
not consider itself authenticated and must start the
protocol again, waiting for a new DH_Request mes-
sage.

4.4 Secure Communication

Once a Master Secret Ksg has been authenticated, it is
ready to be used as an AES key, but only indirectly.
When a node needs to send a message M securely,
it must derive a key KTsg according to Equation 3,
include a checksum C to the message and then send
Secure_Message(fC �MgKTsg ).

KTsg = Poly(Ksg� IDs;Ksg; IDs;T ) (3)

If the receiving node is a sensor, it is able to de-
rive KTsg, decrypt the message to obtain C and M and
check if the checksum is correct (if it isn’t, the mes-
sage is discarded). If the receiver is the gateway, it
must derive a KTag for each authenticated sensor a,
then try to decrypt the message with each key until
one generates the correct checksum (if none gener-
ates, the message is discarded). If the implementation
allows access to a lower-layer network address, it can
be used as a heuristic to accelerate this search for Ksg.

When C is correctly generated, the receiver has ev-
idence that the Secure_Message was generated by the
only other node in the network that knows the pre-
viously validated Master Secret. It then trusts that
the message is authentic, confidential, wasn’t mod-
ified and was generated within the current network
time window.

5 EVALUATION

This section aims at evaluating the proposed proto-
col’s efficiency and viability. The analysis is divided
in two: Section 5.1 brings a qualitative discussion re-
garding the protocol’s security aspects, its main pos-
itive characteristics and limitations. The section that
follows it, 5.2, shows results of tests performed with
a prototype implementation of the protocol.

5.1 Protocol Analysis

IoT devices will often communicate through wireless
technology, allowing any radio interface configured at
the same frequency band to monitor or participate in
communications, which is very convenient for attack-
ers (Zhou et al., 2008). In order to avoid undesired
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attacks a secure infrastructure for the IoT must pro-
vide the principles of confidentiality, authenticity and
integrity (Suo et al., 2012).

In the proposed protocol, if a secure message M0=
fC �MgKTsg is sent – for example – from s to g and
is successfully decrypted yielding a matching check-
sum, the receiver can conclude that:

� M is confidential, since only the sensor and the
gateway know Ksg.

� M is authentic, because Ksg is secret and tied to
IDs.

� M0 was not modified by anyone but s, because it
is extremely unlikely that the message was altered
blindly and still carries a valid checksum.

� M0 was generated in the current network time win-
dow T .

5.1.1 IDs

Each sensor’s unique identifier does not need to have
a particular format, but some observations impact the
provided security level. An attacker can disguise it-
self as an authentic sensor if it finds a valid ID and
uses it in the appropriate time, before the legitimate
holder of that ID does (see Section 5.1.3); therefore,
it is desirable for any valid ID to be very hard to find.
The three main factors that impact on this difficulty
is the secrecy with which the IDs are stored and han-
dled, their size in bits and their predictability.

Secrecy is a factor we can’t control, since it
greatly depends on the context in which the proto-
col is being used, including human and logistic fac-
tors such as the outsourcing of the team that generates
and instals the sensors and their IDs. Ideally, the IDs
should be kept secret and only revealed in a controlled
way to those who necessarily need to know them.

ID size is directly related to the security level.
The larger the ID is, the harder it will be for an at-
tacker to blindly guess it correctly. The Auth codes
and the One-Time Passwords also benefit from an in-
crease in ID size if an AES encryption mode that takes
advantage of the whole plaintext is used (e.g. CBC
mode). An ID smaller than 128 bits is highly unrec-
ommended, because it would affect the values utilized
as keys in Auth and OTP, which would decrease AES
security.

Predictability is an important aspect because an at-
tacker that has an idea of the format of valid IDs can
potentially find one much more easily by trial-and-
error. Thus, randomly-generated IDs are the most rec-
ommended.

In summary, ideally one would like the IDs to
be random, 128-bit (or larger) numbers, which are

revealed only to trusted individuals who necessarily
need to know them. One should balance these three
factors as the context allows. If, for instance, one
wishes to use each device’s not-secret, 10-bit serial
number as IDs, one could instead use the serial num-
bers as input to a random number generator of greater
magnitude and use the output as ID.

With these recommendations in mind, it may seem
easier to simply load pre-established symmetric keys
on the sensor, or use the IDs directly as keys and dis-
miss any protocol. In this strategy, however, if an
attacker happens to find an ID (or key, in this case)
they would be able to decrypt all the messages ever
exchanged – in the past or in the future – by the cor-
responding node, while in our proposal the attacker
must, besides finding out an ID, break the discrete
logarithm problem for elliptic curves, which in itself
is far from a trivial problem. One could also use the
shared, secret IDs as Diffie-Hellman keys and dis-
miss the rest of the protocol, but that would bring the
known Diffie-Hellman Man-In-The-Middle vulnera-
bility (since the sensor would not be able to recognize
a valid gateway) and wouldn’t provide temporality of
messages.

Because the proposed protocol does not derive
keys exclusively from the ID, security holds even if
they are employed with low care (see Section 5.1.3),
allowing for some relaxing in the requirements re-
garding the ID. Using the IDs directly as keys would
require a care directly proportional to the desired se-
curity level.

5.1.2 Timestamps

The timestamps used along the protocol are not the
direct value of the clock, but a truncation to a pre-
established, network-level time window, which will
define the timestamp’s granularity. There should be
here a point of contact with the lower layers of the
network stack since the timestamp used in the calcu-
lations should reflect the moment in which the mes-
sage is actually transmitted. In WSNs, for instance,
the use of duty-cycling protocols is common, in which
senders must transmit preamble packets for X units of
time before sending the actual message. In this case,
the timestamp used for encryption on that message
should be Ti+X (where i is the current moment).

Within a single timestamp, a message must be able
to travel from the sender to the receiver. Timestamps
with too coarse granularity should not be used be-
cause replay attacks are possible within a same times-
tamp.
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5.1.3 Possible Attacks

In this section we consider a few possible attacks to
the protocol, their potential impacts and preventive
measures.

1. Guessing an ID
Attack. The attacker deploys an unauthorized
device which will try to authenticate using a
number of different educated (or completely
in-the-dark) guesses of ID, until it finds a valid
one.
If Successful. An unauthorized node is deployed
and treated as a trusted one. If the legitimate
holder of the ID tries to authenticate later, it will
be treated as an attacker and blocked (see next
attack).
Countermeasure. Since the gateway is the one
to start the protocol, it has knowledge of how
many authentication attempts should be hap-
pening at any given time. If too many attempts
are detected, the gateway can start ignoring
them, so an attacker cannot try an arbitrary
number of IDs. Furthermore, any node that is
detected as trying to authenticate more than a
very few times could be blacklisted and ignored.
A mechanism for trusted nodes to detect and
report such malicious nodes is being devised
as future work (it could take geographic loca-
tion information, for instance). If the very first
guess is correct, this attack turns into the next one.

2. Knowing an ID
Attack. The attacker knows a valid ID and
deploys a malicious node using it.
If Successful. An unauthorized node is deployed
and treated as a trusted one. If the legitimate
holder of the ID tries to authenticate later, it will
be treated as an attacker and blocked.
Countermeasure. The gateway can determine
if there is already some trusted node under that
ID. If a different node is trying to use the ID
while some node is already using it, the gateway
blocks the one that came later. This attack is
only successful if the attacker finds out the valid
ID, deploys and authenticates the node before
the proper node is authenticated; therefore the
attacker must not only find out the ID by some
means, but also use it with perfect timing.
This solution implies that if a legitimate node
is reset for some reason and “forgets” its key
without the gateway knowing, it will not be
able to authenticate again. We assume that this
won’t happen, but if it is a concern, a policy
of key renewing can be implemented, which

periodically invalidates keys and ensures that the
key bootstrapping protocol is run to establish
new, valid keys. This way a reset sensor will be
inactive only until the next key renewal period,
but, on the other hand, every such period will
open a new window for successful “ID-knowing”
attacks.
Since the generation of a shared key is entirely
independent of the ID, stealing an ID after the
key is established does not compromise the key
in any way.

3. Manipulating Time Synchronization
Attack. Since time synchronization is needed
for secure communication, PTP must be run un-
secured by the protocol at least for the first time,
enabling attackers to manipulate PTP messages
and break synchronization.
If Successful. New keys will not be established
successfully and secured messages will not be
decrypted correctly, resulting in Denial of Service
(DoS).
Countermeasure. DoS is a threat to wireless
networks in general, since attackers could in
most cases simply jam the channel by inserting
a large number of messages, preventing any
communication from being successful. Since
this is the only harm caused by a PTP attack
(no cryptographic material can be obtained this
way), we do not regard this as a new vulnerability.

4. Node Capture
Attack. The attacker physically acquires a legiti-
mate node in the network.
If Successful. The attacker is assumed to have
complete control over the node, and can read and
modify its data as they like.
Countermeasure. This attack is also a general
threat to Wireless Sensor Networks. By cloning
all the node’s already validated cryptographic in-
formation to a new one, the attacker can effec-
tively introduce a malicious node in the system,
which will be treated as a trusted one. Never-
theless, since any given node holds no informa-
tion – explicit or implicit – about any other node’s
key, it is guaranteed that capturing a node will
not disclose private cryptographic-key data about
the gateway (besides one shared key) or any other
nodes in the network.

5.2 Implementation Analysis

This section analyses the performance of the code
written to implement the protocol in EPOS (EPOS,

Key�Establishment�and�Trustful�Communication�for�the�Internet�of�Things

203



2014), allowing an application to communicate trust-
fully with transparency. In the test scenario, an EPOS-
MoteII device (Section 3.1) was used as the gateway
and two more as sensors. The implementation leaves
room for optimization (e.g. more complex algorithms
for elliptic curve operations, hardware implementa-
tion . . . ), and the aim of the evaluation is to show that
the protocol implies arguably modest overhead, even
with a sub-optimal implementation.

We implemented the Elliptic Curve arithmetic –
following the works of (Brown et al., 2001; Menezes
et al., 1996) – and Poly1305-AES libraries completely
in C++. Table 1 shows the resulting code sizes for
each part.

In the running time graphs, each bar represents the
mathematical average of a few iterations of the indi-
cated algorithms and parameters, running on differ-
ent EPOSMotes. Network overhead is not accounted.
The Elliptic Curves used are the ones recommended
in (SEC, 2000), and the numbers in the names (e.g.
secp128r1) indicate the size in bits of the parameters.

Table 1: Size (in bytes) of .text section for, respectively,
the Elliptic Curve Cryptography, Big Integer and Poly1305-
AES libraries.

ECC Bignum Poly1305 Total
size 2880 3700 1512 8092

5.2.1 Poly1305-AES

Figure 5 shows the time taken by our implementation
of the Poly1305-AES algorithm for derivation of KT
keys (which must be performed every time a message
is encrypted) and One-Time Passwords, according to
Equation 2. The total time taken by the gateway for
checking an OTP and preparing a confirmation mes-
sage is shown in Figure 6.
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Figure 5: Average times (µs) for OTP derivation.

In both graphs, there is a significant difference
in the case where the ID and the ECDH parameters
are 128-bit wide. This difference happens because
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Figure 6: Average times (µs) for authentication checking
and confirmation.

Poly1305-AES operates on 128-bit blocks, and in ev-
ery other case at least one of the parameters is larger
than this.

5.2.2 Elliptic Curve Diffie-Hellman

The execution times shown in the two previous figures
are insignificant compared to the time taken by the
ECDH implementation. Figure 7 shows the average
times taken to perform one of the two Elliptic Curve
point multiplications required by the protocol. One
should keep in mind, however, that Poly1305-AES is
used whenever a secure message is sent and received,
while this multiplication pair generates a key that will
be valid for a very long time (hours, days, months, de-
pending on the application), therefore they will hap-
pen very sporadically, in some cases only once in a
sensor’s lifetime in the network.
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Figure 7: Average times (ms) for ECDH point multiplica-
tion.

5.2.3 Communication Overhead

For key establishment, a total of 4 messages are
exchanged, as shown in Figure 3. For each mes-
sage, the security layer implementation uses one byte
to represent message type, and a payload of size
specific for each message. The first two messages
each carry a Diffie-Hellman public key. Its size
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is implementation-dependent, and in our ECDH im-
plementation it is a two-dimensional Elliptic Curve
point. The total size of the point is equal to
twice the size of the generated Master Secret. In
Auth_Request(Auth;OT P), both values are fixed at 16
bytes each. Auth_Granted(fIDsgKTsg) has a payload
of size equal to IDs. Table 2 shows the total commu-
nication overhead for these 4 messages, for varying
sizes of ID and Master Secret.

Table 2: Total communication overhead (in bytes) for key
establishment for varying sizes of Master Secret (rows) and
ID (columns).

ID size 16 20 32
MS size

16 116 120 132
20 132 136 148
24 148 152 164

6 CONCLUSIONS

This paper presented a trustful infrastructure for the
IoT developed within the realm of project EPOS. As-
pects such as people privacy in respect to traffic pat-
tern analysis and data dependability have not been
considered in this paper. Also, optimized implemen-
tations and secure group communication are topics
left as future work and are currently under study.

The proposed infrastructure was implemented
around the EPOSMoteII platform and delivered to
end users through a trustful communication protocol
stack. Trustfulness for the infrastructure was achieved
through a combination of mechanisms. A practical
key establishment protocol based on AES, Poly1305-
AES, time synchronization, Diffie-Hellman and sen-
sor IDs was proposed to achieve confidentiality, au-
thentication, integrity and prevention from replay at-
tacks. The proposal was experimentally evaluated in
terms of running time in a real-world implementation.
The results confirm that the proposed infrastructure
can provide the security needed without introducing
excessive overhead to a network of things, a key step
in making the Internet of Things a daily reality.
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