Integrating Adaptation Patterns into Agent Methodologies to Build
Self-adaptive Systems

Mariachiara Puviani!, Giacomo Cabri? and Letizia Leonardit
IDIEF - Universita degli Studi di Modena e Reggio Emilia, Via Vignolese 905/b, Modena, Italy
2FIM - Universita degli Studi di Modena e Reggio Emilia, Via Campi, 213/A , Modena, Italy

Keywords:

Abstract:

Multi-Agent System, Adaptation Pattern, Methodology.

Agent systems represent a very good example of complex and self-adaptive systems. Adaptation must be

conceived not only at the level of single components, but also at the system level, where adaptation must
concern the entire structure of one system; adaptation patterns have been proposed to address both levels.
Many methodologies have been proposed to support developers in their work, but they lack in addressing
the choice and the exploitation of adaptation patterns. In this work, we propose an integration of adaptation
patterns in agent-oriented methodologies, exploiting an existing methodology to concretely show how such an

integration can be enacted.

1 INTRODUCTION

Nowadays intelligent software systems take places in
different domains, characterised by mobility, rapid
changes in operation conditions along with changes in
the systems’ environment, and so on. Self-adaptation
has been proposed as a solution to manage the grow-
ing complexity of intelligent systems. With the con-
tinuous increasing in runtime scale and complexity of
software systems, self-adaptation has assumed a cen-
tral role in the software engineering development, and
has often been mentioned as one of the challenges for
the discipline (Fernandez-Marquez et al., 2012).

Self-adaptation is the ability of a software system
or an application to automatically modify its structure
and behaviour at runtime in order to ensure, maintain
or recover some functional or extra-functional prop-
erties, even in the face of unexpected changes to op-
erating conditions or user requirements.

To develop self-adaptive systems, in general two
approaches exist: parameter adaptation and compo-
sitional adaptation (McKinley et al., 2004). Param-
eter adaptation concerns adapting the system’s be-
haviour through changing parameters, while compo-
sitional adaptation is described as change of compo-
nents (in terms of behaviour or whole structure). In
our work, we focus on compositional adaptation, but
in a more specific way: we do not aim to simply
change the components in a system, but we aim to
modify their behaviour (defined as the pattern that

Puviani M., Cabri G. and Leonardi L..

describes it) inside the system. This will lead not to
change a component, but to change its internal struc-
ture in order to make it behave differently.

In our studies, we found a lack of reusable and
well-defined processes and components for explicitly
designing and implementing self-adaptive systems.
Designers often start from scratch. Moreover, the
integration of the concepts into a framework that is
enhanced with tools of process definition (as a well
known methodology) and of means that enable to in-
troduce adaptation, would simplify the development
of self-adaptive systems and result in fast and less
error-prone development.

Studying adaptation patterns, we have seen that
they are considered as a useful means to introduce
adaptation into a system, and more in details, in a
methodology for developing self-adaptive systems.

In our work, we aim at creating a complete ap-
proach that will guide developers from the system’s
specification to the system’s implementation. We
would like to create a complete framework that per-
mits to develop a self-adaptive system. This ongoing
work is made of different steps:

1. analysis of Multi-Agent methodologies and inte-
gration of adaptation pattens into the chosen ones;

2. modification of the tools that support the chosen
methodologies, for the creation of adaptive sys-
tems;

3. creation of a middleware that will merge the

99

Integrating Adaptation Patterns into Agent Methodologies to Build Self-adaptive Systems.

DOI: 10.5220/0005276800990106

In Proceedings of the International Conference on Agents and Atrtificial Intelligence (ICAART-2015), pages 99-106

ISBN: 978-989-758-073-4

Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)

ICAART 2015 - International Conference on Agents and Artificial Intelligence

concepts coming from methodologies’ tools, by
means of Java classes;

4. evaluation of the framework, experimenting the
creation of self-adaptive systems.

As a first step, we think that integrating adapta-
tion patterns into methodologies will aid in realising
this approach of supporting the development of a self-
adaptive system. To be more concrete, in this paper,
we specifically apply this approach to some method-
ologies to develop multi-agent systems, which well
represent complex and adaptive systems. In this pa-
per, we present how adaptation patterns can be inte-
grated in a multi-agent methodology, in order to ob-
tain a methodology for creating self-adaptive systems.

The reminder of this paper is as follows: in Sec-
tion 2, we present the Catalogue of adaptation Pat-
terns, explaining its importance in connection with
adaptive systems and methodologies. Further on, in
Section 3 we introduce some selected agent-oriented
methodologies, along with the criteria we used to se-
lect them, and we show how and where the Catalogue
of Patterns can be included into these methodologies.
In Section 5 we present some work related to our ap-
proach and at the end, in Section 6 we conclude the
paper and present some future works.

2 THE CATALOGUE OF
ADAPTATION PATTERNS

Closed to self-adaptation are Service-based systems
and Agent-based systems. In Service-based systems,
services are designed independently by different ser-
vice providers and are composed to achieve a prede-
fined goal (i.e., user tasks (Kazhamiakin et al., 2010)
or business goals (Marconi et al., 2008)); while in
Agent-based systems activities of different actors are
regulated by certain collectively defined rules (Lav-
inal et al., 2006). In these different approaches, the
focus of research on adaptation has not been put on
adaptive behaviour of the whole system yet, but it
is limited to the definition of adaptation solutions for
specific entities (they try to adapt the behaviour of the
single component and not of the whole system). In-
stead, our aim is to move from individual-based com-
ponents to entire systems proposing adaptation tech-
niques that support adaptation for the ensemble. To
overcame this limitation we introduce the adaptation
pattern approach (Puviani et al., 2013).

In literature design patterns (or simply patterns)
are defined as reusable solutions to recurring design
problems and are a mainstream of software reuse
practice (Gamma et al., 1995; Morandini et al., 2010).

100

They crystallize a general solution to a common
problem, so software developers can benefit from
their reuse to develop systems. An adaptation pat-
tern is a conceptual scheme that describes a specific
adaptation mechanism. It specifies how the compo-
nent/system architecture can express adaptivity.

An important task to develop a well performing
self-adaptive system, is to understand which pattern
to choose. In order to define how a pattern works in
a self-adaptive system and which kind of systems is
covered by a specific pattern, we wrote a Catalogue of
Adaptation Patterns (Puviani et al., 2013). In this Cat-
alogue, the different patterns are presented, and each
of them describes the features of a specific adaptive
system.

The adaptive behaviour inside a component or an
ensemble is described in terms of feedback loops. In
the Catalogue, the patterns are proposed with a spe-
cific description by means of a template, and with ex-
amples of the use of the patterns in real systems, in
order to simplify the selection of the right pattern to
use. ~The use of a pattern permits the developer to
be guided to make the system exhibit a required be-
haviour, even when unexpected situations occur.

The use of adaptation patterns to create self-
adaptive systems, has been tested in different field, in
many applications (Mayer et al., 2013; Puviani et al.,
2014b), and guarantees correct results in systems that
are frequently changing, not only in their internal con-
ditions, but also in the environment where they are
operating.

As said in the Introduction, the use of a methodol-
ogy could be very useful to develop self-adaptive sys-
tems. However, the current methodologies consider
adaptation only at level of single components, instead
of at the system’s level. That is the reason why we
consider necessary to introduce the Catalogue of Pat-
terns into methodologies: it will enact adaptivity at
the level both of single component, and of the entire
system. In fact the Catalogue of Patterns will sup-
port the methodologies in the creation of an adaptive
system where the structural adaptation of the whole
system is considered very relevant.

3 AGENT-ORIENTED
METHODOLOGIES FOR
ADAPTIVE SYSTEMS

In order to support application developers during the
creation of an adaptive system, it is necessary to pro-
vide a methodology that support adaptation mecha-
nisms starting from the system requirements. The ini-

Integrating Adaptation Patterns into Agent Methodologies to Build Self-adaptive Systems

tial idea is not to propose a methodology from scratch,
but to have as a base a stable and well known method-
ology.

Moreover, we consider that “agents” are one
of the most useful paradigms to build intelligence
distributed systems, so we would like to use that
paradigm to create adaptive systems. To do that, we
started from the study of agent-oriented methodolo-
gies as a starting point to introduce adaptation fea-
tures while building a system.

Considering MASs (Multi Agent Systems), it
is generally accepted that analysis and design of
agent-based systems require an Agent-Oriented Soft-
ware Engineering (AOSE) methodology. There are
now many mature AOSE methodologies (Henderson-
Sellers and Giorgini, 2005), (Bergenti et al., 2004),
including MaSE (DeLoach et al., 2001), Tro-
pos (Bresciani et al., 2004), Gaia (Zambonelli
et al., 2003), Prometheus (Padgham and Winikoff,
2005), INGENIAS (Pavon et al., 2005), ADEM?,
ADELFE (Bernon et al., 2003), SODA (aliCE Re-
search Group et al., 2009) and PASSI- (Cossentino,
2005).

After different studies (Puviani et al., 2012), we
found out that to create a unified methodology that
may have the most powerful features of every of
the starting ones, is very difficult. For example, we
are not able to prove if a new unified methodology
covers all the possible scenarios, as happened for
MAR&A (Cabri et al., 2009), that is a composed
methodology, but is not applicable to adaptive sys-
tems. Moreover, not all the composing methodolo-
gies use the same language or the same concepts,
and translating them into unified terms will not be al-
ways easy. Furthermore, creating a new methodology
for adaptive systems from scratch will not be easy as
well. It may be yet another methodology, and there is
no guarantee that it will be able to build all the adap-
tive systems.

All these reasons suggested us to not create a
methodology dedicated to self-adaptive system, or to
compose a methodology, but to start from well known
and well defined methodologies, and to insert the Cat-
alogue of Patterns into them in order to have self-
adaptive feature.

Starting from our previous work (Puviani et al.,
2010), we found out that some AOSE methodologies,
even if they are well known, are not up to date, or no
more utilised to develop intelligent complex agents
systems. So we selected only few methodologies that
we consider suitable to build a self-adaptive system.
The methodologies that we selected have some com-
mon features:

Lhttp://www.whitestein.com/adem

they are updated (e.g. a new version of the
methodology has been released in the last years);

they have been tested in different distributed sys-
tems;

they use well known paradigms like UML or the
SPEM approach (Seidita et al., 2009), (Puviani
et al., 2009) that will be very useful in order to
introduce adaptation patterns;

they use the concept of “role” to define adaptation
patterns in a system;

they have a supporting tool, or specific indication
for the development of a system.

The methodologies we selected for our work are:
ADELFE, PASSI2 and SODA. For space reasons, in
this paper we describe only PASSI2, along with the
indications on where introducing the Catalogue of
Patterns.

As said before, a common point of these method-
ologies is that all of them have been described us-
ing the SPEM (Software Process Engineering Meta-
model) approach (Object Management Group, 1997).
This will be useful in order to insert the Catalogue of
Patterns in terms of SPEM fragments. In this way,
it will be possible to better define the concepts pre-
sented in patterns and to insert them into the different
methodologies.

To improve reading of the paper, in Figure 1 we

report the definitions of some common notations used
by SPEM.

Anything produced, consumed, or modified

WorkProduct
by a process.

Operation that describes the work

WorkDefinition .
performec in the process.

The main subclass of WorkDefiniton, it
describes a piece of work parformad by
one ProcessRole

Activity

o
D
D
Defines a performer for a set of
WorkDefinitions in a process. It represents
ProcessRole " ' :
abstractly the "whoole process” or one of

ts components.

ProcassPackage

A specialization of WorkDefinition. Its

Phase))) precondition defines the phase entry
criteria and its goal defines the phase exit
criteria
Document ‘ A WorkProduct
»
UMLMode Rom A WorkProduct

Figure 1: SPEM notations.

101

ICAART 2015 - International Conference on Agents and Artificial Intelligence

4 EXAMPLE: PASSI2

PASSI2 (Process for Agent Society Specification and
Implementation) (Cossentino and Seidita, 2009) is the
evolution of PASSI (Cossentino, 2005), a methodol-
ogy that aims at covering all the phases of a system
development from the requirements’ analysis to the
deployment configuration, coding, and testing.

It is based on a meta-model describing the el-
ements that constitute the system to be designed
(agents, tasks, communications, roles) and what are
the relationships among them. The importance of
this description is in the lack of a universally ac-
cepted meta-model of MASs (differently from object-
oriented systems) that makes unclear any agent design
process that does not precisely define the structure of
the system it aims to produce. PASSI2 has been de-
signed keeping in mind the possibility of designing
systems with the following peculiarities: (i) highly
distributed, (ii) subject to a (relatively) low rate of
requirements changes, (iii) openness (at runtime ex-
ternal systems and agents that are unknown at de-
sign time will interact with the system to be built).
Robotics, workflow management, and information
systems are the specific application areas where it has
been wildly applied.

PASSI2 is composed of three models that address
different design concerns and nineteen phases, as we
can see in Figure 2. An important aspect of PASSI2
is that it uses standards as UML and adapts it to the
need of representing agent systems through its ex-
tension mechanisms (constraints, tagged values and
stereotypes).

Synthetically, the models and phases of PASSI2
are:

1. System Requirements Model. A model of the sys-
tem requirements in terms of agency and purpose.

Developing this model involves:

Domain Description (DD). A functional de-
scription of the system using conventional use-
case diagrams.

Agent Identification (Ald). Separation of re-
sponsibility concerns into agents, represented
as UML packages.

Role Identification (RId). Use of sequence dia-
grams to represent each agent’s responsibilities
through role-specific scenarios.

Agent Structure Exploration (ASE). An
analysis-level description of the agent structure
in terms of tasks required for accomplishing
the agent’s functionalities.

Task Specification (TSp). Specification
through state/activity diagrams of the capabil-
ities of each agent.

102

2. Agent Society Model. A model of the social in-
teractions and dependencies among the agents in-
volved in the solution. Developing this model in-
volves five phases:

Domain Ontology Description (DOD). Use of
class diagrams to describe domain categories
(concepts), actions that could affect their state
and propositions about values of categories.
Communication Ontology Description (COD).
Use of class diagrams to describe agents’ com-
munications in terms of referred ontology, in-
teraction protocol and message content lan-
guage.

Role Description (RD). Use of class diagrams
to show distinct roles played by agents, the
tasks involved what the roles involve, commu-
nication capabilities and inter-agent dependen-
cies in terms of services.

Multi-Agent Structure Definition (MASD).
Use of conventional class diagrams to describe
the structure of solution agent classes at the so-
cial level of abstraction.

Multi-Agent Behaviour Description (MABD).
Use of activity diagrams or state-charts to de-
scribe the behaviour of individual agents at the
social level of abstraction.

3. Implementation Model. A model of the solution
architecture in terms of classes, methods, deploy-
ment configuration, code and testing directives; it
is composed of seven phases, the first two are per-
formed at both the multi-agent (whole agent soci-
ety) and single-agent abstraction level:

Single-Agent Structure Definition (SASD).
Use of conventional class diagrams to describe
the structure of solution agent classes at the im-
plementation level of abstraction.
Single-Agent Behaviour Description (SABD).
Use of activity diagrams or state-charts to de-
scribe the behaviour of individual agents at the
implementation level of abstraction.
Deployment Configuration (DC). Use of de-
ployment diagrams to describe the allocation of
agents to the available processing units and any
constraints on migration, mobility and configu-
ration of hosts and agent-running platforms.
Code Reuse (CR). A library of patterns with as-
sociated reusable code to allow the automatic
generation of significant portions of code.
Code Completion (CC). Source code of the tar-
get system that is manually completed.

Agent Test. Verification of the single behaviour
with regards to the original requirements of the
system solved by the specific agent.

Integrating Adaptation Patterns into Agent Methodologies to Build Self-adaptive Systems

lteration
Planming

!

System Requirements Model

Requirements s——

Vew lterarion i
"
[
i
Implementation Model :
Single-Agent K "
Sub-Model Saciety Test
Structure t
Definition
l Ageni Test
Behavior t
Description Code Sub-Model
Code
¥ Production

Deployment |
=3 Configuration Code Reuse

1

Multi-Agent Swh-Maodel

Domain Reg. Analysts Agent Sub-Model
Dheseription
1 Agent

Agenls Structure Exploration
Identification I 1

o Roles Tasks

Ilentification Specification
-
Agent Society Model
Damain Commumication

Behavior

Figure 2: PASSI2 models and phases.

Society Test. Validation of the correct interac-
tion of the agents, performed-in order to verify
that they actually concur in solving problems
that need cooperation. This test is done in the
most real situation that can be simulated in the
development environment.

The Iteration Planning activity is positioned at a
higher level of abstraction, above the logical sequence
of models and phases. It is at the base of every iter-
ative incremental process and in our case consists of
the analysis of the Problem Statement and all the other
available documents (for instance outputs of previous
iterations) in order to identify the requirements (and
related risks) that should be faced in the next iteration
(that is considered as the nineteen phase).

An important concept in PASSI2 is that of “role”.
A role is defined by the set of responsibilities defining
the subjective behaviour of an agent in an interaction
(conversation) with another one or in providing some
service in one or more scenarios; an agent may play
one or more roles at the same time. Roles are very im-
portant because they are considered a useful paradigm
that can used to define the different patterns in a sys-
tem (Puviani et al., 2014a).

Two are the main phases that involved roles: the
Role Identification phase, into the System Require-
ments Model (Figure 3), and the Role Description
phase into the Agent Society Model (Figure 4).

The Roles Identification phase produces a set of
sequence diagrams that specify scenarios from the
agents’ identification use case diagram. In this phase,
the Catalogue of Patterns is added as input, in or-
der to create specific roles able to describe an adap-

tive system. In this context, it is also particularly
important to investigate all the paths involving inter-
agent communications, and fortunately some guide-
lines can be considered: (1) such communication
paths are shown in the Ald diagram by the presence of
a relationship between two agents with the communi-
cation/instantiation stereotype; (2) each relationship
may belong to several scenarios; (3) for each relation-
ship in a specific scenario of the Ald diagram, there
is at least one message in the sequence diagram of
the RId phase. In that phase, roles are identified in
the sense that agents’ external manifestations are cap-
tured in sequence diagrams where agents participate
playing one or more roles concurring to the evolution
of the system dynamic.

Moreover, the Catalogue of patterns is introduced
in the Roles Description phase. This phase consists
in modelling the lifecycle of each agent, looking at
the roles it can play, the collaboration it needs, the
communications in which it participates and, with the
inclusion of the Catalogue of Patterns, the adaptive
system to develop. In the RD diagram all the rules
of the society, laws of the society and the domain in
which the agent operates are introduced. They could
be expressed in plain text or OCL? in order to have a
more precise, formal description.

In PASSI2, a role is a portion of the social be-
haviour of an agent that is characterized by some
specifications such as a set of attributes (for exam-
ple responsibilities, permissions, activities, and proto-
cols) or providing a functionality/service. Most com-
monly, roles are devoted to provide services, share

20bject Constraint Language

103

ICAART 2015 - International Conference on Agents and Artificial Intelligence

Damain Requiremenis
Descnpuon

: »"la. E] El

e

. A

IaemPeaan s sl
Cragram

Dormr Joiogy Crrsiogy
Lt gy Danc sgeaor

Mg i

o Sy ey, odsl

@--

Aged Sincies Doireba
Cmgrar
N e ey Hosa)

L}
]
r
T
LEETRE L e :
|
i
i

lanki By iPoad af

Dmgrama
Pros Sy vy, el E

[Merw lierarion)

R - =
ﬂi i sarres
"J:E.' ' -_:?EJ

Figure 4: PASSI2: Agent Society Model activities and resulting work products.

resources or achieving a goal (this is always related
to ensuring the fulfilment of the functionalities that
can be deducted from the use cases assigned to the
agent). The defined RD diagram is a class diagram
where roles are classes grouped in packages repre-
senting agents. Roles can be connected by relation-
ships representing changes of role, by dependencies
for a service or the availability of a resource and by
communications.

Specifically, in the Agent Society Model, the Cat-
alogue of Patterns is introduced for the Multi-Agent
Behaviour Description (MABD), where agents are
described in terms of their behaviour both from the
social-exterior point of view and the internal flow of
control, as we can see in Figure 4. Here the Catalogue
is necessary to identify which role to choose to obtain
the system adaptation in the considered environment.

PASSI2 does not have a real Code Production
Phase, but each programmer has to complete the code

104

of the application starting from the design of the
skeletons produced by the methodology.

The PASSI2 design methodology is supported by
a specific design tool, granting a large number of au-
tomatisms during the design, and a pattern reposi-
tory for the reuse practice; these are determinant in
cutting down the time and cost for developing sys-
tems (Chella et al., 2004). The toolkit is PTK (PASSI
ToolKit). The PTK add-in can generate the code for
all the skeletons of the agents, tasks and other classes
included in the project. The pattern repository con-
sists of a serie of reusable portions of agents and tasks.
The repository also includes a list of tasks that can be
applied to existing agents.

5 RELATED WORK

In literature, many approaches on patterns for self-

Integrating Adaptation Patterns into Agent Methodologies to Build Self-adaptive Systems

adaptation exist, like the one of (Ramirez and Cheng,
2010), (Cabri et al., 2011) and (Weyns et al., 2012).
However, in this paper we do not focus on the use
of adaptation pattern to create self-adaptive systems,
but on the definition of a useful methodology to cre-
ate this kind of systems, with the aid of the patterns’
approach.

In the last years, engineering research has tackled
a well-defined problem and has carefully selected and
combined existing solution into a comprehensive de-
velopment framework for self-adaptive systems.

A lot of projects like MADAM project® and
the MUSIC project* tried to address adaptation in
different scenarios, from both the theoretical and
the practical perspective. For example, the MU-
SIC project (Hallsteinsen et al., 2012) would like
to introduce a model-driven development methodol-
ogy (Geihs et al., 2009) for self-adaptive context-
aware applications. Different from us, this approach
was to write a new methodology instead of exploiting
the power of existing ones.

Other approaches as CARISMA (Capra et al.,
2003) and RAINBOW (Garlan et al., 2004) propose
self-adaptation middleware or architectural styles to
develop self-adaptive software, but they do not pro-
pose any methodology that will guide developers
from the collection of requirements to implementa-
tion. Moreover, MOCAS (Model of Components
for Adaptive Systems) propose a generic state-based
component model which enables the self-adaptation
of software components along with their coordina-
tion (Ballagny et al., 2009); but like the other ap-
proaches, there are not concrete guidelines, consid-
ered as a methodology.

6 CONCLUSIONS

In this paper, we propose an approach to enrich
methodologies for addressing adaptation in building
self-adaptive systems. We considered in particular
some specific agent-oriented methodologies, and we
introduced in these the Catalogue of Patterns that will
help in defining self-adaptive systems. We think that
this enrichment can be done in any methodologies for
building adaptive systems. The possibility of easily
inserting the Catalogue of Patterns inside a method-

3Mobility and Adaptation-enabling Middleware, sup-
ported by the European Union under research grant 004159
lasting from September 2004 to March 2007.

4Self-Adapting Applications for Mobile Users in Ubig-
uitous Computing Environments, supported by the Euro-
pean Union under research grant 1ST-035166 lasting from
October 2006 to March 2010.

ology (using the SPEM notation), permits harnessing
the power of the selected methodologies.

As an ongoing work we are testing these modified
methodologies in different scenarios, to have quanti-
tative and qualitative results of the effectiveness of the
methodologies. Moreover, as future work, we would
like to complete the methodologies process, introduc-
ing the Catalogue of Patterns also in the supporting
tools, in order to have all the steps completed. Then
we will create a framework that will permits match-
ing the methodologies’ concepts into agents’ infras-
tructures.

ACKNOWLEDGEMENTS

The work is supported by the “Linea strategica
SMART ICT FOR SMART SOCIAL WORLDS” of
the Universita di Modena e Reggio Emilia.

REFERENCES

aliCE Research Group et al. (2009). Soda home page.

Ballagny, C., Hameurlain, N., and Barbier, F. (2009).
Mocas: A state-based component model for self-
adaptation. In Self-Adaptive and Self-Organizing Sys-
tems, 2009. SASO’09. Third IEEE International Con-
ference on, pages 206-215. IEEE.

Bergenti, F., Gleizes, M.-P., and Zambonelli, F. (2004).
Methodologies and software engineering for agent
systems: the agent-oriented software engineering
handbook, volume 11. Springer.

Bernon, C., Gleizes, M.-P., Peyruqueou, S., and Picard, G.
(2003). Adelfe: A methodology for adaptive multi-
agent systems engineering. In Engineering Societies
in the Agents World I11, pages 156-169. Springer.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and
Mylopoulos, J. (2004). Tropos: An agent-oriented
software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203-236.

Cabri, G., Puviani, M., and Leonardi, L. (2009). The mar&a
methodology to develop agent systems. In ICAART,
pages 501-506.

Cabri, G., Puviani, M., and Zambonelli, F. (2011). Towards
a taxonomy of adaptive agent-based collaboration pat-
terns for autonomic service ensembles. In CTS, pages
508-515. IEEE.

Capra, L., Emmerich, W, and Mascolo, C. (2003).
Carisma: Context-aware reflective middleware system
for mobile applications. Software Engineering, IEEE
Transactions on, 29(10):929-945.

Chella, A., Cossentino, M., and Sabatucci, L. (2004).
Tools and patterns in designing multi-agent systems
with passi. WSEAS Transactions on Communications,
3(1):352-358.

105

ICAART 2015 - International Conference on Agents and Artificial Intelligence

Cossentino, M. (2005). From requirements to code with
the passi methodology. Agent-oriented methodolo-
gies, 3690:79-106.

Cossentino, M. and Seidita, V. (2009). Passi2—going to-
wards maturity of the passi process.

DelLoach, S. A., Wood, M. F., and Sparkman, C. H. (2001).
Multiagent systems engineering. International Jour-
nal of Software Engineering and Knowledge Engi-
neering, 11(03):231-258.

Fernandez-Marquez, J. L., Serugendo, G. D. M., Snyder,
P. L., and Valetto, G. (2012). A pattern-based ar-
chitectural style for self-organizing software systems.
Drexel University, Department of Computer Science,
Tech. Rep, 6.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns. Addison Wesley, Reading (MA).

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and
Steenkiste, P. (2004). Rainbow: Architecture-based
self-adaptation with reusable infrastructure. Com-
puter, 37(10):46-54.

Geihs, K., Reichle, R., Wagner, M., and Khan, M. U.
(2009). Modeling of context-aware self-adaptive ap-
plications in ubiquitous and service-oriented environ-
ments. In Software engineering for self-adaptive sys-
tems, pages 146-163. Springer.

Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn,
G., Lorenzo, J., Mamelli, A., and Papadopoulos, G. A.
(2012). A development framework and methodology
for self-adapting applications in ubiquitous comput-
ing environments. Journal of Systems and Software,
85(12):2840-2859.

Henderson-Sellers, B. and Giorgini, P. (2005). Agent-
oriented methodologies. 1GI Global.

Kazhamiakin, R., Paolucci, M., Pistore, M., and Raik,
H. (2010). Modelling and automated composition
of user-centric services. In On the Move to Mean-
ingful Internet Systems: OTM 2010, pages 291-308.
Springer.

Lavinal, E., Desprats, T., and Raynaud, Y. (2006). A
generic multi-agent conceptual framework towards
self-management. In Network Operations and
Management Symposium, 2006. NOMS 2006. 10th
IEEE/IFIP, pages 394-403. IEEE.

Marconi, A., Pistore, M., and Traverso, P. (2008). Au-
tomated composition of web services: the astro ap-
proach. IEEE Data Eng. Bull., 31(3):23-26.

Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi,
F., Pugliese, R., Keznikl, J., and Bure, T. (2013).
The autonomic cloud: a vision of voluntary, peer-2-
peer cloud computing. In Self-Adaptation and Self-
Organizing Systems Workshops (SASOW), 2013 IEEE
7th International Conference on, pages 89-94. IEEE.

McKinley, P. K., Sadjadi, S. M., Kasten, E. P., and Cheng,
B. H. (2004). Composing adaptive software. Com-
puter, 37(7):56-64.

Morandini, M. et al. (2010). On the use of the Goal-
Oriented Paradigm for System Design and Law Com-
pliance Reasoning. In iStar, volume 586, pages 71—
75. CEUR-WS.org.

106

Object Management Group (1997). SPEM. http://
www.omg.org/technology/documents/formal/spem.htm.

Padgham, L. and Winikoff, M. (2005). Developing intel-
ligent agent systems: A practical guide, volume 13.
John Wiley & Sons.

Pavon, J., Gomez-Sanz, J. J., and Fuentes, R. (2005).
The ingenias methodology and tools. Agent-oriented
methodologies, 9:236-276.

Puviani, M., Cabri, G., and Leonardi, L. (2014a). En-
abling self-expression: the use of roles to dynamically
change adaptation patterns. In FOCAS 2014. IEEE
Computer Society.

Puviani, M., Cabri, G., and Zambonelli, F. (2013). A tax-
onomy of architectural patterns for self-adaptive sys-
tems. In Proceedings of the International C* Confer-
ence on Computer Science and Software Engineering,
pages 77-85. ACM.

Puviani, M., Cabri, G., and Zambonelli, F. (2014b). Agent-
based simulations of patterns for self-adaptive sys-
tems. In ICAART 2014 - Proceedings of the 6th Inter-
national Conference on Agents and Artificial Intelli-
gence, Volume 1, ESEO, Angers, Loire Valley, France,
6-8 March, 2014, pages 190-200. IEEE Computer So-
ciety.

Puviani, M., Cossentino, M., Cabri, G., and Molesini, A.
(2010). Building an agent methodology from frag-
ments: the mensa experience. In Proceedings of the
2010 ACM Symposium on Applied Computing, pages
920-927. ACM.

Puviani, M., Serugendo, G. D. M., Frei, R., and Cabri,
G. (2009). Methodologies for self-organising sys-
tems: a spem approach. In Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology-
Volume 02, pages 66-69. IEEE Computer Society.

Puviani, M., Serugendo, G. D. M., Frei, R., and Cabri, G.
(2012). A method fragments approach to methodolo-
gies for engineering self-organizing systems. ACM
Transactions on Autonomous and Adaptive Systems
(TAAS), 7(3):33.

Ramirez, A. and Cheng, B. (2010). Design patterns for
developing dynamically adaptive systems. In Pro-
ceedings of the 2010 ICSE Workshop on Software En-
gineering for Adaptive and Self-Managing Systems,
pages 49-58. ACM.

Seidita, V., Cossentino, M., and Gaglio, S. (2009). Us-
ing and extending the spem specifications to repre-
sent agent oriented methodologies. In Agent-Oriented
Software Engineering IX, pages 46-59. Springer.

Weyns, D., Malek, S., Andersson, J., and Schmerl, B.
(2012). Introduction to the special issue on state of
the art in engineering self-adaptive systems. Journal
of Systems and Software, 85(12):2675-2677.

Zambonelli, F., Jennings, N. R., and Wooldridge, M.
(2003). Developing multiagent systems: The gaia
methodology. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 12(3):317-370.

