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Abstract: The assessment of the semantic similarity between concepts is a key tool to improve the understanding of 
text. The structured knowledge that ontologies provide has been extensively used to estimate similarities 
with encouraging results. However, in many domains, several ontologies modelling the same concepts in 
different ways are available. In such scenarios, the most suitable ontology for similarity calculation should 
be selected. In this paper we tackle this task by proposing an unsupervised method to select the ontology 
that seems to enable the most accurate similarity assessments. By studying the ontology features that most 
influence the similarity accuracy, we propose a score that captures them in a mathematically coherent way. 
Then, the most suitable ontology can be selected as that with the highest score. We also report the results of 
the proposed method for several well-known ontologies and a widely-used semantic similarity benchmark. 

1 INTRODUCTION 

A key element to text understanding is the 
assessment of the semantic similarity between the 
concepts referred in the text (Resnik, 1995). 
Semantic similarity is understood as the level of 
taxonomic proximity between concepts (Batet and 
Sánchez, 2014). To enable this assessment in an 
automatic way, ontologies provide a formal and 
machine-readable representation of the knowledge 
related to a domain, from which similarities can be 
estimated (Batet and Sánchez, 2014).  

Traditionally, ontology-based similarity 
measures relied on the knowledge modeled in a 
single ontology (Wu and Palmer, 1994; Jiang and 
Conrath, 1997; Resnik, 1995; Batet et al., 2011b). 
Thus, the similarity results strongly depended on the 
accuracy of the knowledge modeled in the ontology. 
To overcome this limitation and, given the 
availability of several complementary and 
overlapping knowledge bases in many domains, 
some authors have recently proposed methods to 
exploit multiple ontologies for semantic similarity 
assessment (Rodríguez and Egenhofer, 2003; 
Petrakis et al., 2006; Al-Mubaid and Nguyen, 2009). 
The motivation is that the additional knowledge and 
the complementary views that several knowledge 
sources provide of a certain domain could lead to 
more accurate similarity estimations.  

Semantic similarity computation from multiple 
ontologies faces two main challenges. First, in many 
situations, a single ontology does not model the 
concepts to be compared, so that, their similarity 
should be computed across different ontologies. 
Second, in cases in which the pair of terms to be 
compared belong to several ontologies at the same 
time (and, thus, different similarity results can be 
obtained for the several ontologies), it is necessary 
to select the best knowledge source.  

In this work we focus on the latter problem. This 
situation is especially relevant in domains in which 
several ontologies are available (e.g., in 
biomedicine, we can find overlapping knowledge 
bases such as MeSH (Nelson et al., 2001) or 
SNOMED-CT (Spackman, 2004), which model the 
same medical concepts). However, ontologies are 
usually independently created from a wide variety of 
sources and with different goals and quality criteria. 
Thus, different ontologies can model the same 
domain of knowledge in significantly different ways 
because the scope of the ontology, and the point of 
view and design principles followed by knowledge 
engineers may differ. Consequently, overlapping 
ontologies usually present different levels of detail, 
completeness and semantic structure, thus enabling 
more or less accurate similarity assessments. 
Because of the many factors that are involved in the 
knowledge modelling, it is difficult to select a priori 
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the most suitable ontology (Al-Mubaid and Nguyen, 
2009; Sánchez et al., 2012b). 

In this paper, we tackle this issue by proposing a 
method to assess the suitability of an ontology as a 
source for similarity assessments. This is done by 
analysing the taxonomic structure of the ontology 
and results in a numerical score that enables the 
selection of the ontology that seem to enable the best 
similarity assessments. The theoretical premises 
have been empirically evaluated by applying our 
method to a set of well-known ontologies. Results 
suggest that those ontologies with the highest score 
also enable the most accurate similarity assessments.  

The rest of the paper is organised as follows. 
Section 2 discusses related works on semantic 
similarity. Section 3 details the proposed 
mechanism. Section 4 presents and discusses the 
empirical results. The final section contains the 
conclusions of the work. 

2 RELATED WORK 

In the literature, ontology-based semantic similarity 
measures are usually classified in different 
paradigms according to the knowledge sources they 
exploit and the theoretical principles in which they 
rely. In this work, we focus on methods that only 
rely in the knowledge modelled in an ontology. 

Earliest approaches measure the distance (i.e., 
the opposite to similarity) of a pair of concepts as  a 
function of the length of the shortest path 
connecting those concepts by means of taxonomic 
relationships (Wu and Palmer, 1994; Li et al., 2003). 
One limitation of these approaches is that they omit 
much of the knowledge represented in the ontology, 
because only the shortest path is considered.  

To overcome this limitation, some authors have 
proposed measures in which different ontological 
features are considered (Sánchez et al., 2012a; Batet 
et al., 2011b; Pirró, 2009; Rodríguez and Egenhofer, 
2003; Petrakis et al., 2006). They usually measure 
similarity as a ratio between the number of features 
that the concepts to be compared have or do not 
have in common. Because these measures exploit 
more ontological knowledge, feature-based methods 
provide, in general, more accurate results than 
measures based on taxonomic paths (Sánchez et al., 
2012a).  

Other similarity paradigms rely, not only on the 
taxonomic knowledge provided by an ontology, but 
also on the Information Content of concepts, which 
is computed as the inverse of the probability of 
appearance of such concepts in a corpus (Jiang and 

Conrath, 1997; Resnik, 1995). The main limitation 
of these methods is that they require representative 
textual corpora in which concepts have been tagged, 
so that the probabilities required to compute their 
information content and estimate similarities 
assessed (Batet and Sánchez, 2014). 

In any case, the results provided all these 
methods depend on the coverage, completeness and 
level detail of the ontology in which they rely (Al-
Mubaid and Nguyen, 2009; Sánchez et al., 2012b). 
In recent years, researchers have tackled this 
limitation by considering multiple ontologies. 

In (Rodríguez and Egenhofer, 2003; Petrakis et 
al., 2006) two ontologies are connected by means of 
an imaginary root node that subsumes the root nodes 
of each ontology. In (Rodríguez and Egenhofer, 
2003) similarity is computed according to the 
overlapping between a set of non-taxonomic features 
(e.g. synonyms, meronyms). In (Petrakis et al., 
2006) the Jaccard index is used to calculate the 
degree of overlapping between concept glosses and 
synonym sets. Overlapping features are found by 
means of the terminological matching of concept 
labels. The simplistic solution used to join 
ontologies is a main drawback of these approaches. 
Moreover, they do not consider the case in which 
concept pairs appear in different ontologies. Finally, 
their dependency on the availability of non-
taxonomic features, which are rarely found in 
ontologies (Ding et al., 2004), limit the practical 
applicability of these methods, which are focused on 
the more general notion of semantic relatedness 
rather than strict taxonomic similarity. 

In (Saruladha et al., 2010), the similarity is 
assessed as a function of the concreteness of the 
most specific concept in the taxonomy that 
subsumes the pair of concepts to be compared. 
When each concept belongs to a different ontology, 
the common subsuming concept is obtained by 
means of a terminological matching of the labels of 
the subsumers of each concept. Similarly to the 
previous approach, in (Al-Mubaid and Nguyen, 
2009) authors retrieve concepts that act as bridges 
between ontologies. First, the user selects a primary 
ontology, which she believes it the most accurate 
one. Then, if the pair of concepts are found in the 
primary ontology or in an unique secondary 
ontology, the similarity is computed using the 
ontology to which the concepts belong; if one of the 
concepts is found in the primary ontology and the 
other one in a secondary ontology, the two 
ontologies are connected using bridge nodes and the 
resulting structure is used as if it was a unique 
ontology; finally, when concepts appear in several 
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secondary ontologies, the similarity is computed 
using the ontology with the highest alikeness to the 
primary one. Because the method relies on a path-
based measure, the authors face the problem that 
different ontologies may have different granularity 
degrees. To solve this problem, they propose to 
normalize similarity values by scaling the part of the 
path corresponding to a secondary ontology taking 
as reference the primary ontology. In all cases they 
assume that the ontology that has been –manually- 
selected as primary will lead to better similarity 
estimations than any secondary ontology. However, 
this requires the user to deeply understand the 
knowledge structure of the ontologies.  

3 ONTOLOGY SELECTION 

In this section, we propose an unsupervised method 
to quantify the suitability of an ontology to measure 
semantic similarity. First, we analyse the semantic 
and structural features of ontologies that seem to 
most influence the accuracy of semantic similarity 
assessments. Then, we propose a numerical score 
that quantify the suitability of an ontology to guide 
similarity assessments. 

3.1 Problem Analysis 

From the analysis of related works on semantic 
similarity, one can realize that all of them rely on the 
number of differences (which are inversely 
proportional to similarity) and commonalities (which 
are proportionally to similarity) that can be 
identified in the semantic structures associated to the 
concepts in their respective ontology/ies. Since we 
are focusing on semantic similarity, which is a 
function of taxonomic features, in the following we 
will study the effect that the modelling of such 
taxonomic structure in an ontology has over the 
evaluation of similarities/distances.  

In the simplest case, in which the taxonomy is 
perfectly balanced, the root node is the geometric 
centre and all concepts are direct specializations of 
the root node, the distance between all pairs of 
concepts is exactly the same. In figure 1 we show an 
example of this scenario for a set of medical 
concepts. Because all concepts are modelled in the 
same way, in this taxonomy all concepts pairs will 
appear to be equally distant/similar for any semantic 
similarity measure, a result that would be unlikely 
realistic. In fact a knowledge representation as 
simple as this is not much different to a flat list of 
concepts with any semantic structure at all.  

 

Figure 1: Sample ontology O1. 

In order to better represent the differences in 
semantics inherent to the concepts and, coherently 
with the principles of cognitive saliency (i.e. 
concepts are specialised when they must be 
differentiated from other ones), in figure 2 we have 
added a new inner taxonomic level (mental disorder) 
that separates the set paranoia, schizophrenia and 
affective psychosis from the set melanosis, albinism 
and vitiligo, which are subsumed by disorder of 
pigmentation. Even though more taxonomic levels 
have been included the taxonomy is still balanced 
and, thus, the root node is still the geometric. 
However, now the semantic distance between 
paranoia and albinism will be larger than the 
distance between paranoia and schizophrenia 
because we are able to distinguish concepts that are 
mental disorder from those that are disorder of 
pigmentation. Thanks to the better differentiation 
between concepts, distance/similarity results 
obtained from this structure will be more diverse 
than in the previous case and, assuming that the 
representation is semantically coherent, results will 
offer a better understanding concept semantics. 

 

Figure 2: Sample ontology O2. 

Finally, in figure 3 we show how these concepts are 
represented in SNOMED-CT (Spackman, 2004). 
Notice that in this case the concepts schizophrenia 
and affective psychosis has been better differentiated 
from paranoia by adding a new inner node 
(psychotic disorder). As result, the root node is not 
the geometric centre of the taxonomy anymore, 
because the branch on the left goes deeper than the 
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one on the right. This taxonomy better represents the 
fact that, for example, albinism and schizophrenia 
are more different than albinism and paranoia, a 
dimension that can be captured by similarity 
measures by evaluating the number of common and 
disjoint subsumers (Batet et al., 2011b) and that 
results in even more diverse similarity/distance 
results than in the previous cases. 

 

Figure 3: Sample ontology O3. 

3.2 A Score for Ontology Selection 

From the above discussion, we can conclude that a 
taxonomy with an accurate knowledge modelling is 
likely to better differentiate concepts from each 
other. Inversely, an accurately modelled ontology 
will unlikely have a homogenous taxonomy because, 
in such structure, concepts are distributed uniformly 
and, hence, they are hardly distinguishable. This 
assumption is coherent with the principles of 
knowledge modelling, whose main aim is to make 
concepts well-differentiated in order to minimize the 
ambiguity of the semantic inferences (Pirró, 2009). 
Likewise, human judgements on semantic similarity 
(which computerized measures try to mimic) are 
rarely homogenous and tend to be highly diverse 
because of the informal nature of semantics 
(Pedersen et al., 2007).   

Given these arguments, in the following we 
propose a score that aims to measure the degree of 
concept differentiation that the taxonomic structure 
of an ontology provides. Since this level of 
differentiation positively influences the diversity of 
the similarity assessments, which we hypothesise as 
an indication of accuracy in such assessments, our 
score can be used to compare and select the most 
suitable ontology for semantic similarity calculation. 

To measure this level of differentiation, we 
evaluate the dispersion of the taxonomic structure. 
From a semantic point of view, the centre of an 
ontology can be seen as the root of the taxonomic 
tree. As shown in the previous section, in a perfectly 

balanced ontology (figures 1 and 2), the root node 
corresponds to the geometric centre of the 
taxonomy. As stated in (Martínez et al., 2012), this 
central node is the one that minimizes the distances 
with respect to all the concepts in the ontology. In 
such balanced structure, the level of differentiation 
between concepts will tend to be low, because 
“sibling” or “cousin” concepts will be all equally 
distant/similar. On the contrary, in a taxonomy in 
which the different branches have different depths 
and branching factors, the root node will not match 
with the geometrical centre of the structure (as in 
figure 3). Here, the degree of differentiation between 
concepts will tend to be higher than in the previous 
case, thus producing more diverse similarities.  

From a mathematical perspective the dispersion 
of a sample quantifies the variability of the values of 
that sample with regard to the central value. A high 
dispersion indicates that values are very different 
from each other. By considering the set of concepts 
in an ontology as a sample of values and the root 
node as their centre, we can adapt the mathematical 
notion of dispersion to quantify to what extent the 
concepts modelled in taxonomy are dispersed or 
differentiated. Consequently, we propose a score 
that quantifies that degree of differentiation by 
measuring the dispersion of the taxonomic structure 
of the ontology. For numerical values, the dispersion 
of a sample is the normalized aggregation of their 
distances towards the central value. When dealing 
with ontologies, such distance should be a measure 
of the semantic distance of each concept towards the 
root node of the taxonomy. In particular, our score is 
based on the standard numerical deviation, which 
has the advantage that the results are expressed in 
the same units as the distance.  

Formally, we quantify to what extent the whole 
set of concepts C of an ontology Oi are 
differentiated, as the square root of the average 
squared semantic distance between each concept ci 
in C and the root node of Oi.  

 

2

( )

( , ( ))

| |
i

i i
c C

iScore O

d c Root O

C



 (1)

 

In the above expression, |C| is the number of 
concepts in the ontology Oi without considering the 
root node, which does not contributes to the 
numerator, and function d(.,.) is any semantic 
distance measure to be applied between each 
concept ci in C and the root node (Root(Oi)). Notice 
that the contribution of the most scattered concepts, 
which are those that contribute most to the 
unbalancing of the taxonomy, is greater because of 
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the squared semantic distances. Numerically, 
equation (1) is zero when all the values are identical. 
In contrast, a high Score suggests that concepts are 
far apart from the root node and form each other, 
and thus, that they are well differentiated. 

By means of the proposed Score, we can select 
the most suitable ontology Os to be used to compute 
the similarity of a set of concepts (modelled in a set 
of ontologies O) as the one with the max value. 

 

arg max ),( ( )s i iScoreO O O O    (2)
 

The proposed method can also be applied only to 
taxonomic branches of different ontologies. This is 
relevant because the different scopes and goals by 
which ontologies are designed can produce more or 
less accurate or detailed taxonomic branches, even 
in ontologies modelling the same domain. With our 
method, this partial comparison can be done by 
using the common generalization of that branch as 
the root, and by computing the distances towards all 
of its taxonomic specializations.   

3.3 Measuring Distances 

In order to apply the proposed Score, we should be 
able to estimate the semantic distance (function 
d(.,.)) between each concept ci and the root node. 
The semantic distance should meet some 
requirements in order to be suitable to compare 
ontologies. First, it should not be affected by the size 
of the ontology in order to fairly compare the degree 
of concept differentiation of ontologies with 
different sizes. On the other hand, the semantic 
distance should only rely on taxonomic knowledge 
because similarity assessment only relies on this 
feature, and also because many ontologies does not 
model other knowledge than taxonomic  
relationships (Ding et al., 2004). 

As stated in section 2, many different measures 
have been proposed (Batet and Sánchez, 2014). 
Since path-based approaches provide absolute 
distance values between concepts, semantic 
distances tend to be larger as the ontology size 
increases. Thus, they cannot be used to compare 
ontologies with different sizes. Moreover, since only 
the shortest path is considered, they omit a lot of 
knowledge explicitly modelled in the ontology 
(Batet et al., 2011b).  

Feature-based measures are able to overcome 
these limitations. They compute similarity or 
distance according to a normalized ratio of semantic 
commonalities and differences between concepts 
and, thus, they evaluate a larger number of semantic 
evidences. In this work, we instantiate d(.,.) with the 

feature-based measure defined in (Sánchez et al., 
2012a) because it solely relies on taxonomic 
features. This measure computes the distance 
d(c1,c2) between two concepts as the logarithm of the 
number of non-common subsumers of c1 and c2 
divided by their  total   number  of subsumers: 

 

1 2 1 2
1 2 2

1 2

( ) ( ) ( ) ( )
( , ) log 1

( ) ( )

T c T c T c T c
d c c

T c T c

   
    

(3)

 

where T(ci) is the set of taxonomic subsumers of 
concept ci in the ontology, including itself. 

This measure captures more knowledge than the 
methods based on shortest paths, since it implicitly 
considers all the paths connecting the two concepts, 
which are represented by all their subsumers. As a 
result, and according to a set of empirical 
experiments, it approximates human judgments of 
similarity better than other ontology-based measures 
(Sánchez et al., 2012a; Batet et al., 2011b).  

Numerically, thanks to the normalizing 
denominator, this distance results in positive 
normalized values in the [0,1] range, thus making it 
suitable to compare the degree of concept 
differentiation of ontologies with different sizes.  

3.4 Example 

Let us illustrate how the Score proposed in section 
3.2 behaves with regard to the taxonomic structure 
of an ontology.  To do so, we will use the different 
knowledge representations shown in figures 1, 2 and 
3 for the same set of concepts. By applying the 
Score to the taxonomy in figure 1 (the one in which 
concepts are the least differentiated), we obtain: 

 

2 2

2 2
1

2 2

2 2

2 2 2

( )
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(  , ) ( , ) / 6

( , ) ( , )

1 1 1
log 1 log 1 log 1

2 2 2

Score O

d paranoia dis d schizophrenia dis

d affective psychosis dis d melanosis dis

d albinism dis d vitiligo dis



  
 
    
   

                          

2

2 2 2
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/ 6 0.585
1 1 1

log 1 log 1 log 1
2 2 2

  
      

                                     

 

 

By applying the same calculation to the taxonomy 
shown in figure 2, which offers a better 
differentiation between mental and pigmentation 
disorders, the Score increases accordingly: 
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Finally, for the taxonomy shown in figure 3, which 
offers the best differentiation between concepts, we 
also obtain the highest Score. 
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Thus, according to the method presented in section 
3.2, the ontology O3 shown in figure 3 will be 
selected as the base to compute semantic similarities 
between the modelled concepts. 

4 EXPERIMENTS 

The goal of the experiments is to show that, in 
practice, the ontology (from a set of overlapping 
ones) with the highest Score is also the one that 
enables the most accurate similarity assessments. 
We focused on the biomedical domain because, as 
mentioned in the introduction, several standard 
ontologies modelling the same concepts exist. 

To measure the accuracy of similarity 
assessments, that is, up to which level the similarity 
results mimic human judgements, related works 
measure the Pearson correlation between human 
similarity ratings and computerized results for a 
given set of concept pairs. In the literature, several 
benchmarks providing human ratings for a set of 
concepts of different domains have been proposed. 
For the biomedical domain, the Pedersen et al.’s 
benchmark (Pedersen et al., 2007) has become the 
de facto standard for similarity evaluation. It 
consists of 30 pairs of medical terms, whose 
similarity has been assessed, in the range [1..4], by a 
group of experts of the Mayo Clinic. 

 

Table 1: Medical term pairs that can be found both in 
SNOMED-CT and MeSH, with averaged experts’ 
similarity scores from the Pedersen et al. benchmark 
(Pedersen et al., 2007). In boldface we represent those 
pairs that specifically correspond to diseases. 

Term 1 Term 2 Sim. 
Renal failure Kidney failure 4.0 
Heart Myocardium 3.3 
Stroke Infarct 3.0 
Abortion Miscarriage 3.0 
Delusion Schizophrenia 3.0 
Congestive heart 
failure 

Pulmonary edema 3.0 

Metastasis Adenocarcinoma 2.7 
Calcification Stenosis 2.7 
Mitral stenosis Atrial fibrillation 2.3 
Rheumatoid 
arthritis 

Lupus 2.0 

Brain tumor Intracranial 
hemorrhage 

2.0 

Carpal tunnel 
syndrome 

Osteoarthritis 2.0 

Diabetes mellitus Hypertension 2.0 
Acne Syringe 2.0 
Antibiotic Allergy 1.7 
Cortisone Total knee 

replacement 
1.7 

Pulmonary 
embolus 

Myocardial 
infarction 

1.7 

Pulmonary fibrosis Lung cancer 1.7 
Cholangiocarcinoma Colonoscopy 1.3 
Lymphoid 
hyperplasia 

Laryngeal cancer 1.3 

Multiple sclerosis Psychosis 1.0 
Appendicitis Osteoporosis 1.0 
Xerostomia Alcoholic cirrhosis 1.0 
Peptic ulcer disease Myopia 1.0 
Depression Cellulitis 1.0 
Varicose vein Entire knee meniscus 1.0 
Hyperlipidemia Metastasis 1.0 

 

As ontologies to be compared, we use SNOMED-
CT (Spackman, 2004) and MeSH (Nelson et al., 
2001), which semantically model biomedical 
concepts with a large degree of overlapping. Since 
we focus in the scenario in which concepts appear in 
several ontologies at the same time, in table 1 we 
show the pairs of terms of the Pedersen et al.’s 
benchmark that can be found both in SNOMED-CT 
and MeSH. The last column provides the averaged 
similarity ratings provided by the experts. Moreover, 
those pairs that are diseases in both ontologies are 
shown in boldface. According to this set of terms, 
we configured two scenarios: 

(a) Scenario 1: ontology selection evaluation. All 
the term pairs in table 1 are evaluated. Since 
those terms are spread through the different 
branches of SNOMED-CT and MeSH, in this 
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scenario we aim to select the ontology that is 
best suited to compute semantic similarities. 

(b) Scenario 2: branch selection evaluation. This 
scenario is designed to show how our method 
can also be applied to a particular branch of an 
ontology. In this case, only the set of term pairs 
that are diseases are considered. Likewise, only 
the taxonomic branches of SNOMED-CT and 
MeSH that model diseases have been 
evaluated. The reference root nodes are now 
the Disease (disorder) concept in SNOMED-
CT and C-Disease in MeSH. 

 

Table 2 shows the Scores resulting from the 
evaluation of each ontology/branch and also the 
accuracy (Correlation) of the similarity assessments 
obtained for the same ontology/branch in the two 
scenarios detailed above. In all cases, distances and 
similarities have been computed using equation (3).  

From table 2, we can see that our Score and the 
accuracy of the semantic similarity assessments are 
positively correlated. This supports our hypothesis 
and suggests that the most appropriate ontology to 
compute semantic similarities would be the one that 
better differentiates concepts, a dimension that our 
Score quantifies. In fact, this better differentiation 
provides semantic similarity measures with more 
degrees of freedom to evaluate concepts and 
produces more diverse similarity results that, as 
shown in the experiments, better correlate with 
human ratings of similarity.  

Table 2: Pearson correlation coefficients for each scenario 
and ontology/branch between the experts’ similarity 
ratings in (Pedersen et al., 2007) and the measure from Eq. 
(3). The last column shows the Score (Eq. (1)) for each 
ontology/branch. 

Ontology/branch Correlation 
Scenario 1 

Correlation 
Scenario 2 

Score 

SNOMED-CT 0.69  0.938 
MeSH 0.65  0.903 

SNOMED-CT 
disease 

 0.83 0.951 

MeSH disease  0.77 0.886 
 

Looking at the numeric scales, we can also see that, 
thanks to the normalized values provided by 
equation (3), Score values are not dependant on the 
ontology size. Specifically, even though SNOMED-
CT models 300,000 concepts and MeSH just around 
22,000, Score values do not differ proportionally to 
these sizes (0.938 vs. 0.903). These Score values are 
however quite proportional to the differences 
observed in semantic similarity accuracies for both 
ontologies (0.69 vs. 0.66). The same behaviour is 
also observed for taxonomic branches.  

5 CONCLUSIONS 

In this paper we presented an unsupervised method 
to assess the suitability of ontologies as sources to 
measure semantic similarity in the scenario in which 
the concepts to be compared appear in several 
ontologies. Given that similarity measures benefit 
from knowledge structures that better 
(taxonomically) differentiate concepts, we propose a 
quantitative Score that measures the degree of 
taxonomic differentiation of concepts in an 
ontology. To do so, the Score adapts to the semantic 
domain the mathematical notion of numerical 
dispersion of a sample. By means of this Score, we 
can select the ontology that likely provides the most 
accurate similarities from a set of overlapping ones. 

The results of the empirical experiments carried 
out using biomedical ontologies and a widely-used 
semantic similarity benchmark, supported our 
hypotheses: in all cases, those ontologies (or 
taxonomic branches) with the highest Score also 
enabled the most accurate similarity assessments. 

As future work, we plan to evaluate the proposed 
method in other domains in which multiple 
overlapping ontologies are available. Moreover, we 
will also evaluate the behaviour of other distance 
functions in the Score calculus, such as those based 
on word vectors (Mikolov et al., 2013). Finally, we 
plan to study its suitability as a predictor of results 
accuracy in specific tasks that require from semantic 
similarity assessments and in which different 
knowledge-bases are available, such as  semantic 
clustering (Batet et al., 2011a) or textual data 
anonymisation (Batet et al., 2013). 
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