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Abstract: Opinion propagation analysis in online forum threads is a relatively new research field emerging in the 
context of the increasing popularity of forums. Many changes occur over time in online forum threads since 
new users intervene in the discussion and express their opinions. In this paper, we propose a novel task in 
the analysis of opinion propagation in online forum threads, i.e. the modeling of post-level sentiment 
evolution in online forum threads. This task consists in the analysis of post-level sentiment evolution in an 
online forum thread in order to obtain a simplified model of this evolution. Based on opinion mining, graph 
theory, and post-level sentiment analysis, our method comprises five steps: removal of posts containing only 
facts, post-level sentiment identification, removal of posts with neutral sentiment, aggregation of  parent-
child vertices, and aggregation of sibling vertices. We evaluate the proposed method on real-world forum 
threads, and the results of our experiments are presented in the visualization interfaces. 

1 INTRODUCTION 

Contemporary societies are experiencing the 
prominent phenomenon of online interaction through 
social media, which has huge implications for both 
individuals and companies. The propagation of 
opinions in social media is a dynamic phenomenon 
involving a considerable number of people who 
establish or end different types of relationships 
between them and also produce vast quantities of 
data by giving or changing their opinions. The 
propagation of opinions has significantly different 
characteristics compared to all previous periods: it is 
rapid, less costly, and therefore more widespread 
than ever. 

Several studies have addressed opinion 
propagation in social media. Ku et al. (Ku et al., 
2006) analyzed the opinion tracking in a news 
corpus for four candidates during Taiwan’s 2000 
presidential election. Recently, a method for 
studying the problem of opinion propagation in 
online forum threads has been proposed at user  
level (Cercel and Trausan-Matu, 2014c). For more 
details about the analysis of opinion propagation in 
online social networks, see (Cercel and Trausan-
Matu, 2014b). 

Being a type of social media, a forum thread can 
be modeled as a post-reply graph, where vertices are 

posts, and edges are replies between posts. The  
post-reply graph associated with an online forum 
thread is increasing by adding both new vertices and 
edges as new posts appear over time. In this paper 
we address the modeling of post-level sentiment 
evolution in online forum threads as a new task of 
opinion propagation analysis in online forum 
threads.  

2 THE ARCHITECTURE OF THE 
PROPOSED METHOD  

We divided our method for the post-level sentiment 
evolution task in an online forum thread into the 
following steps: 
 Preprocessing of each post in the initial    post-

reply graph at time step tτ, τ  Գ*. The initial 
post-reply graph at time step tτ, τ  Գ*, is 
denoted by G0

DT(tτ)(V
0
DT(tτ), E

0
DT(tτ)). 

 Filtration of the post-reply graph 
G0

DT(tτ)(V
0
DT(tτ), E

0
DT(tτ)) in order to remove the 

posts that contain only facts and do not contain 
opinions about the subject of the forum thread. 
The post-reply graph obtained at the end of this 
step is denoted by G1

DT(tτ)(V
1

DT(tτ), E
1
DT(tτ)). 

 Identification of the sentiment of each post from 
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the previously filtered graph G1
DT(tτ)(V

1
DT(tτ), 

E1
DT(tτ)). 

 Filtration of the post-reply graph 
G1

DT(tτ)(V
1

DT(tτ), E
1

DT(tτ)) in order to remove the 
posts with neutral sentiment. The        post-reply 
graph obtained at the end of this step is denoted 
by G2

DT(tτ)(V
2

DT(tτ), E
2

DT(tτ)). 
 Aggregation of the parent-child vertices from the 

previously filtered graph G2
DT(tτ)(V

2
DT(tτ), 

E2
DT(tτ)). The multipost-reply graph obtained at 

the end of this step is denoted by 
G3

DT(tτ)(V
3

DT(tτ), E
3

DT(tτ)). 
 Aggregation of the sibling vertices from the 

previously aggregated graph G3
DT(tτ)(V

3
DT(tτ), 

E3
DT(tτ)). The aggregated multipost-reply graph 

obtained at the end of this step is denoted by 
G4

DT(tτ)(V
4

DT(tτ), E
4

DT(tτ)). 
In the preprocessing step, we apply specific 

techniques of natural language processing such as 
tokenization, part-of-speech tagging, syntactic 
parsing, and coreference resolution (Manning and 
Schütze, 1999) to each post in the post-reply graph 
G0

DT(tτ) (V0
DT(tτ), E0

DT(tτ)). In the next subsections, 
we describe the remaining step of the method 
proposed by us for the post-level sentiment 
evolution task.  

2.1 Removing Posts That Contain Only 
Facts  

In this step, we remove the vertices that do not 
contain opinions about the subject of the forum 
thread. The other vertices of the post-reply graph 
G0

DT(tτ)(V
0
DT(tτ), E0

DT(tτ)) will not be changed. The 
outline of the algorithm for this step is given in 
Algorithm 1. We perform the initialization of the 
post-reply graph G1

DT(tτ)(V
1

DT(tτ), E1
DT(tτ)) by using 

the post-reply graph G0
DT(tτ)(V

0
DT(tτ), E

0
DT(tτ)) (A1 : 

1-2). Then, we apply the Breadth First Search 
algorithm (Cormen et al., 2009) from the root vertex 
v1 and save its output in a list (A1 : 3).  

For each current vertex in the list, different from 
the root vertex v1, we follow the next steps. First, we 
obtain pairs in the form of (noun term, opinion 
word) from the current vertex, where the noun term 
is semantically related to a word that appears in the 
subject of the forum thread (A1 : 8) For more details 
about this substep, see (Cercel and Trausan-Matu, 
2014c). If there are no pairs (noun term, opinion 
word) in the current vertex, we eliminate this vertex 
(A1 : 9-17). To this end, we obtain the parent vertex 
of the current vertex (A1 : 10). As regards each child 
vertex of the current vertex, we create an edge 
between each child vertex and the current vertex’s 

parent vertex (A1 : 14). Finally, we eliminate the 
current vertex from the set V1

DT(tτ) (A1 : 15). 

Algorithm 1 (A1): Removing Posts that Contain only Facts 
Input: G0

DT(tτ)(V
0

DT(tτ), E
0

DT(tτ))    
Output: G1

DT(tτ)(V
1

DT(tτ), E
1

DT(tτ)) 
 1: V1

DT(tτ)  ←  V0
DT(tτ) 

 2: E1
DT(tτ)  ←  E0

DT(tτ) 
 3: M  ←  BreadthFirstSearch(v1) 
 4: for each node crtNode in M do 
 5:  if crtNode  =  v1 then 
 6:   continue 
 7:  endif 
   8:  Ω ← FilteringDependencyRelationsfromPost(crtNode) 
      9:  if  Ω  =  ∅  then 
    10:   parentNode  ←  GetParentNode(crtNode) 
    11:     N  ←  GetChildrenNodes(crtNode) 
    12:   for each node childNode in N do 
    13:    E1

DT(tτ)  ←  E1
DT(tτ)  \  (childNode, crtNode)    

    14:    E1
DT(tτ)  ←  E1

DT(tτ) ∪ (childNode, parentNode)   
    15:    V1

DT(tτ)  ←  V1
DT(tτ)  \  {crtNode}   

    16:   end for 
    17:  endif 
    18: endfor 

2.2 Post-level Sentiment Identification 

We determine the sentiment of a post by taking into 
account the sentiment strength of the opinion words 
from this post. Let p PDT(tτ) be a post in the forum 
thread. The sentiment score for the post p is given by 
the following formula: 

4

1

4 4
1 1

( )
( )

| | | | | |

ii ii w S w SJ R

i i
J R Vi i

score w
sentimentScore p

S S S


    

 

 
 



 

4

4 4
1 1

( )

| | | | | |

w SV

i i
J R Vi i

score w

S S S



  


 

 

(1)

where: score(w) is the sentiment score for the 
opinion word w; S1

J  is the set of superlative 
adjectives; S2

J is the set of comparative adjectives of 
superiority; S3

J is the set of comparative adjectives of 
inferiority; S4

J is the set of adjectives of other 
degree; S1

R  is the set of superlative adverbs; S2
R is 

the set of comparative adverbs of superiority; S3
R is 

the set of comparative adverbs of inferiority; S4
R is 

the set of adverbs of other degree; SV is the set of 
verbs; |S| denotes the power set of S. 

To identify the sentiment score of an opinion 
word, we used SentiWordNet (Baccianella and 
Sebastiani, 2010). The corresponding algorithm is 
described in (Cercel and Trausan-Matu, 2014a). The 
variables ߣଵ,	ߣଶ,	ߣଷ, and ߣସ take the values 0.9, 0.6,  
-0.6, and 0.3, respectively. The post p  PDT(tτ) is 
considered to express a positive sentiment if 
sentimentScore(p)  (0, 1], a negative sentiment if 
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sentimentScore(p)  [-1, 0), or a neutral sentiment if 
sentimentScore(p) = 0. 

2.3 Removing Posts with Neutral 
Sentiment  

In this step, the removed vertices do not contain 
opinions with positive or negative sentiments about 
the subject of the forum thread, but only opinions 
with neutral sentiment. The outline of this algorithm 
is given in Algorithm 2. We apply the Breadth First 
Search algorithm from the root vertex v1 and save its 
output in a list (A2 : 3). For each current vertex in 
the list, different from the root vertex v1, we follow 
the next steps. First, we calculate the sentiment score 
of the current vertex by using Formula 1 (A2 : 8). If 
this sentiment score is non-zero, we obtain the 
parent vertex of the current vertex (A2 : 10) and 
create an edge between the current vertex’s each 
child vertex and the current vertex’s parent vertex 
(A2 : 14). Finally, we eliminate the current vertex 
from the set V2

DT(tτ) (A2 : 15). 

Algorithm 2 (A2): Removing Posts with Neutral 
Sentiment 
Input: G1

DT(tτ)(V
1

DT(tτ), E
1

DT(tτ))   
Output: G2

DT(tτ)(V
2

DT(tτ), E
2

DT(tτ)) 
     1: V2

DT(tτ)		← 	V1
DT(tτ)	

     2: E2
DT(tτ)  ← 	E1

DT(tτ)	
     3: M  ←  BreadthFirstSearch(v1) 
     4: for each node crtNode in M do 
     5:        if crtNode  =  v1 then 
     6:             continue 
     7:        endif 
     8:        crtNodeScore  ←  sentimentScore(crtNode) 
     9:        if crtNodeScore  =  0 then  
   10:             parentNode  ←  GetParentNode(crtNode) 
   11:             N  ←  GetChildrenNodes(crtNode) 
   12:             for each node childNode in N do 
   13:                   E1

DT(tτ)  ←  E2
DT(tτ)  \  (childNode, crtNode) 

   14:                   E2
DT(tτ)  ←  E2

DT(tτ) ∪ (childNode, parentNode)   
   15:                   V2

DT(tτ)  ←  V2
DT(tτ)  \  {crtNode}   

   16:             end for 
   17:        endif 
   18: endfor 

2.4 Aggregation of Parent-Child 
Vertices  

The aggregation of parent-child vertices occurs 
according to the following definition: 

Definition 1 (Aggregation of Parent-Child 
Vertices). Given at time step tτ, τ  Գ*, the forum 
thread (TDT, SDT, UDT(tτ), PDT(tτ), RDT(tτ)) from an 
online forum and its corresponding post-reply graph 
G2

DT(tτ)(V
2
DT(tτ), E2

DT(tτ)), then two vertices vi, vk  
V2

DT(tτ), vi = (vi
p,  vi

u,  vi
tm,  vi

op), vk = (vk
p,  vk

u,  vk
tm,  

vk
op), (vi, vk)  E2

DT(tτ) will be merged if these two 

vertices vi, vk  V2
DT(tτ) have the same sentiment 

(positive or negative). The result of the aggregation 
of the vertices vi, vk  V2

DT(tτ) is a single vertex        
vr = (vr

p,  vr
u,  vr

tm,  vr
op)  V2

DT(tτ) characterized   
by: vr

p = vi
p ∪ vk

p, vr
u = vi

u ∪ vk
u, vr

tm = vi
tm ∪ vk

tm, 
and vr

op  = vi
op ∪ vk

op. 
Let us consider an example for illustrating this 

definition. In Figure 1(a), the vertex vl is a reply to 
the vertex vk, the vertex vk is a reply to the vertex vj, 
and the vertex vj is a reply to the vertex vi. The 
vertices vi, vj and vk have the same positive sentiment 
and will be aggregated according to Definition 1. 
The result is the vertex vr with positive sentiment. 
The vertex vl  is a reply to the vertex vr.  In contrast, 
in Figure 1(b), on the path from the vertex vl to     
the vertex vi there is an alternation between vertices 
with positive and negative sentiments. Therefore, 
Definition 1 cannot be applied to this second 
example.  

 

Figure 1: (a) Example of aggregation of parent-child 
vertices; (b) Example of a non-possible aggregation of 
parent-child vertices. 

The outline of the algorithm that transforms the 
post-reply graph G2

DT(tτ)(V
2

DT(tτ), E2
DT(tτ)) into the 

post-reply graph G3
DT(tτ)(V

3
DT(tτ), E3

DT(tτ)) is given 
in Algorithm 3. We apply the Breadth First Search 
algorithm from the root vertex v1 and save its output 
in a list (A3 : 3). For each current vertex in the list, 
we obtain its parent vertex (A3 : 5). 

If the current vertex in the list is different from 
the root vertex v1 or the current vertex’s parent 
vertex is different from the root vertex v1, we follow 
the next steps (A3 : 6-8). First, we calculate the 
sentiment score for the current vertex and its parent 
vertex by using Formula 1 (A3 : 9-10). If the current 
vertex and its parent vertex have the same sentiment 
(negative or positive), we obtain the child vertices of 
the current vertex (A3 : 12). Then, we create an edge 
between the current vertex’s each child and the 
current vertex’s parent vertex (A3 : 15). Moreover, 
we update the components (the contents of the 
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post(s), the time step(s), the user(s), and the opinions 
expressed in the post(s)) of the current vertex’s 
parent vertex (A3 : 16). Finally, we eliminate the 
current vertex from the set V3

DT(tτ) (A3 : 17). 

Algorithm 3 (A3): Aggregation of Parent-Child Vertices 
Input: G2

DT(tτ)(V
2

DT(tτ), E
2

DT(tτ))   
Output:  G3

DT(tτ)(V
3

DT(tτ), E
3

DT(tτ))   
  1:   V3

DT(tτ)		← 	V2
DT(tτ)	

  2:   E3
DT(tτ)		← 	E2

DT(tτ)	
  3:   M  ←  BreadthFirstSearch(v1)  
  4:   for each node crtNode in M do 
  5:        parentNode  ←  GetParentNode(crtNode) 
  6:        if crtNode  =  v1 or parentNode  =  v1 then 
  7:             continue 
  8:        end if 
  9:        crtNodeScore  ←  sentimentScore (crtNode) 
10:        parentNodeScore  ←  sentimentScore (parentNode) 
11:        if crtNodeScore * parentNodeScore  >  0 then 
12:             N  ←  GetChildrenNodes(crtNode) 
13:             for each node childNode in N do 
14:     E3

DT(tτ)  ←  E3
DT(tτ)  \  (childNode, crtNode) 

15:     E3
DT(tτ)  ←  E3

DT(tτ)  ∪  (childNode, parentNode)   
16:     InformationUpdate(parentNode, crtNode)    
17:     V3

DT(tτ)  ←  V3
DT(tτ)  \  {crtNode}   

18:             end for 
19:        end if     
20:   end for 

2.5 Aggregation of Sibling Vertices 

The aggregation of sibling vertices occurs according 
to the following definition: 

Definition 2 (Aggregation of Sibling Vertices). 
Given at time step tτ, τ  Գ*, the forum thread    
(TDT, SDT, UDT(tτ), PDT(tτ), RDT(tτ)) from an online 
forum and its corresponding graph G3

DT(tτ)(V
3
DT(tτ), 

E3
DT(tτ)), then two vertices vi , vk  V3

DT(tτ), vi = (vi
p,  

vi
u,  vi

tm,  vi
op), vk = (vk

p, vk
u, vk

tm, vk
op), will be merged 

if there is vj  V3
DT(tτ) so that (vi, vj) E3

DT(tτ), (vk, vj) 
 E3

DT(tτ), and the vertices vi, vk  V3
DT(tτ) have     

the same sentiment (positive or negative). The 
aggregation result of the sibling vertices vi , vk  
V3

DT(tτ) is a single vertex vr = (vr
p, vr

u,  vr
tm,  vr

op)  
V4

DT(tτ) characterized by vr
p = vi

p ∪ vk
p,  vr

u = vi
u ∪ 

vk
u,  vr

tm = vi
tm ∪ vk

tm,  and  vr
op  = vi

op ∪ vk
op. 

Let us consider an example for illustrating this 
definition. In Figure 2, the vertex vl is a reply to the 
vertex vj, and the vertex vj is a reply to the vertex vi. 
Both vertices vi and vk have the same sentiment, and 
their parent vertex vs is common. Applying the 
definition of the aggregation of sibling vertices for 
the two vertices vi and vk, we obtain the vertex vr of 
positive sentiment, where the vertex vr is a reply to 
the vertex vs.  

 

Figure 2: Example of aggregation of sibling vertices. 

The outline of the algorithm that transforms the 
graph G3

DT(tτ)(V
3
DT(tτ), E3

DT(tτ)) into the graph 
G4

DT(tτ)(V
4
DT(tτ), E

4
DT(tτ)) is given in Algorithm 4. 

Algorithm 4 (A4): Aggregation of Sibling Vertices 
Input: G3

DT(tτ)(V
3

DT(tτ), E
3

DT(tτ)) 
Output: G4

DT(tτ)(V
4

DT(tτ), E
4

DT(tτ))  
  1:  V4

DT(tτ)  ←  V3
DT(tτ) 

  2:  E4
DT(tτ)  ←  E3

DT(tτ) 
  3:  M  ←  {v1} 
  4:  while M  !=  ∅ 
  5:     positiveNodesList  ←  ∅ 
  6:     negativeNodesList  ←  ∅ 
  7:     crtNode  ←  RemoveNode(M) 
  8:     N		←  GetChildrenNodes(crtNode) 
  9:     for each node childNode in N do 
10:         childNodeScore  ←  sentimentScore(childNode) 
11:          if childNodeScore  >  0 then   
12:           if positiveNodesList  =  ∅ then   
13:         positiveNode  ←  childNode  
14:        else 
15:         positiveNode  ←  positiveNode  ∪ {childNode} 
16:         V4

DT(tτ)  ←  V4
DT(tτ)  \  {crtNode}   

17:        end if 
18:      end if 
19:         if childNodeScore  <  0 then 
20:       if negativeNode  =  ∅ then   
21:         negativeNode  ←  childNode  
22:    else 
23:     negativeNode  ←  negativeNode ∪ {childNode} 
24:     V4

DT(tτ)  ←  V4
DT(tτ)  \  {crtNode}   

25:    end if 
26:      end if 
27:     end for 
28:     if positiveNodesList  !=  ∅ then 
29:      for each node childNode in positiveNodesList do 
30:    AddNode(M, childNode) 
31:      end for 
32:     end if 
33:     if negativeNodesList  !=  ∅ then 
34:      for each node childNode in negativeNodesList  do 
35:    AddNode(M, childNode) 
36:      end for 
37:     end if 
38:  end while 

We can define the aggregated multipost-reply graph 
G4

DT(tτ)(V
4
DT(tτ), E

4
DT(tτ)), as follows:  

Definition 3 (Aggregated Multipost-Reply 
Graph). Given at time step tτ, τ  Գ*, a forum thread  

Modeling�Post-level�Sentiment�Evolution�in�Online�Forum�Threads

591



 
(a) Graph G0

DT(tτ)(V
0
DT(tτ), E

0
DT(tτ)) (b) Graph G1

DT(tτ)(V
1
DT(tτ), E

1
DT(tτ)) 

 
(c) Graph G1

DT(tτ)(V
1
DT(tτ), E1

DT(tτ)) 
with post-level sentiment analysis 

 
(d) Graph G2

DT(tτ)(V
2
DT(tτ), E

2
DT(tτ)) (e) Graph G3

DT(tτ)(V
3
DT(tτ), E

3
DT(tτ)) 

 
(f) Graph G4

DT(tτ)(V
4
DT(tτ), E

4
DT(tτ)) 

Figure 3: Modeling of post-level sentiment evolution in the forum thread at time step tτ = t43. 

(TDT, SDT, UDT(tτ), PDT(tτ), RDT(tτ)) from an online 
forum and its corresponding graph G3

DT(tτ)(V
3
DT(tτ), 

E3
DT(tτ)) obtained according to Algorithm 3, then the 

forum thread is associated with an oriented graph 
G4

DT(tτ)(V
4
DT(tτ), E4

DT(tτ)) by applying Algorithm 4, 
where: 
 V4

DT(tτ) = {v’’j | v’’j = (⋃ݒ௟
௣, ⋃ݒ௟

௨, ⋃ݒ୪
୲୫, 

௟ݒ⋃
௢௣), ݒ௟

௣  PDT(tτ), ݒ௟
௨  UDT(tτ), ݒ௟

௧௠
  Գ,  

௟ݒ
௢௣  OSd

DT} is the set of vertices in the graph 

G4
DT(tτ) so that, if v’’i, v’’j, v’’k  V4

DT(tτ),    
(v’’i, v’’k)  E4

DT(tτ), and (v’’j, v’’k)  E4
DT(tτ), 

the vertices v’’i and v’’j have opposite polarities 
( v’’i has a positive sentiment, and v’’j has a 
negative sentiment, and vice versa). A vertex v’’j 
in the set V4

DT(tτ) is a set of posts ⋃ݒ௟
௣ written 

by a set of users ⋃ݒ௟
௨ at time steps ⋃ݒ௟

௧௠. 
 E4

DT(tτ) = {e’’1, e’’2, ..., e’’s} is the set of edges 
in the graph G4

DT(tτ) so that, if e’ = (v’’i, v’’j)  
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E4
DT(tτ), the set of posts corresponding to the 

vertex v’’i is a reply to the set of posts 
corresponding to the vertex v’’j, and the vertices 
v’’i and v’’j have opposite polarities. 

3 EXPERIMENTAL RESULTS  

In this section, we present an example of applying 
the proposed method on a real-world forum thread. 
More concretely, we perform experiments on a 
forum thread selected from the Internet Argument 
Corpus (Walker et al., 2012). This forum thread has 
the subject “What is God?” and comprises 43 posts 
(i.e. tτ = t43). The corresponding post-reply graph 
G0

DT(t43) at time step t43 is represented in Figure 3(a).  
In Figure 3, the vertices in the graphs are 

represented by certain colors: the root vertex by the 
purple color, the vertices with positive sentiment by 
the green color, the vertices with negative sentiment 
by the red color, and the vertices with neutral 
sentiment by the gray color. Figure 3(b) shows the 
experimental results for the post-reply graph 
G0

DT(t43)(V
0
DT(t43), E0

DT(t43)) after removing the 
posts that contain only facts. All the vertices in the 
resulted graph G1

DT(t43)(V
1
DT(t43), E1

DT(t43)) contain 
opinions about the subject of the forum thread.  

In Figure 3(c), we represent the sentiment of 
each post in the post-reply graph G1

DT(t43)(V
1
DT(t43), 

E1
DT(t43)) identified in the previous step.  Figure 3(d) 

shows the experimental results at the end of the step 
of filtrating the post-reply graph G1

DT(t43)(V
1
DT(t43), 

E1
DT(t43)) to remove the posts with neutral sentiment.  

Figure 3(e) shows the experimental results after 
applying the step of aggregating the parent-child 
vertices in the post-reply graph G2

DT(t43)(V
2
DT(t43), 

E2
DT(t43)). Figure 3(f) shows the experimental results 

after applying the step of aggregating the sibling 
vertices in the multipost-reply graph G3

DT(t43)  
(V3

DT(t43), E
3
DT(t43)) obtained in the previous step. 

4 CONCLUSIONS  

In this paper, we address the task of modeling post-
level sentiment evolution in online forum threads. 
Our method has five steps. The successive 
application of these steps to the initial post-reply 
graph G0

DT(tτ) (V0
DT(tτ), E0

DT(tτ)) will generate a 
series of intermediate graphs. The aggregated 
multipost-reply graph G4

DT(tτ)(V
4
DT(tτ), E4

DT(tτ)) is 
used to visualize in a simplified way the post-level 
evolution of sentiments in the initial post-reply 

graph G0
DT(tτ) (V

0
DT(tτ), E

0
DT(tτ)) at time step tτ, τ  

Գ*. In the future, our research on opinion 
propagation will continue in other types of social 
media than online forum threads. 
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