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Abstract: Stochastic program optimizations are computationally very expensive, especially when the number of scenar-
ios are large. Complexity of the focal application, and the slow convergence rate add to its computational
complexity. We propose a split-and-merge (SAM) method for accelerating the convergence of stochastic lin-
ear programs. SAM splits the original problem into subproblems, and utilizes the dual constraints from the
subproblems to accelerate the convergence of the original problem. Our initial results are very encouraging,
giving up to 58% reduction in the optimization time. In this paper we discuss the initial results, the ongoing
and the future work.

1 INTRODUCTION

Stochastic programs are used for decision making un-
der uncertainty. For example, product production de-
cisions under resource constraints are to be taken at
a time when future demand for the products is not
known with certainty. Stochastic programs assume
that a probabilistic distribution of these uncertain fu-
ture outcomes is known. An instantiation of the un-
certain parameters is called as a scenario. Equation 1
gives a standard representation of a stochastic pro-
gram.

min cx+å
s

ps(qsys)

s:t: Ax� b
8s; Wsys +Tsx� hs (1)

where, x corresponds to the strategic decisions corre-
sponding to the known parameters that are to be taken
now, and ys corresponds to the operational decisions
that will be taken when the scenario s is realized, and
ps is the probability that scenario s will occur. The
objective function is sum of the costs of strategic de-
cisions and the weighted average of the cost of oper-
ational decisions for all scenarios.

When the unknown parameters become known
in multiple stages over a period of time, the corre-
sponding optimization problem is called a multistage
stochastic program. In a two-stage stochastic pro-

gram, all the unknown parameters become known at
the same time. We propose our work on two-stage
stochastic programs but the strategy is easily general-
izable to multi-stage stochastic programs. Moreover,
multistage stochastic programs can be solved as a se-
quence of two-stage stochastic programs.

Equation 2 and 3 shows the first and second stage
programs of the two-stage stochastic program, respec-
tively.
Stage 1 Program:

min cx+å
s

psQs(x;ys)

s:t: Ax� b (2)

Stage 2 Program:

min Qs(x;ys)

Wsys � hs�Tsx (3)

In this work, we focus on the stochastic linear pro-
grams, that is, problems that have linear variables and
constraints both in Stage 1 and Stage 2.

The usual method of solving stochastic linear pro-
gram uses Bender’s decomposition (Benders, 1962).
In this method, a candidate Stage 1 solution is ob-
tained by optimizing the Stage 1 program. The candi-
date Stage 1 solution is evaluated against all the sce-
narios in Stage 2. Stage 2 optimization gives the sce-
nario costs for the given Stage 1 solution, and opti-
mality/feasibility cuts that are fed back to Stage 1.
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Stage 1 is re-optimized with the addition of new set
of cuts to obtain another candidate solution. The it-
erative Stage 1-Stage 2 optimization continues until
the optimal solution is found which is determined by
a convergence criteria. A Stage 1 optimization fol-
lowed by a Stage 2 optimization is called an iteration.

There are two variants of the Bender’s approach.
In one, a single cut using a weighted combination of
Stage 2 dual objective function is added to the Stage 1
in each iteration. This method is called the L-shaped
method (Van Slyke and Wets, 1969). In the other,
in an iteration a cut constraint is added to Stage 1
for each scenario. This multicut method (Birge and
Louveaux, 1988) has the advantage that the set of
cuts in each iteration dominates a single L-shaped cut.
However, the number of cuts can become very large
quickly, particularly for problems with large number
of scenarios.

In most real world applications, the number of un-
certain parameters are large, and therefore the num-
ber of scenarios are also very large. In addition to the
complexity of the focal application, factors such as
the number of Stage 2 evaluations, number of rounds
it takes to converge to optimality (within the user-
specified convergence criteria), and the size of the
Stage 1 linear program which increases with the in-
crease in number of scenarios, add to the computa-
tional complexity of the stochastic programs.

Our research focuses on multicut Bender’s
method. Equation 4 shows the Stage 1 program af-
ter r rounds.

min cx+å
s

psqs

s:t: Ax� B
8s and l 2 [1;r]; Eslx+qs � esl (4)

where, Esl +qs � esl are the cut constraints obtained
from Stage 2 optimization and qs is the cost of sce-
nario s.

Because of the large number of cuts in the mul-
ticut method, it is imperative that the cuts gener-
ated in each round are strong cuts in the sense that
they allow the Bender’s program to converge quickly.
This paper considers a scenario split-and-merge ap-
proach to accelerate the convergence of multicut Ben-
der’s method. In Section 2, we do a literature review
on stochastic optimization methods and their conver-
gence properties. In Section 3, we propose a split-
and-merge method for accelerating the convergence
of multicut L-shaped method. We corroborate our
ideas with some initial results in Section 4. Finally,
we conclude the paper with the ongoing work and fu-
ture work in Section 5.

2 RELATED WORK

Magnanti and Wong in their seminal paper (Magnanti
and Wong, 1981), proposed a method for accelerating
Bender’s decomposition by selecting good cuts to add
to the master problem. A cut q � p�1h+p�1T x domi-
nates or is stronger than the cut, q � p�2h+ p�2T x, if
p�1h+ p�1T x � p�2h+ p�2T x for all x 2 X with a strict
inequality for at least one x 2 X , where p�1 and p�2
are any two dual optimal solutions of the degenerate
Stage 2 problem. They define a cut as pareto optimal
if it has no dominating cut. The corresponding Stage
2 dual optimal solution is called the pareto optimal
solution. Given the set of Stage 2 dual optimal solu-
tion set S(x�), the pareto optimal solution (pp) solves
the problem:

min
p2S(x�)

ph+pT xc

where, xc is a core point of X i.e.
xc 2 relative interior of X and S(x�) =
fpjp maximizes Q(x�)g. The downside of this
approach is that it requires solving additional op-
timization problem to identify pareto optimal cuts
in every iteration which can trade-off the benefit of
reduction in total number of iterations.

Linderoth et al (Linderoth and Wright, 2003) de-
veloped asynchronous algorithms for stochastic opti-
mization on computational grids. They use a multicut
method and add a cut of a particular scenario to the
master program only if it changes the objective value
of the proposed model function corresponding to that
scenario. This requires solving several additional op-
timization problems at each iteration to determine the
usability of each cut, which can be prohibitive.

Initial iterations in the multicut method are often
inefficient because the solution tends to oscillate be-
tween different feasible regions of the solution space.
Ruszczyński (Ruszczyński, 1986) proposed a regu-
larized decomposition method that adds a quadratic
penalty term to the objective function to minimize
the movement of the candidate solution. Linderoth
and Wright (Linderoth and Wright, 2003) use a lin-
earized approach to this idea by binding the solution
in a box called the trust region. Trust region method
is used to decide the major iterates that significantly
change the value of the objective function in each it-
eration. This requires doing several minor iterations
at each major iteration to come-up with a good can-
didate solution xk. Trust-region method at minor it-
erations limits the step-size by adding constraints of
the form jjx�xkjj¥ � D. Heuristics are used to decide
and update D. The cuts generated during the minor
iterations can be discarded without affecting the con-
vergence of the problem.
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The Progressive Hedging algorithm proposed by
Rockafellar and Wets (Rockafellar and Wets, 1991)
solves each scenario independently by introducing la-
grangean multipliers for the Stage 1 variables in the
objective function of the individual problems. This
approach requires search for the optimal lagrangean
multipliers which can be computationally prohibitive.

Langer et al (Langer et al., 2012) propose cluster-
ing schemes for solving similar scenarios in succes-
sion that significantly reduces the Stage 2 scenario op-
timization times by use of advanced/warm start. How-
ever, this does not address the slow convergence rate
of the problem.

3 PROPOSED APPROACH

In each iteration of the multicut method, as many cut
constraints are added to the Stage 1 program as there
are scenarios. In the initial iterations of the multicut
Bender’s method, all the scenario cut constraints are
not active in the Stage 1 linear program optimization.
This is because few cuts are needed to perturb the pre-
vious Stage 1 solution and provide a new candidate
solution. Therefore, the cuts from the Stage 2 evalua-
tion of most of the scenarios remain inactive in Stage
1 during the initial iterations of the Bender’s method.
For such scenarios, similar cuts will be generated in
successive iterations, and hence a lot of computation
is wasted.

We propose a split-and-merge (SAM) algorithm
(Algorithm 1) that divides the scenarios into N clus-
ters (S1;S2; ::::;Sn).

In SAM, n stochastic programs (P1;P2; :::;Pn) are
created and each of these is assigned one cluster of
scenarios (lines 3-4). Probabilities of the scenarios in
each of these subproblems are scaled up so that they
add up to 1 (lines 5-6). We then apply the Bender’s
multicut method to these n stochastic programs inde-
pendently of each other (lines 8-16). For multicore
machines, these problems can be solved in parallel on
multiple cores by adding a simple OpenMP (Dagum
and Menon, 1998) parallel construct to parallelize
the for loop that iterates over each of these subprob-
lems (line 8). Bender’s decomposition is applied to
these subproblems for a fixed number of rounds (r)
or till the subproblem has converged to optimality,
whichever is the earliest (line 12). Once this crite-
ria has been met for all the subproblems, the cut con-
straints from these problems are collected (lines 21-
22). The cuts from subproblems are also valid for the
original problem with all the scenarios. These cuts are
used as the initial set of cut constraints for applying
the multicut Bender’s method to the original stochas-

Algorithm 1: Split-and-Merge (SAM).

abovecaptionskipabovecaptionskipxleftmargin
1 Input: S (set of scenarios), Original Stochastic

Program (P)
2 Divide S into n clusters, S1;S2; ::::;Sn
3 Generate n stochastic programs, P1;P2; ::::;Pn, with
4 scenarios from S1;S2; ::::;Sn, respectively
5 Scale scenario probabilities in each of these

subproblems
6 such that they sum up to 1
7
8 #pragma omp parallel for
9 for i in range(1,n):

10 scostsi = [] #scenario costs
11 cutsi = [] #scenarios cut constraints
12 while ri < r or hasConverged(i):
13 xi = solveStage1(Pi, scostsi, cutsi)
14 scostsi;cutsi = solveStage2(xi)
15 ri=ri + 1
16 end while
17
18 #wait until all the subproblems have returned
19 cuts = []
20 scosts = []
21 for i in range(1,n):
22 cuts.add(getCutConstraints(Pi))
23
24 #now solve the original problem
25 while not hasConverged(P):
26 x = solveStage1(P, scosts, cuts)
27 scosts;cuts = solveStage2(x)
28 end while

tic linear program.
There are several benefits of this approach. The

chances of a scenario having active cuts is higher in
the subproblems because of the smaller number of
scenarios present in the subproblems. Scenario cut
activity helps in generating newer and different cuts
for those scenarios, and thus doing more useful work,
as compared to the original problem in which most of
the scenarios remain inactive in the initial iterations.

Stage 1 optimization is often a serial bottleneck
in Bender’s decomposition, especially when the num-
ber of scenarios is large. In the decomposition ap-
proach, the number of scenarios per subproblem are
much smaller than the original problem, which speeds
up the Stage 1 optimization and thus the candidate so-
lutions for Stage 2 evaluation become available much
earlier. Additionally, this also gives an opportunity to
have parallelism in Stage 1, in addition to the obvious
Stage 2 parallelization available in stochastic linear
programs. These subproblems being independent of
each other, can be optimized in parallel in Stage 1.
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4 INITIAL RESULTS

Our initial experiments of the proposed SAM ap-
proach are based on a military aircraft allocation
problem. The U.S. Tanker Airlift Control Cen-
ter (TACC) has to allocate aircraft to various mis-
sions and wings one month in advance to the ac-
tual scheduling of those aircraft. The demands of
these missions and wings are not known in advance
and are subject to enormous uncertainty even during
peacetime. We formulated the problem as a two-stage
stochastic program in which aircraft are allocated to
different wings and missions in Stage 1. In Stage
2 these allocations are evaluated by scheduling these
aircraft for various missions once the demands are re-
alized in a scenario. More details of the problem and
its stochastic formulation can be found in (Langer,
2011; Baker et al., 2012).

For our experiments, we took a problem that al-
locates aircraft for a period of 10 days. We consider
120 scenarios. For this problem, Stage 1 has 270 vari-
ables and 180 constraints, while Stage 2 has 25573
variables and 16572 constraints per scenario. All the
experiments were done on the same number of cores,
on a machine with Intel HP X5650 2.66Ghz 6C Pro-
cessor.

In Figure 1(a), we show the scenarios that have
active cuts in Stage 1 in each iteration of the Bender’s
multicut method. The x-axis is the iteration number,
and y-axis is the scenario number. In the vertical line
corresponding to any iteration number, a dot in the
horizontal line corresponding to a scenario number
means that a cut obtained from the Stage 2 optimiza-
tion of that scenario was active in that iteration. As
can be seen in the figure (Figure 1(a)), very few sce-
narios have active cuts in the initial few rounds. As
the optimization progresses, the number of scenarios
with active cuts increases with the increase in the it-
eration number. And eventually, after approximately
220 iterations, all the scenarios have active cuts in
Stage 1. The total number of active cuts in each iter-
ation are shown in Figure 1(b). Red color line shows
the upper bound, and the blue color line shows the
lower bound as the number of iterations increase.

For testing the proposed SAM algorithm, we di-
vided the original problem with 120 scenarios into
two subproblems each with 60 scenarios. The sub-
problems are solved for a maximum of 300 rounds,
after which the cut constraints are collected from both
of them and these cut constraints are used as the ini-
tial set of constraints for solving the original problem
with 120 scenarios. Figure 2(a) shows the scenario ac-
tivity for this method. As can be seen in the figure, the
overall scenario activity is much higher in the initial

iterations of the SAM approach than in the original
Bender’s method. Figure 2(b) shows the number of
cuts that were active in each of the subproblems. Red
bars correspond to P0, and blue bars correspond to
P1. The bars are stacked on top of each other to show
the total number of active cuts in both the subprob-
lems. Green bars show the number of active cuts for
the original problem (P), which begins optimization
at iteration 301. Black lines correspond to the lower
and upper bounds of the subproblems, and as in Fig-
ure 1(b) blue, red lines correspond to the lower, upper
bounds of the original problem, respectively. Total
time to optimization is 784 seconds with the SAM ap-
proach as compared to 1190 seconds with the original
Bender’s method.

We have extended our algorithm to split-and-
hierarchical-merge (SAHM) algorithm, in which the
merging of the subproblems into the original problem
is done in stages instead of at once as in the SAM
algorithm. Figure 3 shows a schematic diagram of
the SAHM approach. We tested the SAHM approach
by dividing the original problem into 6 subproblems
each with 20 scenarios. In the first stage, a set of 2
subproblems combine to form one subproblem, giv-
ing a total of 3 subproblems. In the second stage,
these three subproblems are combined into the orig-
inal problem. Each of these stages is executed for 150
rounds, after which optimization of the original prob-
lem begins. Figure 4 shows the cut activity for this
setup. Total time to solution using SAHM was 507
seconds, giving us an improvement of 58% over the
Bender’s method.

5 FUTURE WORK

We plan to evaluate and extend the proposed scenario
decomposition schemes in the following ways:

� Try decomposing the problem into different num-
ber of subproblems, and determine the optimal
subproblem size.

� Exhaustively study the SAHM scheme.

� Currently, the number of rounds for which the
subproblems are executed before they are merged
is hard-coded by the user/programmer. An impor-
tant milestone is to dynamically determine during
the execution of the program, the optimal time to
merge the subproblems into the original problem.
This could be based on the cut activity of the sub-
problems.

� Use distributed computing to solve the stochas-
tic linear programs. As discussed in Section 3
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(a) Scenario Activity

Iteration number 

(b) Cut Activity
Figure 1: Multicut Benders Method. Total Iterations = 495, Time to Solution = 1190s.

(a) Scenario Activity

Iteration number 

(b) Cut Activity
Figure 2: SAM with decomposition into 2 subproblems for 300 iterations. Total Iterations = 415, Time to Solution = 784s.
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Figure 3: Hierarchical Scenario Decomposition Scheme.
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Figure 4: SAHM with decomposition into 6 subproblems
for 150 iterations followed by 3 subproblems for 150 itera-
tions. Total Iterations = 360, Time to Solution = 507s.

scenario decomposition gives us Stage 1 paral-
lelism in addition to the Stage 2 parallelism al-
ready available in stochastic linear programs. This
can be used to increase the parallel efficiency of
stochastic linear programs.
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