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Abstract: We introduce a unified tracker, named as a feature based multiple model tracker (FMM), which adapts to
changes in target appearance by combining two popular generative models: templates and histograms, main-
taining multiple instances of each in an appearance pool, and enhances prediction by utilising multiple linear
searches. These search directions are sparse estimates of motion direction derived from local features stored
in a feature pool. Given only an initial template representation of the target, the proposed tracker can learn ap-
pearance changes in a supervised manner and generate appropriate target motions without knowing the target
movement in advance. During tracking, it automatically switches between models in response to variations in
target appearance, exploiting the strengths of each model component. New models are added, automatically, as
necessary. The effectiveness of the approach is demonstrated using a variety of challenging video sequences.
Results show that this framework outperforms existing appearance based tracking frameworks.

1 INTRODUCTION

Visual tracking is a time dependent problem. Its
aim is to model target appearance and use it to es-
timate the state of a moving target, retrieve its tra-
jectory, and maintain its identity through a video se-
quence. Two important components for a tracker are
the search method and the appearance model match-
ing approach. The tracking problem can be formu-
lated as searching for the region with the highest prob-
ability of being generated from the appearance model.
The search method could be a sliding window or sam-
pling approach or use target motion to hypothesise
where the target might be. The target appearance is
typically constructed from the first frame by extract-
ing features. These are then compared to measure-
ments recovered from incoming frames at candidate
target positions to estimate the most likely target state.

In real world scenarios, targets’ appearance can,
however, vary over time as a result of illumination
changes, pose variations, target movement and/or
camera movement, full or partial occlusions by other
targets or by objects in the background, target de-
formation and complex background clutter. Also,
their appearance might have the same appearance as
their local background, which may attract the tracker.
Adapting to these changes, however, exposes the
tracker to model drift: localisation errors cause back-
ground information to be included in the appearance
model, which gradually leads the tracker to lose its

target. The risk and degree of drift increases quickly
if the tracked target is not well-located. The key to
the model drift problem is to locate the target position
precisely and recognise abnormal appearance changes
before trying to update the target appearance.

We propose an online tracker capable of adapt-
ing to appearance changes without being too prone to
drifting, and able to recover from drifting and partial
or full occlusion. To make a tracker adaptive, a num-
ber of questions should be considered during track-
ing: 1) What appearances should be used for track-
ing? In visual tracking, appearance models based on-
line learning methods often discard all features learnt
so far and try to update the appearance model by new
information of the target appearance. They, then, use
those updated models to estimate the target location.
However, the best match at time t to appearance ob-
served at time t�1 may not be appropriate to the cur-
rent target appearance, because target’s appearances
in older frames might be more suitable. 2) When
should additional appearances be learnt? Often, not
all appearances should be used to update models such
as when the target is partially/fully occluded or when
wrongly estimate the target location because it can
cause model drift. Thus, to reduce the risk of adapta-
tion drift, additional constraints or supervision of the
appearance model are needed. 3) How can complex
target movement be recovered precisely? Motions of
the target are useful information to enhance predic-
tions. The target movements are, however, difficult to
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model them correctly.

Figure 1 gives an overview of the proposed frame-
work. The tracker contains two crucial compo-
nents: the first learns target appearance changes dur-
ing tracking and the second utilises features to en-
hance target prediction via multiple linear searches.
Our simple yet effective method builds appearance
models which are a combination of two popular gen-
erative models: templates and histograms. When a
suitable model is available, templates can provide sta-
ble matching and good localisation, due to the de-
tailed spatial information they carry, and play a role
as landmarks to reduce drift. Templates provide a
solid anchor for target location and are used to de-
tect appearance changes because they are vulnerable
to appearance changes. Histograms, in contrast, do
not maintain spatial information and so are more ro-
bust to rotation and partial occlusion. Histograms
can be thought of as a more abstract model; as many
templates can produce a given histogram. The rela-
tive lack of precision of histogram based representa-
tions allows them to capture target appearance dur-
ing changes in the spatial distribution of target fea-
tures. During tracking, especially in unconstrained
environments, appearance changes are unpredictable.
A fixed set of templates cannot be relied upon to cap-
ture the variations that might arise. Similarly, if only
histograms are considered, there is no clear cue as
to which histogram should be used, or when to con-
struct a new histogram. However, with careful use,
templates and histograms can complement each other.
Templates allow the tracker to produce suitable his-
tograms, which allow the tracker to estimate target
location during appearance changes, which in turn al-
lows new templates to be sought.

In the proposed method, each new appearance is
learnt and maintained in a pool of appearance mod-
els. Storing multiple template-histogram pairs al-
lows the tracker to handle variations by automatically
switching among models, using template-matching to
select a histogram which captures target appearance
in the current frame. This reduces the risk of drift-
ing, since it can check the similarity between the new
and previous appearances before updating appearance
model or adding a new appearance model to the pool.
In the case of drifting or occlusion, the tracker can
re-initialise the tracking process by selecting a new
model from the pool. To complete the tracker, by pro-
viding precise motion estimates during unexpected
and abrupt target movement, we propose a mecha-
nism utilising target features detected and matched
between consecutive frames. Our method can pre-
dict target location without using a complex motion
model or models, and select an appropriate model

with which to search.
To robustly represent target motion and predict lo-

cation, both bottom-up and top-down techniques are
used. The top down component uses (simple) mo-
tion models to generate hypotheses (particles). The
bottom up component extracts local motion estimates
which inform the motion models, supporting top-
down search. Local features of the target are iden-
tified, matched between adjacent frames and stored in
a feature pool. While individual feature matches may
be incorrect, the distribution of likely motion direc-
tions supplied by feature matching provides valuable
information that can be used to guide search. Each
feature match constitutes a hypothesis as to the di-
rection of motion of the target. The distribution of
motion directions provides an implicit representation
of complex target movements which are difficult to
model explicitly. In the proposed tracking algorithm,
the search space is modelled as multiple potential di-
rections and one-dimensional searches are performed
in those directions to find the target, reducing and
carefully targeting the search.

The proposed appearance and search mecha-
nism are built into the Markov Chain Monte Carlo
(MCMC) based particle filter (Khan et al., 2005).
We extend the proposal distribution of the standard
MCMC to propose both the new location via mo-
tion direction sampling, and the appearance model
that should be used. On completion of each Markov
chain, each histogram is assigned a weight reflecting
how frequently it was accepted during that chain. The
new target location is estimated by identifying parti-
cles which have the highest weight and use the most
common histogram. This strategy is adopted because,
if the chain runs for long enough, the most suitable
histogram will be used most.

2 PREVIOUS WORK

Visual tracking is a longstanding problem in com-
puter vision and a number of reviews exist (Yilmaz
et al., 2006; Li et al., 2013). Many methods pro-
posed aim to develop a richer appearance model, to
help distinguish targets and make the tracker more
robust. A fixed appearance model, as in (Isard and
Blake, 1996; Birchfield, 1998), cannot handle target
appearance changes sufficiently. To achieve long term
tracking, many researchers have tried to learn appear-
ance models such as (Comaniciu et al., 2003; Ross
et al., 2008; Grabner and Bischof, 2006; Collins et al.,
2005; Babenko et al., 2011; Nummiaro et al., 2002).
Regardless of approach, adaptive appearance-based
trackers face a key problem: model drift.
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Figure 1: Overview proposed framework.

Several methods have been proposed to deal with
the drift problem (e.g. (Matthews et al., 2004)). A
fixed adaptation speed used in a simple linear update
of the reference model (Nummiaro et al., 2002) is
suitable in some situations. (Collins et al., 2005) pro-
posed to anchor the developing model on the original
one, but the method could not react quickly enough to
large variations. Multiple instance learning (Babenko
et al., 2011) has been proposed to handle location am-
biguity in positive samples by using a positive bag and
negative bag. This method may, however, select less
informative features. (Grabner et al., 2008) proposed
semi-supervised boosting to break the self learning
loop in their Online Boosting method (Grabner and
Bischof, 2006). Despite its success in alleviating drift,
this framework does not handle target changes well if
the appearance becomes different from the prior.

Other frameworks have focussed on target mo-
tion, seeking to enhance prediction and reduce search
space. For example, (Prez et al., 2002) used a ran-
dom walk model, (Okuma et al., 2004) described a
proposal distribution mixing hypotheses generated by
an AdaBoost detector and a standard autoregressive
motion model, (Isard and Blake, 1998) combined two
models, (Pridmore et al., 2007) used Kernel Mean
Shift to control hypotheses generated by an annealed
particle filter, (Kristan et al., 2010) used a two stage
dynamic model. These methods all assumed target
appearance to be (approximately) constant.

Fusion trackers (e.g. (Kwon and Lee, 2010; Kwon
and Lee, 2013)) have been proposed to combine mul-
tiple appearance and multiple motion models. Each
tracker comprises a single appearance model and mo-
tion model to deal with a specific appearance change
and different target motion. All trackers can operate
in parallel and interact with each other. The chal-
lenge, however, raised by these works is how to en-
sure agreement among the trackers.

3 A TRACKING FRAMEWORK

Figure 2 shows the main steps in the proposed
method, FMM. This approach maintains an appear-
ance pool containing appearance models learnt during
tracking and a feature pool storing features detected
in the previous and current frames. These features are
used to support target motion modelling.

Figure 2: The proposed framework.

3.1 Appearance Model

Targets are selected by manual annotation of the first
image in the sequence. Once target location is spec-
ified, its template is extracted and added to the ap-
pearance pool. For each template, a simple genera-
tive model is constructed - an Epanechnikov kernel
weighted colour histogram (Comaniciu et al., 2003).
Colour is chosen here as a simple, but powerful
and reliable feature widely used to model appearance
when tracking objects against complex backgrounds.
To compare the reference histogram p of the target
with the candidate histogram qt at state vector Xt ,
we use the Bhattacharyya distance. When compar-
ing template and image data or pairs of templates, we
use the Normalised Correlation Coefficient (NCC) to
reduce the effect of illumination changes.
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3.2 Motion Model

Target features are extracted by applying the method
of Shi and Tomasi (Shi and Tomasi, 1994) within the
target’s bounding box. Shi and Tomasi proposed an
affine model which proved adequate for region match-
ing and provides the repeatable interest points needed
to support robust tracking (Serby et al., 2004). Fea-
tures are defined as f i = (xi;yi;dxi;dyi) where f i is
the ith feature, (xi;yi) is the location of the feature, and
(dxi;dyi) gives its displacement relative to horizon-
tal and vertical axes. The target maintains a feature
pool Ft = fF p

t�1;F
c

t g at each time t which contains
features detected in the previous tracked frame F p

t�1 =

f f i
t�1gi=1::m and features matched Fc

t = f f i
t gi=1::m in

the current frame, where as m is the number of fea-
tures considered.

Each feature point extracted from the target is
matched with features identified in the subsequent
frame using a pyramidal implementation of the
Kanade - Lucas – Tomasi tracker (Bouguet, 2000)
forming a set of vectors Vt = fvi

tgi=1::m linking
matched features. This approach was selected for its
ability to handle large movements. The Gaussian ker-
nel density (KDE) is also used to estimate the mo-
tion direction distribution based on the local feature
matches.

Rather than search the image in two dimensions,
the proposed approach divides the search space into
multiple linear segments corresponding to directions
in which the target might move. To estimate target
location, a motion direction is randomly selected from
the distribution obtained by feature matching. Search
in a given direction starts from the best state found in
the previously selected (and searched) direction. Xt
is the most likely state at time t of the target, X 0t is
the most likely state at time t of the target within a
selected linear segment. Figure 3 shows an example
of feature matching and its KDE.

(a) Features matched (b) KDE
Figure 3: Motion directions and their KDE at Frame #22 of
the Football sequence.

3.3 Sampling Appearance & Motion
Models

The motion and appearance model presented here are
embedded into the MCMC method of (Khan et al.,
2005). MCMC methods define a Markov Chain over
the state space X. A candidate particle X 0t , sam-
pled from the current sample Xt using a proposal
Q(X 0t ;Xt), is accepted if the acceptance ratio (in (Khan
et al., 2005)) exceeds 1. A maximum a posterior
(MAP) has typically been used to find a particle most
likely the target over N samples at each time t. At
each time step t, an appearance pool containing tem-
plates Tt = fT jg j=0::k and equivalent generative mod-
els Gt = fG jg j=0::k is given, where k is the current
size of the pool.

Information from previous frames can be used to
improve the accuracy of the prediction and reduce the
search space; the target’s previous location has been
used in many trackers. In our approach, three pieces
of information are used when predicting target loca-
tion. First, the previous target location is used to de-
cide the centre of the search area. The search area S
is double the target size. Second, the confidence score
matrix C j = NCC(T j; I) is calculated by using NCC
to compare each template T j from Tt to each location
I(x;y) of image sequence I belonging to S. Third, fea-
tures matched from the previous image are used to im-
prove the initial location of an MCMC chain. Define
m f = å

m
i=1( f i � P) as the number of features in the

current frame belonging to an image patch P defined
by the target’s bounding box.

Tracking begins with the initialisation of an
MCMC chain. Starting position is determined where
the confidence score at that location C j(x;y)� qd and
contains the maximum number of m f . If no loca-
tion satisfies these conditions because no templates
learnt before produce a confidence score which is
greater than qd , the starting position is determined us-
ing a second order auto regressive motion model. The
initial appearance model is the histogram associated
with the template that best matches the last recorded
target location.

As the MCMC chain progresses, new states are
proposed according to the proposal density Q(X

0
t ;Xt).

The proposal comprises changes in position accord-
ing to the motion model, from which a motion di-
rection is randomly selected (Section 3.2), and a his-
togram model randomly selected from the appearance
pool. Each histogram model has an associated weight,
which records the number of times it was selected and
accepted within the chain. Intuitively, the model that
most improves the state hypothesis, and so can be as-
sumed to best describe the target, will have the high-

Adaptive�Tracking�via�Multiple�Appearance�Models�and�Multiple�Linear�Searches

491



est weight. Model selection takes this weight into ac-
count, better models are more likely to be selected as
the chain develops. Each generated particle records
its hypothesised target position, the weight associated
with its appearance model, and the Bhatacharya dis-
tance between that model and the local image data.
At the end of the MCMC process, the most highly
weighted appearance model is identified. The particle
generated using the model that has the best fit to the
local image data provides the new estimate of target
location. The motion direction sampling is then reap-
plied and templates matched to the estimated location
to initialise processing into the next time frame. The
tracking process is described in Algorithm 1.

3.4 Updating Appearance Models

Updating an Existing Model. After locating the tar-
get in a given frame, a new template is constructed
from the local image data, compared to the current
template and the NCC computed. If the correlation
score is greater than a (high) threshold, the histogram
model is updated; i.e. the histogram associated with
the current template is replaced by the histogram of
the new estimated target location. The approach is
conservative in two ways: the histogram is only up-
dated if new data is a fairly close match to the cur-
rent best histogram model, and the template remains
fixed. With this approach, small changes of target ap-
pearances are captured. In case of larger changes, the
responsibility is of the Adding a new model stage
(as described below). Also, use of the template to se-
lect the initial histogram in the MCMC chain allows
the combined model to adapt without excessive risk
of drift because templates’s role are anchors and pro-
vide reliable initial guesses where the target might be.
Adding a New Model. When the new template, ex-
tracted from the current target position, differs from
both the current selected template and the template
members of the current appearance pool, a new (his-
togram + template) model is created and added to the
appearance pool. Adding more appearance models al-
lows the tracker to quickly respond to future changes
in target appearance.

Together, these mechanism extend the third strat-
egy, Template Update with Drift Correction, of
(Matthews et al., 2004) which only maintains one
template. Existing (template + histogram) models are
kept unchanged, as they may support effective track-
ing in later frames, and the overall appearance model
is updated implicitly by modifying its components. If
a poor model is added, the tracker still has a chance
to recover by selecting other, more correct appear-
ance models. The proposed update method is differ-

ent from those mentioned in Section 2, which contain
and explicitly update a single appearance model. It
extends the use of one prior (e.g. semi online learn-
ing) to multiple priors by using multiple templates to
deal with variations of appearance and reduce drift.
This approach is also different from the online learn-
ing approach (e.g. Online AdaBoost) because it does
not discard all information learnt so far.

3.5 Handling Occlusion & Re-detecting
the Target

Occlusion is detected when both the NCC of the cur-
rent template and location estimate, and the Bhat-
tacharya distance between the current model his-
togram and the histogram computed around the loca-
tion estimate, fall below a threshold. When this oc-
curs a sliding window technique, commonly applied
in tracking by detection and trackers no prediction
mechanism, together with all pooled appearances is
used to re-detect the target. The location with the best
match is taken as the position of the re-appeared tar-
get. Note that an advanced occlusion detection, e.g.
employing Semi Boosting could be embedded into
this framework. An occlusion detection step is nec-
essary because the motion model is computed from
local features; explicit detection of occlusion reduces
the likelihood that features of the occluding object
will over-rule features belonging to the true target.

3.6 Updating Motion Models

The target motion model depends on feature detec-
tion and matching. Features help the tracker handle
motion variation and abrupt motion naturally by al-
lowing the tracker develop a good sense of where the
target might be. The features used should be updated
as tracking progresses, as some will become invisible
and others appear over time. Features are only up-
dated if there is no occlusion.

A bounding box does not always provide a good
fit to the target boundary, and some detected features
may be outliers i.e. belong to the local background.
The motion direction sampling method can deal with
this problem, assuming that most of the features con-
sidered lie within the true target boundary.

3.7 Algorithm

Define M as the thinning interval before accepting one
particle, a burn in period B, Nl is the number of par-
ticles used to search one line, L is the total number
of lines considered. The tracking process is then as
described in Algorithm 1.

VISAPP�2015�-�International�Conference�on�Computer�Vision�Theory�and�Applications

492



Algorithm 1: Multiple appearance models and motion di-
rection sampling (FMM).

1. Detect and match features and compute the motion direction distribu-
tion as described in Section 3.2

2. Initialise the start state Xt for the target using features detected and tem-
plates in the pool as described in Section 3.3.

3. Initialise equal weight for each histogram model.
4. Repeat L times

(a) Randomly select one direction from KDE of the target.
(b) Calculate the slope s of the selected direction.
(c) Propose a new state Q(X 0t ;Xt ).
(d) Calculate the intercept b for the line using the slope s and new X 0t .
(e) Repeat M �Nl times

i. Generate X”t from X 0t according to the s and b.

ii. Propose a candidate appearance model for X”t according to the
appearance weight.

iii. Compute the acceptance ratio a.

iv. If a � 1, then accept X”t : Set the target in X 0t to X”t , increase
the weight for the selected histogram and update the cached like-
lihood. Otherwise, accept with probability a. If rejected, leave X 0t
unchanged.

(f) If the state X 0t is better than Xt then move Xt to X 0t .

5. The set of particles is obtained by storing Nl best particles at each di-
rection.

6. The current posterior P(Xt jZ1:t ) is approximated by using MAP.
7. Check if the target is in occlusion as in Section 3.5.
8. Update the target model as in Section 3.4.
9. Re-detect features for the target (i.e. update motion model).

4 EXPERIMENTS AND RESULTS

4.1 Data

Table 1 lists the video sequences used in experimen-
tal evaluation of the proposed method. Most of them
have been published in CVPR 2013 (Wu et al., 2013)
and Visual Object Tracking (VOT) 2014. Ground
truth data was manually created, capturing the visible
part of the target by a rectangle bounding box.

4.2 Experimental Settings

We compared our new proposed method FMM to
other existing methods: conventional MCMC (our
implementation), Online AdaBoost (OAB) (Grabner
and Bischof, 2006), Semi Boosting (SB) (Grabner
et al., 2008), FragTrack (Frag) ((Adam et al., 2006)),
IVT (Ross et al., 2008) and Visual Tracking Decom-
position (VTD) (Kwon and Lee, 2010).

OAB, SB, FragTrack and IVT rely heavily on rich
appearance models to find the target. VTD was se-
lected because it used sampling methods to sample
appearance and motion models to construct trackers.
Although their approach is different from ours, their

Table 1: Testing video sequences and their challenges

Sequence Challenge Frames

Bouncing1 (ours)
Fast & unexpected movement,
Deformation

654

Bouncing2 (ours) Fast motion, Rotation 90

Bird2 (Yang et al., 2014)
Deformation, Rotation,
Occlusion

98

Table tennis (ours) Unexpected movement, Clutter 138

Emilio (Wu et al., 2013)
Fast & unexpected Motion, Scale
changed, Occlusion

280

Animal (Wu et al., 2013) Fast Motion, Clutter 71
Football (ours) Fast Motion, Clutter, Distractor 124

David2 (Wu et al., 2013)
Illumination and Pose Variation,
Distractor

537

Tiger1 (Wu et al., 2013)
Fast motion, target rotates,
occlusion, appearance deformed

354

Jogging (Wu et al., 2013)
Pose variation, Full occlusion,
Deformation

307

Rolling Ball (Klein et al.,
2010)

In-Plane rotation, Scale changed,
Partial occlusion

601

Girl (Wu et al., 2013)
Scale changed, Face expression
changed, rotation

500

sampling strategy is similar. We used 300 particles
and an 8 bin histogram for each colour channel in
FMM and MCMC. The search areas of OAB and SB
were set to twice the target size and of FragTrack and
IVT were set 40x40 pixels (the maximum displace-
ment of the centre of the target from one frame to the
next). In OAB and SB, we used 100 feature selectors.
Each selector maintained 10 features.

4.3 Result & Discussion

Table 2 summarises the results obtained. The num-
bers in the Table 2 give the centre location error (in
pixels) averaged over all frames of each sequence, i.e
the average distance of the predicted bounding box
from the centre of the ground truth bounding box. The
lower number is, the better the result, and the numbers
in fg indicate the number (%) of successfully tracked
frames (score > 0:5), where the score is defined by
the overlap ratio between the predicted bounding box
Bp and the ground truth bounding box Bgt and cal-

culated score =
area(Bp\Bgt)

area(Bp[Bgt)
(Everingham et al.,

2010). The higher a number is, the better the result.
Each sequence was run three times with each track-
ing framework. The best result are marked in bold
and the second best underlined. Table 2 shows that
FMM performed more accurately on 9 out of 12 se-
quences. Supplementary materials for this paper have
been provided.

In Bouncing1 (Figure 4(a)-4(c)), Bouncing2,
Emilio (Figure 4(g)-4(i)) and Animal sequence, most
trackers (e.g. MCMC, VTD, FragTrack, OB, SB)
suffered when the target moved in unexpected direc-
tions. With the use of feature based motion mod-
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Table 2: Average center location error (in pixel) and (%) Overlap rate in fg.
Sequence FMM MCMC SB Frag IVT VTD OAB
Bouncing1 3.00 f100g 8.78 f94g 28.61 f86g 4.30 f96g 5.49 f99g 11.87f93g 28.07 f88g
Bouncing2 2.32 f100g 34.80 f76g 216.21 f21g 56.56 f46g 161.86 f1g 153.59 f1g 152.34 f1g
Bird2 15.78 f72g 22.54 f49g 174.02 f38g 29.03 f32g 164.07 f4g 111.83 f13g 7.59 f98g
Table tennis 3.46 f99g 3.59 f100g 153.26 f6g 13.36 f74g 251.10 f14g 380.51 f6g 642.12 f6g
Emilio 6.67 f87g 8.99 f76g 226.87 f8g 206.40 f11g 68.46 f27g 20.30 f65g 235.37 f8g
Animal 11.12 f100g 272.66 f7g 48.50 f38g 62.13 f39g 8.67 f100g 208.14 f6g 366.73 f3g
Football 5.73 f94g 76.24 f18g 60.78 f6g 31.32 f41g 114.10 f7g 34.92 f45g 60.56 f14g
David2 2.12 f100g 6.17 f73g 14.96 f33g 57.78 f26g 67.67 f19g 3.52 f89g 6.28 f63g
Tiger1 23.43 f53g 24.52 f48g 122.26 f41g 63.17 f34g 280.84 f1g 109.22 f18g 63.25 f47g
Jogging 5.08 f96g 29.66 f67g 55.98 f71g 15.55 f75g 90.84 f25g 92.40 f25g 161.31 f25g
Rolling Ball 5.66 f83g 6.34 f81g 168.81 f17g 8.84 f72g 98.79 f11g 33.24 f50g 159.21 f16g
Girl 6.76 f78g 36.79 f51g 35.55 f40g 6.84 f75g 609.99 f13g 7.28 f64g 3.48 f96g

(a) #642 (b) #643 (c) #644 (d) #64 (e) #79 (f) #95

(g) #57 (h) #59 (i) #60 (j) #84 (k) #97 (l) #117
Figure 4: Tracking results of several sequences. FMM(black), MCMC(blue), FragTrack(green), IVT(cyan), SB(magenta),
OAB ((dashed) magenta), VTD((dashed) blue).

elling, FMM, however, predicted target locations cor-
rectly. Though VTD contains multiple motion mod-
els, these motions can only capture smooth motions.
VTD, for instant, lost its target at Frame #58 (the
Emilio sequence) when the target starts to jump at
Frame #57. MCMC, FragTrack and SB were af-
fected by distractors in the Football and David2 se-
quences. In the Football sequence, the football, socks
and shorts of the player have similar appearance. SB
and MCMC therefore locked onto the player’s ankle
(Frame #22). FMM performed well on the Football
sequence because the motion direction distribution
(Figure 3(b)) allows most of the selections (around
90% from accumulated probability) will be angles in
the range (-1.9;-1.5) radians. These point downwards,
towards the ground beneath the ball, rather than to-
wards the player’s ankle. VTD could track the target
at Frame #22 because its multiple motion models give
it a better chance of locating the target. It, however,
completely lost the target at Frame #57 because of the
target’s quick movement.

The target is occluded by a pillar in the Jogging se-
quence (Figure 4(d)-4(f)) at Frame #69. SB and FMM
can re-detect the target using a sliding window tech-
nique. They, therefore, could start to track the target
at Frame #79. SB, however, lost its target in several

frames (e.g. Frame #95) because the target changed
her pose.

OAB worked very well in the Girl sequence (Fig-
ure 4(j)-4(l)) since it can learn and adapt to appear-
ance changes if these changes stay inside the bound-
ary specifying the target. The fixed target model
MCMC lost the target at the Frame #84 while the tar-
get was turning around. With an adaptive appearance
model, FMM and VTD worked well in the Girl se-
quence, though VTD lost its target at Frame #299.

5 CONCLUSION

We have proposed a single tracking algorithm (i.e.
without fusing multiple trackers) applicable to both
rigid and deformable targets. The appearance model
combines two popular generative models, utilising
their complimentary advantages to improve tracking
performance. The tracker uses a pool of template-
histogram pairs to provide the best fit appearance
model, switching among them using a sampling
mechanism. Appearance changes are automatically
detected and new, corresponding templates are ex-
tracted. These templates are carefully checked for

VISAPP�2015�-�International�Conference�on�Computer�Vision�Theory�and�Applications

494



similarity to other templates maintained in the appear-
ance pool before adding them, together with their cor-
responding histograms, to it.

Instead of using local features to represent the ob-
ject (e.g. (Zhou et al., 2009) used SIFT features, (He
et al., 2009) used SURF features, (Kim, 2008) used
corner features), our approach utilise them to model
the target movement because local features are not
detected enough to cover the whole object. Besides
that, it is hard to decide the object boundary basing
on positions of (few) local features. Feature match-
ing, however, provides clues where the target might
go. In our framework, the MCMC-based search uses
the distribution of motion directions of local image
features from the feature pool to enhance target pre-
diction. These local motion directions are extracted
directly from two consecutive frames. The algorithm
can also handle variation in motion of a target with-
out using any prior knowledge of movement. More-
over, different from methods utilising multiple motion
models to predict the target, our method only uses one
motion model and it is directly derived from the cur-
rent state of the target. Overall, experiments showed
the FMM framework to have performance advantages
over other trackers.

FMM detects target appearance changes using the
templates maintained in the appearance pool. Should
the target change its appearance very often in a long
video sequences, many templates may be stored,
some of which will become irrelevant. To cope with
this problem, some learnt appearances should be re-
moved from the pool. Care must, however, be taken
not to remove appearances which would be useful
later. This will be the subject of future work. Note
also that there is no motion learning mechanism in
FMM. The target motion is derived by detecting and
matching sparse features. These matches could be
used to enhance learning of target motion.
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