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Abstract: Heterogeneous and incomplete datasets are common in many real-world visualisation applications. The prob-
abilistic nature of the Generative Topographic Mapping (GTM), which was originally developed for complete
continuous data, can be extended to model heterogeneous (i.e. containing both continuous and discrete val-
ues) and missing data. This paper describes and assesses the resulting model on both synthetic and real-world
heterogeneous data with missing values.

1 INTRODUCTION

Type-specific data analysis has been well studied in
machine learning1. In the last couple of decades, the
need to analyse mixed-type data has received some
attention from the machine learning community be-
cause of the fact that real-world processes often gen-
erate data of mixed-type. An example of such mixed-
type data could be a hospital’s patient database where
typical fields include age (continuous), gender (bi-
nary), test results (binary or continuous), height (con-
tinuous) etc. In practice a number of ad-hoc methods
are used to analyse mixed-type data. For instance,
if there is a mixture of continuous and discrete vari-
ables, then either all the discrete variables are con-
verted to some numerical scoring equivalent or, on
the other hand, all the continuous variables are discre-
tised. Alternatively, both types of variables are anal-
ysed separately and then the results are combined us-
ing some criteria. According to (Krzanowski, 1983),
“All these options involve some element of subjectiv-
ity, with possible loss of information, and do not ap-
pear very satisfactory in general”. The ideal general
solution for analysing such heterogeneous data is to
specify a model that builds a joint distribution with an
appropriate noise model for each type of feature (for
example, a Bernoulli distribution for binary features,
a multinomial distribution for multi-category features
and a Gaussian distribution for continuous features)
and then fit the model to data (de Leon and Chough,

1http://letdataspeak.blogspot.co.uk/2012/07/mixed-
type-data-analysis-i-overview.html

2013).
A multivariate distribution that can model random

variables of different types is not available. How-
ever, one possible way of jointly modelling discrete
and continuous features is using a latent variable ap-
proach to model the correlation between features of
different types. For example, a dataset consisting of
continuous, binary and multi-category features can
be modelled using a conditional distribution that is a
product of Gaussian, Bernoulli and multinomial dis-
tributions. This approach has been previously dis-
cussed as a possible extension for GTM (Bishop and
Svensen, 1998; Bishop et al., 1998) and PCA (Tip-
ping, 1999) models. This idea was implemented
in (Yu and Tresp, 2004) to visualise a mixture of con-
tinuous and binary data on a single continuous latent
space by extending probabilistic principal component
analysis (PPCA) and was called generalised PPCA
(GPPCA). GPPCA is a linear probabilistic model and
uses a variational Expectation-Maximisation (EM) al-
gorithm for parameter estimation. There are other la-
tent variable models for mixed-type datasets but to
the best of our knowledge most of these are linear
models (Moustaki, 1996; Sammel et al., 1997; Dun-
son, 2000; Teixeira-Pinto and Normand, 2009) and
they either use numerical integration or a sampling
approach to handle the intractable integration for fit-
ting a latent variable model of this type. It is important
to mention that there is not much work reported in the
literature for analysing mixed-type data using a latent
variable formalism (de Leon and Chough, 2013). As
a generalisation of GTM, a latent trait model (LTM)
to handle discrete data was proposed in (Kabán and
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Girolami, 2001): the model used the exponential fam-
ily of distributions. In this paper we describe and as-
sess a probabilistic non-linear latent variable model to
visualise a mixed-type dataset on a single continuous
latent space. We shall refer to this model as a gener-
alised GTM (GGTM).

The treatment of incomplete data for the standard
GTM has been explored in (Sun et al., 2002) using an
EM approach which estimates the parameters of the
mixing components of the GTM and missing values
at the same time. The same approach is used in this
paper to visualise mixed-type data containing missing
values with GGTM.

2 VISUALISATION OF
HETEROGENEOUS DATA
WITH GGTM

The main goal of a latent variable model is to find
a low-dimensional manifold,H , with M dimen-
sions (usuallyM = 2) for the distributionp(x) of
high-dimensional data space,D, with D dimensions.
Latent variable models have been developed to
handle a dataset where all the features are of the same
type.

Suppose that theD-dimensional data space is de-
fined by |R | continuous,|B | binary and|C | multi-
categorical features respectively. The link functions
for continuous, binary and multi-category features are
defined in equations (1), (2) and (3) respectively

µR = Φ(z)WR
. (1)

µB = gB(Φ(z)WB)

=
exp(Φ(z)WB)

1+exp(Φ(z)WB)
.

(2)

µC
sd
= gC (Φ(z)wC

sd
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(3)

We write each observation vector,xn in terms of sub-
vectorsxR

n , xB
n and xC

n for continuous, binary and
multi-category features respectively. The likelihood
of each type of feature is given by
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Then we compute the product of the likelihoods for
the Gaussian (equation (4)), Bernoulli (equation (5))
and multinomial (equation (6)) distributions, and find
the distribution ofx by integrating over the latent vari-
ables,z,

p(x|Ω) =
∫

p(xR
n |z,WR

,β)

p(xB
n |z,W

B)p(xC
n |z,W

C )p(z) dz,
(7)

whereΩ = {WR
,β,WB

,WC} contains all the model
parameters. We use as prior distribution,p(z), a sum
of delta functions as for the standard GTM and LTM

p(z) =
1
K

K

∑
k=1

δ(z− zk). (8)

The data distribution can now be derived from equa-
tions (7) and (8), where we use the same mixing co-
efficient for all components (i.e.πk =

1
K ),

p(x|Ω) =
K

∑
k=1

πkp(x|zk,Ω). (9)

The log-likelihood of the complete data takes the form

L(Ω) =
N

∑
n=1

ln
K

∑
k=1

πkp(xn|zk,Ω). (10)

The choice of noise model is related to the corre-
sponding type of data and also the link function map-
ping from latent to data space (Kabán and Girolami,
2001). The exponential family of distributions is used
here to model mixed-type data under the latent vari-
able framework. From here onward to simplify the
notation, we usexM , whereM can represent either
R , B or C , to indicate the type of feature for a data
pointx.

2.1 An Expectation Maximization (EM)
Algorithm for GGTM

Our proposed model is based on a mixture of distribu-
tions where each component is a product of Gaussian,
Bernoulli and/or multinomial distributions. The pa-
rameters of the mixture model can be determined us-
ing an EM algorithm: in the E-step, we use the current
parameter set,Ω, to compute the posterior probabili-
ties (responsibilities) using Bayes’ theorem,

rkn = p(zk|xn,W) =
πkp(xn|zk,W)

∑K
k′=1 πk′ p(xn|zk′ ,W)

, (11)
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where

p(xn|zk,W) =p(xR
n |zk,WR

,β)

p(xB
n |zk,W

B)p(xC
n |zk,W

C ).
(12)

We use the maximization of the relative likeli-
hood (Bishop, 1995), which does not require the com-
putation of the log of a sum. The relative likelihood
between the old and new set of parameters can be cal-
culated as
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whereθM
k = Φ(zk)WM . In the M-step we max-

imize the functionQ with respect to each type of
weight sub-matrixWM as

∂Q

∂WM
= ΦT

[
RXM −Eg(ΦWM )

]
, (14)

whereΦ is aK ×L matrix, R is aK ×N matrix cal-
culated using equation (11),XM is anN× |M | data
sub-matrix and the diagonal matrixE contains the val-
ues

ekk =
N

∑
n=1

rkn. (15)

In the case of an isotropic Gaussian with unit vari-
ance, the link functiong(.) is the identity and by set-
ting the derivative to zero we obtain, as in the standard
GTM (Bishop and Svensen, 1998),

ŴR = (ΦTEΦ)−1ΦTRXR
. (16)

For other link functions, a Generalised EM
(GEM) (McLachlan and Krishnan, 1997) algo-
rithm is used because convergence to the local
maximum is guaranteed without maximizing the
relative likelihood (Kabán and Girolami, 2001). A
simple gradient-based update can be obtained for
WM from Equation (14)

∆WM ∝ ΦT
[
RXM −Eg(ΦWM )

]
, (17)

where this can be used as an inner loop in theM-
step. The correlations between the dimensions ofφl
responsible for preserving the neighbourhood are re-
quired for a topographic organisation given that the

natural parameterθM is being updated under the gra-
dient update of the weight matrixWM (Kabán and
Girolami, 2001):

θ̂M
k = φkWM +η

N

∑
n=1

K

∑
k′=1

rk′nφkφT
k′(x

M −µM
k′ ).

3 VISUALISATION OF MISSING
DATA WITH GGTM

The EM framework supports the treatment of missing
values in the GGTM model.

3.1 Continuous Data

The data pointsxn are written as (xo
n,x

m
n ), wherem

ando represent subvectors and submatrices of the pa-
rameters matching the missing and observed compo-
nents of the data (Ghahramani and Jordan, 1994). Bi-
nary indicator variablesζnk are introduced to specify
which component of the mixture model generated the
data point. Both the indicator variablesζnk and the
missing inputsxm

n are treated as hidden variables in
the EM algorithm. The changes made to the EM al-
gorithm for GTM are detailed in (Sun et al., 2002).

3.2 Discrete Data

The missing values are inferred in the E-step using
the usual posterior means with responsibilityrkn com-
puted on the observed data,

E[xm
n |x

o
n,µ

D ] =
K

∑
k=1

rknµ
D
k , (18)

whereD = {B or C}. In the M-step, the weight ma-

trix ŴD is updated first using the complete training

data and we then updatêµD
k with

µ̂D
k = gD(Φ(zk)ŴD). (19)

4 VISUALISATION QUALITY
EVALUATION MEASURES

Algorithms based on GTM are examples of unsuper-
vised learning which always give a result when ap-
plied to a particular dataset. Thus we cannot tella
priori what is the expected or desired outcome. This
makes it difficult to judge which method is the best
(i.e. tells us the most about a certain dataset). Here
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we use metrics that measure the degree of local neigh-
bourhood similarity between data space and latent
space which can be calculated even if ‘ground truth’
is not known.

4.1 Trustworthiness, Continuity and
Mean Relative Rank Errors
(MRREs)

Two well-known visualisation quality measures based
on comparing neighbourhoods in the data spacex and
projection spacez are trustworthinessand continu-
ity (Venna and Kaski, 2001). A mapping is said to
be trustworthy if k-neighbourhood in the visualised
space matches that in the data space but if thek-
neighbourhood in the data space matches that in the
visualised space it maintainscontinuity. The higher
the measure the better the visualisation, as this implies
that local neighbourhoods are better preserved by the
projection. We also use mean relative rank errors
with respect to data and latent spaces (MRREx and
MRREz), which measure the preservation of the rank
of the k-nearest neighbours contrary to the trustwor-
thiness and continuity which only consider matches
in the k-neighbourhood (Lee and Verleysen, 2008).
Note that the lower the MRRE the better the projec-
tion quality.

5 EXPERIMENTAL RESULTS

The GGTM was evaluated on both complete and
missing synthetic and real-world datasets and com-
pared with standard GTM for complete data. The
weight matrixW was initialised using principal com-
ponent analysis (PCA). For the metrics in Section 4,
we computed pair-wise distances using Hamming dis-
tances for the binary features and Euclidean distances
for the continuous features. For each distance matrix,
we divided each column by its standard deviation. All
experiments used 10-fold cross-validation. The vi-
sualisation quality measures were computed with a
range of neighbourhood sizes (5,10,15,20) and the
mean of these measures over the different sizes and
cross-validation runs was computed.

5.1 Synthetic Dataset

The synthetic dataset was generated from an
equiprobable mixture of two Gaussians,N (mk, I)

(with k = 1,2) with meansm1 =

(
2.0
3.5
3.5

)
, andm2 =

Table 1: GTM and GGTM visualisation quality metrics of
the 12-dimensional synthetic datasets. Each figure repre-
sents the average over a 10-fold cross-validation with one
standard deviation on the test sets.

GTM GGTM GGTM
complete complete missing

Trustworthiness 0.969±0.003 0.949±0.024 0.947±0.027
Continuity 0.964±0.003 0.970±0.013 0.969±0.014
MRREx 0.040±0.000 0.043±0.003 0.042±0.003
MRREz 0.004±0.000 0.038±0.002 0.037±0.002

(
3.5
4.5
4.5

)
. A dataset with 9-dimensional binary fea-

tures from four classes was also generated (these
classes were not used as inputs to the visualisation).
Both continuous and binary data were combined to
make a dataset of 12 features with 2,800 data points.
The visualisation results of the complete and missing
datasets (10% randomly removed) are shown in Fig-
ure 1 and the quality metrics are given in Table 1.

(a) GTM (training set) (b) GTM (test set)

(c) GGTM (training set) (d) GGTM (test set)

(e) GGTM missing (train-
ing set)

(f) GGTM missing (test
set)

Figure 1: GTM and GGTM visualisations of the synthetic
12-dimensional datasets with 3 continuous and 9 binary fea-
tures.

We also generated a dataset with two multi-
category features with 8 and 16 categories in the
first and second features respectively. We ap-
pended the multi-category features to the previous
12-dimensional dataset and used a 1-of-S encoding
scheme for the multi-category features. Labels were
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Table 2: GTM and GGTM visualisation quality metrics of
the 14-dimensional synthetic datasets.

GTM GGTM GGTM
complete complete missing

Trustworthiness 0.962±0.004 0.977±0.009 0.973±0.014
Continuity 0.946±0.008 0.980±0.007 0.976±0.013
MRREx 0.045±0.001 0.044±0.001 0.116±0.005
MRREz 0.045±0.001 0.041±0.002 0.132±0.005

based on the four classes in the binary data.The visu-
alisation results of the 14-dimensional complete and
missing datasets are shown in Figure 2 and the corre-
sponding quality metrics are given in Table 2. The

(a) GTM (training set) (b) GTM (test set)

(c) GGTM (training set) (d) GGTM (test set)

(e) GGTM missing (train-
ing set)

(f) GGTM missing (test
set)

Figure 2: GTM and GGTM visualisations of the synthetic
14-dimensional datasets with 3 continuous, 9 binary and 2
multi-category features.

proportion of missing values has also been increased
to 30%, 50%, 70% and 90% without substantially de-
grading the visualisation quality measures.

5.2 Hypothyroid Dataset

This real-world dataset is publicly available from the
UCI data repository (Bache and Lichman, 2013). The
dataset consists of two variable types: 15 binary and
6 continuous features. It contains three classes: pri-
mary thyroid, compensated thyroid and normal. The
dataset was originally divided into a training set of

Table 3: GTM and GGTM visualisation quality metrics of
the hypothyroid disease datasets.

GTM GGTM GGTM
complete complete missing

Trustworthiness 0.718±0.022 0.718±0.015 0.716±0.014
Continuity 0.804±0.017 0.843±0.014 0.835±0.007
MRREx 0.018±0.000 0.019±0.000 0.019±0.000
MRREz 0.016±0.000 0.016±0.000 0.016±0.000

3,772 data points (93 with primary hypothyroid, 191
with compensated hypothyroid and 3488 normal) and
a test set of 3,428 data points (73 with primary hy-
pothyroid, 177 with compensated hypothyroid and
3178 normal). These training and test sets have been
merged prior to running a 10-fold cross-validation.
The visualisation results of the complete and missing
datasets are shown in Figure 3 and the quality metrics
are given in Table 3.

(a) GTM (training set) (b) GTM (test set)

(c) GGTM (training set) (d) GGTM (test set)

(e) GGTM missing (train-
ing set)

(f) GGTM missing (test
set)

Figure 3: GTM and GGTM visualisations of the thyroid
disease datasets. The cyan circles, red plus sign and blue
squares represent primary hypothyroid, compensated hy-
pothyroid and normal respectively.

6 CONCLUSIONS

A generalisation of the GTM to heterogeneous
and missing data has been described and as-
sessed in this paper. This involves modelling the
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continuous and discrete data with Gaussian and
Bernoulli/multinomial distributions respectively.
These extensions have been suggested in (Bishop
et al., 1998) but this is the first time the mathematical
details have been worked out and an implementation
written and evaluated.

Visualisation results for synthetic data using the
GGTM have shown more compact clusters for each
class compared to the standard GTM whereas for the
real dataset no significant difference was observed.
For synthetic datasets with missing values, GGTM vi-
sualisations have greater compactness for each class.
In terms of visualisation quality evaluation metrics,
we observed that for a mix of continuous and binary
data, the trustworthiness and MRREx are slightly bet-
ter for standard GTM compared to GGTM whereas
the continuity and MRREz were better for GGTM
compared to standard GTM. However, for a mix of
continuous, binary and multi-category features, all the
quality evaluation measures were better for GGTM
compared to the standard GTM. Missing values have
caused limited deterioration in results compared to the
complete data case.
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