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Abstract: Most existing hair capturing methods reconstruct 3D hair models from multi-view stereo based on complex
capturing systems composed of many digital cameras and light sources. In this paper, we introduce a novel hair
capturing system using consumer RGB-D (Kinect sensors). Our capture system, consisting of three Kinect v2
sensors, is much simpler than previous hair capturing systems. We directly use the 3D point clouds captured
by Kinect v2 sensors as the hair volume. Then we adopt a fast and robust image enhancement algorithm to
adaptively improve the clarity of the hair strands geometry based on the estimated local strands orientation and
frequency from the hair images captured by the Kinect colour sensors. In addition, we introduced a hair strand
grow-and-connect algorithm to generate relatively complete hair strands. Furthermore, by projecting the 2D
hair strands onto the 3D point clouds, we can obtain the corresponding 3D hair strands. The experimental
results indicate that our method can generate plausible 3D models for long, relatively straight hair.

1 INTRODUCTION

Recent advances in consumer RGB-D sensors have
facilitated real-world object capturing and modeling.
Consumer RGB-D sensors can now provide relatively
accurate images and 3D point clouds with an easy, ef-
ficient, and inexpensive capturing procedure. For ex-
ample, the Kinect v2 depth sensor provides improved
ability of 3D capturing and 3D visualization than the
Kinect for Xbox 360. In addition, the Kinect v2 sen-
sor has a 1080p color camera which can capture clear
images and videos. Researchers have previously used
Kinect depth sensors to capture 3D human body mod-
els, (Tong et al., 2012) (Wang et al., 2012) (Li et al.,
2013) (Shapiro et al., 2014), however, using Kinect
sensors to capture real human hair models has not
been explored.

Hair modeling remains one of the most challeng-
ing tasks due to the characteristics of hair, such as
omnipresent occlusion, specular appearance and com-
plex discontinuities (Ward et al., 2007). For hair mod-
eling, most existing methods utilize multi-view 2D
hair images to obtain 3D hair geometry information
(Paris et al., 2008) (Luo et al., 2012) (Luo et al.,
2013b) (Luo et al., 2013a). However, such meth-
ods usually require complex capture systems com-
posed of many digital cameras and light sources and
produce a large number of hair images. The large

amount of the hair images makes the reconstruction
a time-consuming procedure. In addition, user as-
sistance is needed to a certain extent (for example:
to clear the outliers from the reconstruction results).
In our proposed method, our capture system is much
simpler. We use three Kinect v2 sensors to obtain
both the 2D images and 3D depth data from differ-
ent view angles of real hair or a wig. Since the 3D
hair point clouds are directly captured by Kinect v2
depth sensors rather than reconstructed from images,
our method is computationally efficient and can effec-
tively reduce the cost. Based on the hair images cap-
tured by the color sensors, we apply a fast and robust
image enhancement algorithm to abstract hair strand
segments from hair images. Then we apply a grow-
and-connect algorithm to obtain relatively complete
2D hair strands represented by a predefined quantity
of control points. Finally, we project the 2D hair con-
trol points on the 3D point clouds to obtain the 3D
hair strands.

Our contributions are:

� Consumer level RGB-D sensors (Kinect v2 sen-
sors) can be used to perform easy and inexpensive
real straight hair capturing.

� Our image enhancement based 2D hair strands ex-
traction method is computational efficient and ro-
bust with respect to the quality of input hair im-
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ages.

� Our grow-and-connect algorithm can provide rel-
atively complete hair strands based on the local
feature of hair strand segments.

2 RELATED WORKS

Image-based hair capturing have been explored re-
cently. (Paris et al., 2004) proposed a system that cap-
tured 2D hair image sequences of a stationary head
with a fixed viewpoint under a moving light source.
They estimated the 2D hair orientation of the high-
light and used the light information to obtain the 3D
normal vector for hair modeling. (Wei et al., 2005)
used a hand-held camera or video camera to cap-
ture 2D hair images under natural lighting conditions.
They detected the local orientation of every pixel in
each hair image and represented every hair fiber using
a sequence of chained line segments. They applied
triangulation for each fiber segment using image ori-
entations of multiple views to reconstruct the 3D hair
fibers and generated a visual hull to constrain the syn-
thesis of the hair fibers. (Paris et al., 2008) presented
an active acquisition system called Hair Photobooth.
The system is composed of 16 cameras, 150 LED
light sources and 3 projectors. They acquire hair im-
ages under different lighting directions from a num-
ber of cameras to recover the hair reflectance field.
They also used triangulation to retrieve the location of
the hair strands. (Jakob et al., 2009) proposed an ap-
proach that can obtain accurate individual hair strands
by using focal sweeps with a robotic-controlled cam-
era equipped with a macro-lens. (Beeler et al., 2012)
used an algorithm to reconstruct facial hair strand ge-
ometry using a high resolution dense camera array.
They developed an algorithm to refine the facial hair
strand connections and remove outliers. (Luo et al.,
2012) presented a hair modeling method based on ori-
entation fields with structure-aware aggregation. This
method can reconstruct detailed hair structures for a
number of different hair styles. (Luo et al., 2013b)
developed a hair modeling method based on an 8-
camera wide-baseline capture system. They applied
strand-based refinement to reconstruct an approxi-
mate hair surface and evaluated their reconstruction
method on a set of synthetic hair models, resulting in
an average reconstruction error of about 3 mm. (Luo
et al., 2013a) proposed a structure-aware hair capture
system. They had two systems to capture the wig and
real hairstyle: A camera held by a robotic arm takes
50 images from different viewpoints for each wig and
the real hairstyle capture system consisted of 30 cam-
eras. The system reconstructed 3D point clouds from

multi-view images. They also calculate the 3D orien-
tation field based on the 2D orientation fields in each
image.Then complete hair models were generated us-
ing a procedure that started from strand segmenta-
tions to ribbons and finally to complete wisps. How-
ever, the performance of this method depended on a
good initial point cloud from multi-view stereo cap-
ture. Moreover, a careful and time-consuming man-
ual clean-up procedure is needed. (Hu et al., 2014)
introduced a hair capture system using simulated ex-
amples. They used the Super-Helices model to sim-
ulate static hair strands and generated 18 hair model
databases. They applied a strand-fitting algorithm to
fit cover strands they reconstructed from multi-view
hair images onto the generated models in order to ob-
tain structural plausible hair models. By introducing
the simulated examples, they avoid the procedure of
manually cleaning up the outliers in 3D reconstruc-
tion. Determining which hair model should be used
is a key step in their method. However, the strand-
fitting algorithm may need to go through all available
databases to determine the fitness and the correspond-
ing procedure is time-consuming.

3 CAPTURING SYSTEM

We have adopted the Kinect v2 sensor which was re-
leased by Microsoft in August, 2014. The new gen-
eration Kinect has a higher definition camera with a
resolution of 1920 by 1080 and is equipped with a
new depth sensor which employs time-of-flight (ToF)
technology. Our hair capture system consists of three
Kinect v2 sensors. The three Kinect v2 sensors are
placed at the back side, right side, and left side of the
model, as shown in Figure 1.

Figure 1: Hair capturing system.
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This arrangement helps us to capture the images
and the depth data of the hair. We apply a standard
calibration (Macknojia et al., 2013) method to esti-
mate the relative position and orientation between ev-
ery pair of Kinect v2 sensors in order to obtain a com-
posite 3D hair point clouds.

4 2D GUIDE HAIR STRANDS
GENERATION

A human head typically consists of a large volume of
small-diameter hair strands (Ward et al., 2007), thus it
is very difficult to abstract each single hair strand from
hair images. Since our system is designed to capture
3D models of long straight hair, and noting that ad-
jacent hair strands tend to be alike, it is possible to
generate guide hair strands and add similar neighbor-
ing strands to obtain complete 3D hair models.

Figure 2: Gabor filtered Response. (a) the hair region im-
age. (b) the Gabor filtered response.

From previous hair capturing methods, we discov-
ered that the most significant information of hair im-
ages is the orientation of the hair strands. Gabor filters
are well suited to estimating the local orientation of
hair strands (AK. and F., 1990). The intensity hair im-
ages are convolved with Gabor filters of varying filter
kernels for different orientations (we use 10 equidis-
tant orientations covering a range of 0� to 180�. At
each pixel position, the orientation that produces the
highest Gabor response is stored in the orientation
map and the maximum response is saved as the Ga-
bor response image, as shown in Figure 2.

Hair strands, especially long hair strands, are dif-
ficult to directly extract from Gabor filter esults using
traditional edge-detection algorithms. Thus, we ap-
ply the image enhancement algorithm developed by

Figure 3: Enhanced hair image.

(Hong et al., 1998) to enhance the hair strands ge-
ometry in hair images based on the estimated local
orientation and frequency. We perform normalize the
image, then both the orientation and frequency are es-
timated. Furthermore, we generate the region masks
and filter the image again. The enhanced hair image
is shown in Figure 3. This image enhancement al-
gorithm is computationally efficient and robust with
respect to the quality of input hair image.

We then erode the enhanced image to give the
hair strands the one-pixel-width presentation which
is easy to track by using a standard line-tracing al-
gorithm. However, the eroded image contains some
individual points and bifurcation points need to be
removed. We also remove the segments which are
shorter than the predefined length threshold. In addi-
tion, we apply the hair region mask on the hair image
to obtain only the strand segments in hair region, as
shown in Figure 4 . We use 10 control points to rep-
resent each hair strand segment (1 head point, 1 tail
point and 8 body points), as shown in Figure 5(a).

In order to connect the hair strand segments into
long hair strands, we apply a grow-and-connect algo-
rithm. The grow and connect result is shown in Fig-
ure 5. The procedure of the algorithm is:
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Figure 4: Hair strands segments extraction results. (a)
eroded hair strand image. (b) eroded hair strand segments
in hair region. (c) hair strand segments shown in different
colors.

� Step 1: Current hair strand segment grows in two
directions with a predefined increment threshold;

� Step 2: Calculate the distance between the head/
tail point of current hair strand segment and other
segments;

� Step 3: Choose the pair of possible connection
points with the minimum distance.

� Step 4: If the minimum distance is smaller than
the predefined distance threshold then connect the
segments.

� Step 5: After all possible connections have been
made, repeat step 1 to step 4 a predefined number
of times.

Figure 5: 2D guide hair strands generation result. (a) spline
represented hair strand segments. (b) grow-and-connect
long hair strands result. (c) hair strands shown in the origi-
nal captured hair image.

5 3D HAIR MODEL
GENERATION

5.1 3D Point Clouds Alignment

The point clouds alignment is performed with the
Kinect calibration parameters. And we adopted point-
to-plane based ICP (Besl and McKay, 1992) algo-
rithm which utilized iterative method to minimize the
distance between the points of two point clouds to im-
prove the alignment process, the point cloud align-
ment results are shown in Figure 6 .

5.2 3D Connection Analysis

With the 2D hair strand connection method, we can
partially solve the hair occlusion and missing data
problem. However, the hair segments which are con-
sidered as plane curves in the 2D method do not take
into account 3D information and it forces us to con-
sider and analyze the strand segment connection in
3D space. We adopt a connection method focusing
on short-distance connection and long-distance con-
nection in different steps. First, we connect the strand
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Figure 6: Hair point clouds alignment results. The upper
row shows the three point clouds from the left, back and
right point of views. The lower row shows the point clouds
alignment result without/with texture.

segments which had relatively short distance between
their end points. For each strand segment with the
curve parametric equation:

p(x;y) = c(t) , t = [0; :::;n]

The point c(0) is defined as the head point, and the
point c(n) is defined as the tail point. For each strand
segment’s head point, we search for the nearest tail
point attempting to find the proper connection candi-
dates. We screen the tail point candidates and keep
them only when the distance between a given strand’s
tail and current strand’s head is shorter than d. We
find the strand segment whose tail is the closest to the
current strand’s head. We define the current strand as
reference strand and candidate strand as target strand.
As shown in Figure 7, there are three basic conditions
for the possible connection in the first step.

Then we provide three connection methods for
these conditions.
� For the overlapped segments, we delete three

points from the head of the reference strand and
the tail of the target strand. In this case, we con-
nect the new head to the new tail.

� For the missed segments, we delete three points
from the tail of the target strand, and connect the
new tail to the head of the reference strand.

Figure 7: Short distance connection, (a) overlapped seg-
ments, (b) missed segments, (c) regular separated segments.

� For the regular separated segments, we connect
the head and tail directly.

In addition, we try to find the long-distance con-
nections. We define a cone whose apex is the refer-
ence segment’s head point, and whose cone angle is
equal to 30�.

The tangent line at the head point of the reference
segment points to the center point of the cone’s base.
Segments with their tail points within the area of the
cone are the candidate segments (target segments). To
determine whether a segment is a candidate or not, we
define the head point of the reference segment as A,
and the tail point of a segment as B. The vector from
A to B is defined as ĀB , and the direction vector of the
tangent line at the head point of the reference segment
is defined as V̄ . If the vector angle between V̄ and
ĀB is smaller than 15�, the segment is considered as
a target segment. The vector angle of ĀB and V̄ is
defined by equation:

q = cos�1( ĀB�V̄
jĀBj�jV̄ j )

In Figure 8, the vector angle q is greater than 15�,
thus the segment C is not a candidate. For all tar-
get segments, we first calculate a connection weight
value between the tails and the reference’s head. Then
we connect the reference segment and target segment
with the highest connection weight. The connection
weight was introduced into the determination proce-
dure as a value that can measure the viability of a
connection between two strand segments. Our algo-
rithm considers the straight-line distance between the
tail and head of two curves, the end point curvature
and the slope

For a reference curve Cr, the slope at the head is
defined as Srh and the curvature at the head is defined
as Krh. For a target curve Ct , the slope at the tail is
defined as Stt and the curvature at the tail is defined as
Ktt . The distance between the reference’s head point
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and the target’s tail point is defined as d. A rough
connection-weight w can be defined by the equation:

w = a=jSrh�Stt j+ b

d + g=jKrh�Kttj

where a, b and g are the connection coefficients. By
adjusting the coefficients, the relevance of each factor
in the check can be altered to match a given scenario.
In our experiment, we chose connection coefficients
a = 5, b = 40 and g = 0:5. The connection results are
shown in Figure 8

Figure 8: Long distance connection.

The mapping relationship of the 2D hair image
and the 3D point clouds can be obtained through
Kinect coordinate mapping function. Based on this
mapping relationship, we can project 2D guide hair
strands onto 3D point clouds and obtain 3D guide hair
strands. By combining 3D guide hair strands from
different views, we can obtain the composite 3D guide
hair strands, as shown in Figure 9.

Figure 9: 3D guide hair strands. The red points are the head
points, the blue points are the tail points. (a) the original
3D guide hair strands. (b) the 3D guide hair strands after
connection.

With the curve parametric function, we select a
serial of continuous 3D control points on every spline
curve. The guide hair strands generated with the curve
function represent the primary hair style and a parti-
cle system can be used to create a number of child

hair strands surrounding each guide hair strand. A
complete hair model can be generated this way.

With the control points, the child hair strands’
density, style, and length can be determined.

Child hair strands are sub-particles which makes it
possible to work primarily with a relatively low num-
ber of parent particles. They carry the same physical
properties and materials as their guide hair. And they
are colored according to the exact location where they

Figure 10: 3D Hair model.The upper row shows the input
hair images. The first row shows the input hair image. The
second row shows the corresponding 3D hair model from
the right, back and left views. The third row shows the 3D
hair model from other point of views.
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are emitted. The number of children hair affects the
overall density of the hair. Experimental results are
shown in Figure 10.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we present a novel system for capturing
straight or relatively straight hair of medium or long
length based on Kinect v2 sensors. We take advan-
tages of the depth and color sensors of the Kinect v2
to obtain reliable 3D depth data and 2D hair images.
Based on the 2D hair images, we introduce an im-
age enhancement algorithm to abstract 2D hair strand
segments followed by a grow-and-connect algorithm
to generate long 2D guide hair strands. By project-
ing the 2D guide hair strands onto 3D point clouds,
we can obtain guide 3D hair strands and generate the
surrounding child strands. Since the 3D hair strands
of our long straight hair models are presented using
control points, our hair model can be easily adapted
for use in rendering and animation.

The modeling of relatively straight hair of medium
to long length is the first step in our hair modeling
method based on Kinect v2 sensors. In the future, we
will apply our hair modeling system to more compli-
cated hairstyles, such as curly hairstyles.

REFERENCES

AK., J. and F., F. (1990). Unsupervised texture segmenta-
tion using gabor filters. In Systems, Man and Cyber-
netics, 1990. Conference Proceedings., IEEE Interna-
tional Conference on, pages 14–19.

Beeler, T., Bickel, B., Noris, G., Beardsley, P., Marschner,
S., Sumner, R. W., and Gross, M. (2012). Coupled
3d reconstruction of sparse facial hair and skin. ACM
Trans. Graph., 31(4):117:1–117:10.

Besl, P. and McKay, N. D. (1992). A method for regis-
tration of 3-d shapes. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 14(2):239–256.

Hong, L., Wan, Y., and Jain, A. (1998). Fingerprint image
enhancement: Algorithm and performance evaluation.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20:777–789.

Hu, L., Ma, C., Luo, L., and Li, H. (2014). Robust hair
capture using simulated examples. ACM Transactions
on Graphics (Proceedings SIGGRAPH 2014), 33(4).

Jakob, W., Moon, J. T., and Marschner, S. (2009). Cap-
turing hair assemblies fiber by fiber. In ACM SIG-
GRAPH Asia 2009 Papers, SIGGRAPH Asia ’09,
pages 164:1–164:9, New York, NY, USA. ACM.

Li, H., Vouga, E., Gudym, A., Luo, L., Barron, J. T., and
Gusev, G. (2013). 3d self-portraits. ACM Trans-
actions on Graphics (Proceedings SIGGRAPH Asia
2013), 32(6).

Luo, L., Li, H., Paris, S., Weise, T., Pauly, M., and
Rusinkiewicz, S. (2012). Multi-view hair capture us-
ing orientation fields. In Computer Vision and Pattern
Recognition (CVPR).

Luo, L., Li, H., and Rusinkiewicz, S. (2013a). Structure-
aware hair capture. ACM Transactions on Graphics
(Proc. SIGGRAPH), 32(4).

Luo, L., Zhang, C., Zhang, Z., and Rusinkiewicz, S.
(2013b). Wide-baseline hair capture using strand-
based refinement. In Computer Vision and Pattern
Recognition (CVPR).

Macknojia, R., Chavez-Aragon, A., Payeur, P., and La-
ganiere, R. (2013). Calibration of a network of kinect
sensors for robotic inspection over a large workspace.
In Robot Vision (WORV), 2013 IEEE Workshop on,
pages 184–190.

Paris, S., Briceño, H., and Sillion, F. (2004). Capture of hair
geometry from multiple images.

Paris, S., Chang, W., Kozhushnyan, O. I., Jarosz, W., Ma-
tusik, W., Zwicker, M., and Durand, F. (2008). Hair
photobooth: Geometric and photometric acquisition
of real hairstyles. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 27(3):30:1–30:9.

Shapiro, A., Feng, A., Wang, R., Li, H., Bolas, M.,
Medioni, G., and Suma, E. (2014). Rapid avatar cap-
ture and simulation using commodity depth sensors.
Computer Animation and Virtual Worlds.

Tong, J., Zhou, J., Liu, L., Pan, Z., and Yan, H. (2012).
Scanning 3d full human bodies using kinects. Visu-
alization and Computer Graphics, IEEE Transactions
on, 18(4):643–650.

Wang, R., Choi, J., and Medioni, G. (2012). Accurate
full body scanning from a single fixed 3d camera. In
3D Imaging, Modeling, Processing, Visualization and
Transmission (3DIMPVT), 2012 Second International
Conference on, pages 432–439.

Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R.,
Cani, M.-P., and Lin, M. C. (2007). A survey on
hair modelling: styling, simulation, and rendering.
IEEE Trans. on Visualization and Computer Graph-
ics, 13(2):213–234.

Wei, Y., Ofek, E., Quan, L., and Shum, H.-Y. (2005). Mod-
eling hair from multiple views. ACM Trans. Graph.,
24(3):816–820.

GRAPP�2015�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

164


