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Abstract: The hypothesis underlying this paper is that a nonlinear relationship exists between Electrocardiography 
(ECG) and Heart Related Variability (HRV) parameters, plethysmography (PPG), and blood pressure (BP) 
values. If this hypothesis is true, rather than continuously measuring the patient’s BP, a wearable wireless 
PPG sensor can be applied to patient’s finger, an ECG sensor to his/her chest, HRV parameter values can be 
computed and, through regression, both systolic and diastolic BP values can be indirectly measured. Genetic 
Programming (GP) automatically both evolves the structure of the mathematical model and finds the most 
important parameters in it. Therefore, it is perfectly suited to perform regression task. As far as it can be 
found in the scientific literature of this field, until now nobody has ever investigated the use of GP to relate 
parameters derived from HRV analysis and PPG to BP values. Therefore, in this paper we have carried out 
preliminary experiments on the use of GP in facing this regression task. GP has been able to find a 
mathematical model expressing a nonlinear relationship between heart activity, and thus ECG and HRV 
parameters, PPG and BP values. The approximation error involved by the use of this method is lower than 2 
mmHg for both systolic and diastolic BP values. 

1 INTRODUCTION 

Arterial blood pressure can be continuously 
measured in real time and with no patient’s body 
cannulation by means of the continuous non-
invasive arterial pressure (CNAP) method. 

This method shows the positive features of two 
clinical “gold standards”: firstly, blood pressure 
(BP) is continuously measured in real time as it 
takes place in the invasive arterial catheter system 
(IBP), secondly it is non-invasive as it is the case for 
the standard procedure based on upper arm 
sphygmomanometer (NBP). Recently, results have 
been promising in this field as concerns the features 
of ease of use, accuracy, and clinical acceptance. 

Currently a high demand exists for accurate and 
easy-to-use CNAP-systems. Because of this, there is 
an increasing focus on these devices by researchers, 
practitioners and the related industry of medical 
devices. The development of efficient BP 
measurement instruments is facilitated by the use of 
small yet powerful microcomputers, and by that of 

digital signal processors as well. Small, cheap 
devices of this kind allow for an easy processing of 
complex and computationally intensive 
mathematical functions. Researchers (Maguire, 
2011) (von Skerst, 2008) have reported that invasive 
catheters are used to continuously measure BP in 
only a small fraction, between 15% and 18%, of 
inpatient surgeries. The practical standard of care for 
all the remaining inpatient surgeries, and for 
outpatient surgeries as well, is, instead, constituted 
by intermittent, non-invasive blood pressure 
monitoring. Unfortunately, this latter monitoring 
type has the feature of being discontinuous, which 
implies possibly missing some dangerous 
hypotensive episodes. As an example, when 
monitoring women undergoing Caesarean section, 
hypotensive phases were detected by CNAP in 39% 
of the cases, but only in 9% by non-invasive 
methods.  As a further example, (Ilies, 2012) reports 
that, when CNAP was used to measure systolic BP 
values higher than 100mmHg, dangerous foetal 
acidosis did not occur. Moreover, (Dueck, 2006) 
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reports that more than 22% of hypotensive episodes 
were missed, thus leading to delayed treatments or 
even no treatments at all. 

Of course, it is very difficult to detect in-artery 
pressure changes from outside the arteries 
themselves, while it is quite easy to measure changes 
in artery volume and flow. This can be accomplished 
through the use of e.g. echography, light, 
impedance, and so on. The problem is that there is 
no linear correlation between these changes in 
volume and the arterial pressure, especially when the 
measurement takes place in the periphery, where it is 
easier to access the arteries.   

As a consequence, non-invasive devices must be 
able to transform the volume signal measured at the 
periphery into a corresponding for the arterial 
pressure. Some techniques are based on vascular 
unloading, tonometry, pulse transit time (PTT). This 
latter relies on the fact that, each time a heart ejects 
stroke volume towards arteries, the BP wave reaches 
the periphery after a given transit time. PTT has an 
indirect dependence on BP, namely it is known that 
the higher the pressure, the faster PTT is. The non-
invasive detection of blood pressure changes can be 
carried out thanks to this phenomenon (Sotera 
wireless). The method has to be calibrated in order 
to get absolute values. PTT-based techniques are 
good examples of indirect ways for continuously 
measuring blood pressure.  In them, a measure is 
continuously taken of other parameters, and a non-
linear relationship is hypothesized.  

In the knowledge discovery area any problem as 
this latter, in which a relationship between some 
variables, called independent, and another one, 
called dependent, is supposed, and the aim is to 
search for the explicit form of the mathematical 
model connecting them, is termed as a regression 
problem. The term “independent” simply means that 
these variables are the input variables to the 
problem, and this does by no way imply that they are 
not correlated one another. In traditional regression 
analysis the user must specify the structure of the 
mathematical model. Hypothesizing or 
experimentally finding a good model is a very 
laborious and time-consuming trial-and-error 
procedure, and human minds may experience 
difficulties in guessing which the most important 
independent variables affecting the dependent one 
are, and which the best formula relating them is. 

Genetic Programming (GP) (Koza, 1992), 
instead, automatically both evolves the structure of 
the mathematical model and finds the most 
important parameters in it. Therefore, it is perfectly 
suited to perform regression task. 

Nowadays wearable sensors are becoming more 
and more widespread and cheap. Among them, chest 
sensors able to capture electrocardiographic (ECG) 
signals are frequently used.  Starting from an ECG 
signal, Heart Rate Variability (HRV) analysis can 
easily extract a wide set of parameters describing 
ECG activity of a patient. Moreover, wearable 
wireless sensors can be applied to a patient’s finger 
to compute plethysmography (PPG) values. 

The hypothesis underlying this paper is that a 
nonlinear relationship exists between PPG and heart 
activity (and thus ECG and HRV parameters), and 
blood pressure. If this hypothesis is true, rather than 
continuously measuring the patient’s blood pressure, 
a wearable wireless PPG sensor can be applied to 
patient’s finger, a wearable wireless ECG sensor to 
his/her chest, HRV parameter values can be 
computed and, through regression, systolic and 
diastolic blood pressure can be indirectly measured.   

As far as it can be found in the literature of this 
field, until now nobody has ever investigated the use 
of GP to relate parameters derived from HRV 
analysis and PPG to BP values. Therefore, in this 
paper we carry out some preliminary experiments on 
the use of GP in facing this regression task. 

2 RELATED WORKS 

Some papers exist in which the aim is the 
investigation of the relationship between the blood 
pressure and some other variables.  In the following, 
some of those papers are shortly described. 

In (Meigas, 2007) the BP estimation method 
relies on the hypothesis that a relationship exists 
between the pulse wave velocity (PWV) in the 
arteries and BP. Measuring PWV requires 
registering two time markers. The first marker 
depends on ECG R peak detection, whereas the 
second on detecting the pulse wave in peripheral 
arteries. Their experimental device for BP 
monitoring is made of two analogue modules for the 
acquisition of signals, namely one for ECG and 
another for PPG signal. Namely, the ECG electrodes 
are positioned on patient’s wrists, while a pulse 
oximetry finger to register PPG is placed on a finger. 

In (Najjar, 2008) the aim was the evaluation of 
whether PWV can reliably predict the longitudinal 
changes in systolic BP (SBP), and the incident 
hypertension. The authors measured PWV at 
baseline in 449 volunteers, partly normotensive and 
partly untreated hypertensive. Their average age was 
53±17. BP measurements were repeatedly carried 
out during an average follow-up of 4.9 ± 2.5 years. 
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By considering covariates such as body mass index, 
age, and mean arterial pressure, the authors applied 
linear mixed effects regression models, and 
concluded that PWV can independently determine 
the longitudinal SBP increase.  

In (Inajima, 2012) an attempt was made to 
design and build a wearable sensor for BP 
measurement. This sensor should have the features 
of placing a lower burden on the examinees, of 
being less influenced by patient’s physical 
movements, and of being usable to continuously 
measure BP. They modified the existing Moens-
Korteweg BP equation by hypothesizing that the 
following relation exists:  Ps = b1 / TPTT 2 + b2, 
where TPTT is the pulse-wave transit time, Ps  is the 
systolic BP, and coefficients b1 and b2 can be 
derived by using measured values of an examinee’s 
BP and measured values of TPTT . They implemented 
a new system for the calculation of patient’s systolic 
BP. This system made use of electrocardiography 
and ear-lobe pulse waves. Through this system they 
were able to estimate patients’ BP, and to also 
directly measure patient’s arterial pressure. They 
found that their methodology was able to correctly 
capture trends in the variations in BP. 

In (Gesche, 2012) the aim was the creation of a 
function able to link SBP and PWV, and the testing 
of its reliability in determining suitable absolute SBP 
values by using a non-linear algorithm and a one-
point calibration. They asked 63 volunteers to 
exercise to induce BP increase, and obtained this 
nonlinear function: BPPTT = P1 * PWV * e(P3*PWV) + 
P2 * PWVP4 – (BPPTT,cal - BPcal), with P1 = 700, P2 = 
766,000, P3 = -1, and P4 = 9.  BPPTT,cal is the BP 
value, computed from PTT, corresponding to the BP 
value measured by the reference method, while BPcal 
is the BP measured by the reference method (cuff) at 
experiment beginning. This non-linear function was 
used to compute BP values. Comparing SBP values 
using the PTT-based method and those measured by 
cuff resulted in a significant correlation. 

This brief review shows that researchers are 
striving to find a suitable relationship between 
independent and dependent variables, yet this is 
done at a high cost in terms of labour, time, and 
experiments to find the values of the coefficients. 

3 SIGNAL PROCESSING 

The regulation of BP is traditionally described in 
terms of homeostasis (Vukovich & Knill, 1980). 
This is regulated by the autonomic nervous system 
(ANS) due to two opposing divisions: 

the sympathetic division and the parasympathetic 
division. Heart rate variability (HRV) is a tool that 
represents the balance between the sympathetic and 
parasympathetic branches of the autonomic nervous 
system. As shown in many studies (Berntson et al., 
1997; Electrophysiology et al., 1996; Karapetian, 
Evaluation, & Research, 2008), HRV is considered 
one of the most studied non-invasive biomarkers of 
ANS activities, and it can be extracted by using a 
wearable ECG sensor. 

Furthermore, as demonstrated in (Golparvar, 
Naddafnia, Saghaei, & Mahmood, 2002), the PPG is 
a simple and low-cost optical technique that can be 
used to detect blood volume changes in the micro-
vascular bed of tissue. The PPG is a physiological 
waveform related to the sympathetic nervous system 
activity (Allen, 2007), and it can be monitored by 
using a wearable non-invasive finger pulse oximeter. 
For these reasons we investigate here the 
associations among HRV and PPG measurements 
and the Systolic BP (SYS) and Diastolic BP (DIA) 
to propose a mathematical model to calculate the 
SYS and the DIA by using only a wearable ECG 
sensor and a pulse oximeter.  

To realize the mathematical model, the MIMIC 
database (Goldberger et al., 2000), available on 
physionet.org, was used. The MIMIC Database 
includes data recorded from over 90 ICU patients. 
The data include signals and periodic measurements 
obtained from a bedside monitor as well as clinical 
data obtained from the patient's medical record. The 
files include qrs (ECG beat labels, all beats labelled 
normal), al (annotations for alarms related to 
changes in the patient's status), in (annotations 
related to changes in the functioning of the monitor), 
abp (arterial blood pressure), pap (pulmonary 
arterial pressure), cvp (central venous pressure), and 
ple (fingertip plethysmograph) annotations. 

3.1 ElectroCardioGraphy 

ECG signal is pre-processed by using Kubios 
(Niskanen, Tarvainen, Ranta-Aho, & Karjalainen, 
2004; Tarvainen, Ranta-Aho, & Karjalainen, 2002), 
a Matlab-based software package for event-related 
bio-signal analysis developed by the University of 
Kuopio, Finland. Kubios is an advanced computer 
program to extract and analyse HRV.  

Standard linear HRV analysis is performed 
according to the guidelines of the European Society 
of Cardiology and the North American Society of 
Pacing and Electrophysiology (Electrophysiology et 
al., 1996). Additionally, nonlinear features are 
computed according to the literature (Melillo, 
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Bracale, & Pecchia, 2011; Rajendra Acharya, Paul 
Joseph, Kannathal, Lim, & Suri, 2006). All the 
computed measures are summarized in Table 1. 

3.2 Plethysmography and Arterial 
Blood Pressure Pulse Waveform 

PPG signal and the Arterial Blood Pressure (ABP) 
pulse waveform are processed using a Matlab script  
developed to automatically calculate the minimum 
and the maximum values of PPG and the systolic 
and diastolic blood pressure values from the ABP 
waveform, as shown in Fig. 1.  

 
Figure 1: An example of a record contains the ECG, the 
ABP waveform and the PPG. The blue circles indicate the 
systolic BP values; the red circles indicate the diastolic BP 
values; the pink circles indicate the maximum PPG values; 
the green circles indicate the minimum PPG values. 

3.3 The Database 

Starting from the MIMIC database (Goldberger et 
al., 2000) a new dataset has been built to develop the 
mathematical model. 

The new database contains the HRV measures, 
the BP measurements and the PPG measurements.  

It is composed by 50 instances for each subject. 
Each instance i in the new database is constituted by 
the following information: 

 sub_id: a number value to identify the subject; 
 SYS_BPi: the average of the Systolic BP 

computed in the i-th 1-minute time slot; 
 DIA_BPi: the average of the Diastolic BP 

computed in the i-th 1-minute time slot; 
 Pleth_maxi: the average of the maximum 

values of PPG signal computed in the i-th 1-
minute time slot; 

 Pleth_mini: the average of the minimum 
values of PPG signal computed in the i-th 1-
minute time slot; 

 f : a vector containing the 35 HRV measures 
reported in Table 1; 

Table 1: Linear and non Linear HRV features. 

Measure Description (Unit) 
Time Domain 

Mean RR The mean of RR intervals (ms) 
STD RR Standard deviation of RR intervals (ms) 
Mean HR The mean heart rate (1/min) 
STD HR Standard deviation of instantaneous heart rate 

value (1/min) 
RMSS Square root of the mean squared differences 

between successive RR intervals (ms) 
NN50 Number of successive RR interval pairs that 

differ more than 50 m (count) 
pNN50 NN50 divided by the total number of RR 

intervals (%) 
RR tri 
index 

The integral of the RR interval histogram 
divided by the height of the histogram 

TINN Baseline width of the RR interval histogram 
(ms) 

Frequency Domain 
Peak freq. 

VLF 
VLF band peak frequencies (Hz) 

Peak freq. 
LF 

LF band peak frequencies (Hz) 

Peak freq. 
HF 

HF band peak frequencies (Hz) 

Absol. 
Pow. VLF 

Absolute powers of VLF band (ms2) 

Absol. 
Pow. LF 

Absolute powers of LF band (ms2) 

Absol. 
Pow. HF 

Absolute powers of HF band (ms2) 

Rel powers 
VLF 

Relative powers of VLF bands (%) 

Rel powers 
LF 

Relative powers of LF bands (%) 

Rel powers 
HF 

Relative powers of HF bands (%) 

Normalized 
powers LF 

Powers of LF bands in normalized units 

Normalized 
powers HF 

Powers of HF bands in normalized units 

Total 
power 

Total Value for the spectral power (ms2) 

LF/HF 
ratio 

Ratio between LF and HF band powers 

EDR Electrocardiogram Derived Respiration (Hz) 
NonLinear Domain 

SD1 The standard deviation of the Poincarè plot 
perpendicular to the line of identity (ms) 

SD2 The standard deviation of the Poincarè plot 
along to the line of identity (ms) 

ApEn Approximate entropy 
SampEn Sample entropy 

D2 Correlation Dimension 
α1 Short-term fluctuation slope in Detrended 

Fluctuation Analysis 
α2 Long-term fluctuation slope in Detrended 

Fluctuation Analysis 
Mean line 

length 
Mean line length in RP (beats) 

Max line 
length 

Maximum line length in RP (beats) 

REC Recurrence Rate (%) 
DET Determinism (%) 
ShEn Shannon Entropy 
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Therefore, each instance is defined as follows:  ݅ = ;ௗܾݑݏ ܻܵܵ; ;ܣܫܦ ;ℎெ௫ݐ݈݁ܲ ;ℎெݐ݈݁ܲ ݂ 

In this paper we have considered four patients, 
so our database contains 200 instances in total. 

4 GENETIC PROGRAMMING 

4.1 The General GP Framework 

Genetic Programming (GP) (Koza, 1992) is a 
heuristic optimization technique based on mimicking 
in a computer mechanisms that are typical of the 
evolution in natural populations. GP relies on a set, 
called population, of solutions to a given problem. In 
the population, individuals are programs that are 
represented by tree structures, typically differing in 
shape and size. In each individual the internal nodes 
represent the functions, while the leaves represent 
terminals, meaning with this both problem variables 
and constant values. The program can be obtained 
by reading the tree in pre-order (see Figure 2). 

 
Figure 2: An example of a tree in Genetic Programming. 

This example tree encodes for the following in-
order expression: 7.9 + (3.2 *y) –x. 

A very delicate issue of GP is the choice of a 
fitness function, i.e. a criterion which may represent 
quantitatively the degree of goodness of any solution 
at solving the problem faced. Of course, the choice 
of a type of fitness depends on the problem at hand.  

The search procedure executed by a GP tool is 
described by the following pseudo-code: 
• load the problem data (e.g. regression values);  
• generate randomly an initial population of a 

number of Pop_size individuals, each of which 
represents a regression model;  

• evaluate each individual through the use of a 
suitable fitness function; 

• at each generation repeat the following steps 
until a new population is obtained: 
o choose an operator among crossover, 

mutation, and copy; 
o select a number of individuals in current 

population suited to the chosen operator; 
o apply the operator chosen in order to generate 

an offspring; 
o insert the offspring in the new population; 
o evaluate the new offspring through the use of 

the fitness function; 
• repeat the above step until a maximum number 

of generations Max_gen is reached. 

As the number of generations increases, better 
and better solutions in terms of better fitness values) 
to the original problem will very likely be found. 

Selection is a mechanism that chooses the 
individuals that will undergo the reproduction 
process among those contained in the current 
population. It should favour individuals with better 
fitness values to be chosen more frequently, yet 
allowing also worse individuals to be selected, 
though with lower probability. For the experiments 
described in this paper, the widely used tournament 
selection has been used. In it, a number of tourn_size 
individuals contained in the current population is 
chosen in a random way, and the best among them in 
terms of fitness is the one that is selected. 

The three genetic operators work as follows: 
Crossover. Two parent individuals are chosen, 

are in each of them a subtree is randomly selected. 
Then crossover swaps those subtrees from one 
parent individual to the other. The respect of the 
limit on the maximal depth allowed should be 
ensured by this operator. If this condition is not 
respected, then the too-deep offspring is discarded, 
and one of the two parents, randomly selected, 
becomes the new offspring. 

Copy. One individual is randomly selected from 
the current population and is copied in the new one. 

Mutation. A node in the tree is randomly 
selected, and starting from it a new subtree is 
generated. The check is carried out that the depth 
limit is not violated by this replacement. If this takes 
place, this new offspring is discarded and the 
original tree is copied into the new generation. 

Each time an operator must be chosen, this 
choice takes place on the basis of three probability 
values for them: p_mutate is that for mutation, 
p_cross for crossover, and p_copy for the direct 
copy. The sum of these three values must be equal to 
1. A random real value in [0.0, 1.0] is generated and 
its value determines the operator that will be used. 
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4.2 GP for Regression 

The goal of the use of GP for the regression problem 
relies in automatically finding the modelling of the 
relationship between the independent variables and a 
dependent one, in this case the blood pressure. Thus, 
given a fitness function, facing the regression 
problem by GP consists in searching the model that 
best describes the essential characteristics of this 
relationship. Of course, an exhaustive search 
performed by the complete enumeration of all the 
possible models unviable from a computational 
point of view. As a consequence, we make reference 
here to GP. Being GP a heuristic method, it does not 
guarantee that the global optimum will be achieved 
yet it typically finds a suboptimal solution in a 
computation time that is reasonable for the users. 

The evolving population is composed by 
‘formulas’, each of which represents one potential 
regression model. These models are encoded as trees 
with variable depth, and each of them is composed 
by elementary functions and terminals. The function 
set contains 11 well-known elementary functions, 
and is reported in Table 2. In it, Arity is the number 
of arguments a function has. 

Table 2: The set of the symbols representing the 
elementary functions, their description, and their arity. 

Symbol Arity Description 
+ 2 addition 
- 2 subtraction 
* 2 multiplication 
/ 2 protected division (returns 1 if  the 

denominator is 0) 
psqroot 1 protected square root (returns 0 for 

negative operands) 
plog 1 protected logarithm (rlog(0) is 0) 
sqr  square 

tanh 1 hyperbolic tangent 
sin 1 sine 
cos 1 cosine 
exp 1 exponential 

The terminal set, instead, consists of 37 symbols 
(the generic xi represents the i-th independent 
variable in the database), plus the Const symbol, 
representing a random constant value in a suitable 
range. All these terminals have arity equal to 0. 

In order to find the model, the available data is 
suitably divided into three sets: the train, the test, 
and the validation sets. The train set contains the 
items onto which the approximation of the actual 
output values will be carried out in the learning 
phase. The generalization ability of the model 
achieved is, instead, evaluated on the test set. 

Finally, the real evaluation of algorithm’s 
performance is carried out over the validation set. 

If we denote by S the model represented by a 
generic individual in the GP evolution, and if f is the 
function that represents a regression model over n 
instances, the fitness function Φ we use in this paper 
is the Root Mean Square Error (RMSE), i.e.: Φ = ∑ (ܵ(݅) − ݂(݅))ଶୀଵ ݊  

where S(i) is the value forecasted by the model on 
the i-th item of the problem. In this way the 
regression becomes a minimization problem. 

5 EXPERIMENTS 

We have empirically set the GP parameters values 
at: Pop_size = 500, Max_gen = 200, tourn_size = 7, 
p_mutate = 0.10, p_cross =  0.85, and p_copy = 
0.05.  

The database described in Section 3.3, composed 
by 50 instances for each of the four patients, has 
been divided into train, test, and validation sets. 
Namely, for each patient, each item has been 
randomly and exclusively assigned to one of the 
three sets in this way: 44% for the train set, 32% for 
the test set, and 24% for the validation set. 

GP is a nondeterministic algorithm, which means 
that its execution and its results depend on the initial 
value assigned to a random seed. In order to get rid 
of this feature, the GP algorithm has been run over 
the database 25 times. Among the 25 runs, we 
consider as the best one that in which the lowest 
RMSE value over the validation set has been 
achieved. In fact, the model found in that run shows 
the best ability to correctly get totally unknown data, 
so it has the highest generalization capability.   

The formula achieved in the best run for the 
systolic blood pressure is: ܻܵܵ_ܲܤ= ݏܿ	0.5064 ൬0.6095	݊ܽ݁ܯ	݊ܽ݁ܯ)݈ܴ݃ܪ	(ܴܪ 	൰− 0.5947 tanh ൬ܿݏ ൬݈ܲ݁ݐℎ_݉ܽ݊ܽ݁ܯݔ	ܴܪ ൰ − −൰ݔ݁݀݊݅	݅ݎݐ	ܴܴ	 0.7316	݁௧_0.7316 sin(݈ܲ݁ݐℎ_݉݅݊)+ 0.5857 sin(sin(sin(ܴܦܧ)))݁௧_ − sin(݈ܲ݁ݐℎ_݉݅݊) + 1.112 

Figure 3 reports how this formula allows fitting 
the real systolic BP values over the three sets. 
Namely, the top pane shows the behaviour over the 
train set, the middle pane that over the test set, and 
the bottom pane that over the validation set.   
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Figure 3: Results for systolic blood pressure. 

The results over the validation set, i.e. over data 
never learned by the GP algorithm, are very good, 
and the RMSE is 3.3679. This means that, on 
average, over previously unseen data any actual 
systolic blood pressure value and the corresponding 
computed one differ by ±√3.3679 = ±1.8352 mmHg, 
which is an excellent approximation.  

A very important result of the methodology used 
is that it has allowed performing the automatic 
selection, out of the 37 present in the database, of 
the most important parameters for predicting the 
values of the systolic blood pressure. 
They have turned out to be five: Pleth_min, 
Pleth_max, Mean HR, RR tri index, and EDR. This 
task is extremely difficult for a human being, 
however expert he can be of the field. 

Similarly, the formula achieved in the best run 
for the diastolic blood pressure is: ܲܤ_ܣܫܦ= ܴܦܧ	0.3132 − +݊݅݉_ℎݐ݈݁ܲ	2.142 2.899 tanh൫݊ܽݐℎ(݈ܲ݁ݐℎ_݉݅݊ + 0.6855)൯+ +((((ܴܪ	݊ܽ݁ܯ)sin)sin)݈݃	0.8554 1.829	tanh	(݁௧_) − 1.386 

Figure 4 reports how this formula allows fitting 
the real diastolic BP values over the three sets. 
Namely, the top pane describes the behaviour over 
the train set, the middle pane that over the test set, 
and the bottom pane refers to the validation set.   

For the diastolic pressure the results over the 
validation set, never learned by the GP algorithm, 
yield an RMSE value of 2.6692. In this case the 
approximation of any actual diastolic blood pressure 
value with its corresponding computed value over 
previously unseen data is even better than that for 
the systolic case, since their difference is now equal 
to ±√2.6692 = ±1.6338 mmHg. 

Here the automatic selection of the most 
important independent parameters has resulted in 
three of them, i.e.: Pleth_min, Mean HR, and EDR. 

By looking at the two formulae, it can be seen 
that some parameters are present in both, so they 
strongly influence both pressure values. These 
parameters are: Pleth_min, Mean HR, and EDR. 
Also Pleth_max and RR tri index are important, 
since they are contained in one of the two rules.  A 
result from these preliminary experiments is that 
both PPG values and ECG-related ones are very 
important to indirectly estimate BP values.  

6 CONCLUSIONS 

Continuous blood pressure measurement is an 
important issue in the medical field. Of course, a 
sphygmomanometer cannot be used to fulfil this 
task,  and  alternative  ways  should  found. One way  
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Figure 4: Results for diastolic blood pressure. 

consists in indirectly measuring blood pressure 
through the measurement of others among the 
patient’s vital parameters, if a relationship between 
the former and these latter exists. 

This paper has tested the hypothesis that a 
nonlinear relationship exists between heart activity, 
and thus ECG and HRV parameters, PPG and BP 
values. Genetic Programming (GP) is able to 
automatically both evolve the structure of the 
mathematical model and find the most important 
parameters in it. Therefore, it is perfectly suited to 
perform a regression task such as that involved by 
the above hypothesis.  

Preliminary experiments on a real-world 
database have been performed. The numerical 
results achieved have confirmed that this non-linear 
relationship indeed exists, and GP has been able to 
find a mathematical model expressing it. A result 
from these preliminary experiments is that both PPG 
values and ECG-related ones are very important to 
indirectly estimate BP values. This implies that, 
rather than continuously measuring the patient’s BP, 
a wearable wireless PPG sensor can be applied to 
patient’s finger, a wearable wireless ECG to his/her 
chest, HRV parameter values can be computed and, 
through regression, both systolic and diastolic BP 
values can be indirectly measured. The 
approximation error involved by the use of this 

method is lower than 2 mmHg for both systolic and 
diastolic BP values. 

As a future work we will perform an 
experimental phase in which 10-fold cross-
validation will be used. Moreover, we will 
investigate to determine which the maximal number 
of items in the database is, and cases from a much 
higher number of patients will be considered in the 
creation of the database. Finally, our model will be  
compared with other approaches from the literature. 

REFERENCES 

Allen, J. (2007). Photoplethysmography and its 
application in clinical physiological measurement. 
Physiological Measurement, 28(3), R1.  

Berntson, G. G., Bigger, J. T., Jr., Eckberg, D. L., 
Grossman, P., Kaufmann, P. G., Malik, M., . . . van 
der Molen, M. W. (1997). Heart rate variability: 
origins, methods, and interpretive caveats. 
Psychophysiology, 34(6), 623-648.  

Dueck, R., Jameson, L. C. (2006). Reliability of 
hypotension detection with noninvasive radial artery 
beat-to-beat versus upper arm cuff BP monitoring. 
Anesth Analg, 102, Suppl:S10.  

Electrophysiology, Task, Force, of, the, European, . . . 
Pacing. (1996). Heart Rate Variability: Standards of 
Measurement, Physiological Interpretation, and 

BIODEVICES�2015�-�International�Conference�on�Biomedical�Electronics�and�Devices

248



Clinical Use. Circulation, 93(5), 1043-1065. doi: 
10.1161/01.cir.93.5.1043. 

Gesche, H., Grosskurth, D., Kuechler, G., Patzak, A. 
(2012). Continuous blood pressure measurement by 
using the pulse transit time: comparison to a cuff-
based method. Eur J Appl Physiol, 112, 309-315.  

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, 
J. M., Ivanov, P. C., Mark, R. G., . . . Stanley, H. E. 
(2000). PhysioBank, PhysioToolkit, and PhysioNet: 
Components of a New Research Resource for 
Complex Physiologic Signals. Circulation, 101(23), 
e215-e220. doi: 10.1161/01.CIR.101.23.e215. 

Golparvar, M., Naddafnia, H., Saghaei, & Mahmood. 
(2002). Evaluating the Relationship Between Arterial 
Blood Pressure Changes and Indices of Pulse 
Oximetric Plethysmography. Anesthesia & Analgesia, 
95(6), 1686-1690 1610.1097/00000539-200212000-
200200040.  

Ilies, C., Kiskalt, H., Siedenhans, D., Meybohm, P., 
Steinfath, M., Bein, B., Hanss, R. (2012). Detection of 
hypotension during Caesarean section with continuous 
non-invasive arterial pressure device or intermittent 
oscillometric arterial pressure measurement. British 
Journal of Anaesthesia, 3-9.  

Inajima, T., Imai, Y., Shuzo, M.,  Lopez, G., Yanagimoto, 
S., Iijima, K., Morita, H., Nagai, R., Yahagi, N., 
Yamada, I. (2012). Relation Between Blood Pressure 
Estimated by Pulse Wave Velocity and Directly 
Measured Arterial Pressure. Journal of Robotics 
andMechatronics, 24(5), 811-821.  

Karapetian, G. K., Evaluation, W. S. U. E., & Research. 
(2008). Heart Rate Variability as a Non-invasive 
Biomarker of Sympatho-vagal Interaction and 
Determinant of Physiologic Thresholds: Wayne State 
University. 

Koza, J. (1992). Genetic Programming: On the 
Programming of Computers by Means of Natural 
Selection: MIT Press, Cambridge, MA. 

Maguire, S., Rinehart, J., Vakharia, S., Cannesson, M. 
(2011). Technical communication: respiratory 
variation in pulse pressure and plethysmographic 
waveforms: intraoperative applicability in a North 
American academic center. Anesthesia and analgesia, 
112(1), 94-96.  

Meigas, K., Lass, J., Karai, D., Kattai, R., Kaik, J. (2007). 
Pulse Wave Velocity in Continuous Blood Pressure 
Measurements. Paper presented at the IFMBE. 

Melillo, P., Bracale, M., & Pecchia, L. (2011). Nonlinear 
Heart Rate Variability features for real-life stress 
detection. Case study: students under stress due to 
university examination. Biomed Eng Online, 10, 96. 
doi: 10.1186/1475-925x-10-96. 

Najjar, S., Scuteri, A., Shetty, V., Wright, J.G., Muller, 
D.C:, Fleg, J.L., Spurgeon, H.P., Ferrucci, L., Lakatta, 
E.G. (2008). Pulse Wave Velocity Is an Independent 
Predictor of the Longitudinal Increase in Systolic 
Blood Pressure and of Incident Hypertension in the 
Baltimore Longitudinal Study of Aging. J Am Coll 
Cardiol, 51(14), 1377-1383.  

Niskanen, J. P., Tarvainen, M. P., Ranta-Aho, P. O., & 
Karjalainen, P. A. (2004). Software for advanced HRV 
analysis. Comput Methods Programs Biomed, 76(1), 
73-81. doi: 10.1016/j.cmpb.2004.03.004. 

Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., 
Lim, C. M., & Suri, J. S. (2006). Heart rate variability: 
a review. Med Biol Eng Comput, 44(12), 1031-1051. 
doi: 10.1007/s11517-006-0119-0. 

Sotera wireless. http://www.soterawireless.com.    
Tarvainen, M. P., Ranta-Aho, P. O., & Karjalainen, P. A. 

(2002). An advanced detrending method with 
application to HRV analysis. IEEE Trans Biomed Eng, 
49(2), 172-175. doi: 10.1109/10.979357. 

von Skerst, B. (2008). Market survey, N=198 physicians 
in Germany and Austria. Dec.2007 - Mar 2008: 
InnoTech Consult GmbH, Germany. 

Vukovich, R., & Knill, J. (1980). Blood Pressure 
Homeostasis. In D. Case, E. Sonnenblick & J. Laragh 
(Eds.), Captopril and Hypertension (pp. 3-13): 
Springer US. 

 

Non-Invasive�Estimation�of�Blood�Pressure�through�Genetic�Programming�-�Preliminary�Results

249


