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Abstract: Automatic road segmentation plays an important role in many vision-based traffic applications. It provides a 
priori information for preventing the interferences of irrelevant objects, activities, and events that take place 
outside road areas. The proposed road segmentation method consists of four major steps: background-
shadow model generation and updating, moving object detection and tracking, background pasting, and road 
location. The full road surface is finally recovered from the preliminary one using a progressive fuzzy-
theoretic shadowed sets technique. A large number of video sequences of traffic scenes under various 
conditions have been employed to demonstrate the feasibility of the proposed road segmentation method. 

1  INTRODUCTION 

Roads are important objects for many applications, 
such as road maintenance and management (Ndoye 
et al., 2011), transport planning, traffic monitoring 
and measurement, traffic accident and incident 
detection, car navigation, autonomous vehicles 
(Perez et al., 2011), road following (Skog et al., 
2009), and driver assistance systems. Regardless of 
diverse applications, road segmentation methods can 
broadly be divided into two groups. One group 
(Alvarez et al., 2008)(Chen et al., 2010)(Chung et 
al., 2004)(Ha et al., 2009)(Ndoye et al., 2011) is 
concerned with road localization in the images of 
static traffic scenes, and another group (Alvarez et 
al., 2011)(Courbon et al., 2009)(Obradovic et al., 
2008)(Perez et al., 2011)(Skog et al., 2009) is 
devoted to the road detection in the images of 
dynamic traffic scenes. The images of static scenes 
are provided by stationary cameras, whereas those of 
dynamic scenes are captured by movable cameras, 
e.g., the cameras mounted on moving vehicles or 
robots. The roads exhibiting in the images of 
dynamic scenes are typically narrow-ranged, right in 
front of the carriers, and close to the cameras. 

Figure 1(a) shows some examples of such images. 
However, the roads presenting in the images of static 
scenes can be rather different in both shape and size 
due to large variations in elevation and viewing 
direction from camera to camera. Figure 1(b) shows 
some images of static traffic scenes. The road 

detection techniques developed for the images of 
static and dynamic scenes can be considerably 
different. In this study, we focus on the images of 
static traffic scenes, which are commonly considered 
in such applications as restricted lane monitoring, 
wide-area traffic surveillance, traffic parameter 
measurement, traffic accident/incident detection, and 
traffic law enforcement. 

   

(a) 

   

(b) 
Figure 1: Example images of (a) dynamic traffic scenes 
and (b) static traffic scenes. 

Road segmentation has often been modeled as a 
classification problem, in which image pixels are 
categorized as either road or non-road points based 
on their properties. The properties utilized have been 
ranging from the low-level ones (e.g., intensity, 
color, and depth) (Danescu et al., 1994)(Santos et al., 
2013)(Tan et al., 2006)(Sha et al., 2007), the mid-
level ones (e.g., texture, edge, corner, and surface 
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patch) (Santos et al., 2013)(Soquet et al., 2007), to 
the high-level ones (e.g., lane markings (Wang et al., 
2004), road boundaries, and road vanishing point) 
(Alvarez et al., 2008). Various techniques 
characterized by different levels of pixel properties 
have been developed. 

There have been a large number of different 
techniques proposed, such as deformable templates 
(Ma et al., 2000), watershed transformation 
(Beucher et al., 1994), morphological operations 
(Bilodeau et al., 1992), V-disparity algorithm 
(Soquet et al., 2007), probabilistic models (Danescu 
et al., 1994), boosting (Santos et al., 2013)(Fritsch et 
al., 2014), and neural networks (Mackeown et al., 
1994). However, currently available road 
segmentation methods either dealt with the images 
of dynamic traffic scenes for such applications as car 
navigation, autonomous vehicles and driver 
assistance systems or considered the images of static 
traffic scenes of particular road types captured by 
cameras with specific elevations and viewing 
directions. In this paper, we present a general road 
segmentation technique applicable to the traffic 
images containing roads of various types, shapes and 
sizes under diverse weather (e.g., clear, cloudy, and 
rain days), illumination (e.g., sunlight and shadow), 
and environmental (e.g., traffic jams and cluttered 
backgrounds) conditions. 

The proposed method consists of four major steps: 
background-shadow model generation and updating, 
moving object detection and tracking, background 
pasting, and road localization. In terms of these four 
steps, our contributions are addressed below. First, 
we model the road segmentation problem as a 
classification problem. The performance of 
classification heavily relies on the quality of the 
given road characteristics. In the background pasting 
step, a method of calculating road characteristics 
from reliably located road surfaces is presented. 
Second, it is inevitable that uncertainties originating 
from noise, errors, imprecision, and vagueness are 
involved throughout the entire process. We 
employed shadowed sets, which are extended from 
fuzzy sets that have been well known to be an 
elegant tool for coping with vague notions, to 
resolve uncertainties in the final step of road 
localization. 

The rest of this paper is organized as follows. 
Section 2 addresses the overall idea of the proposed 
road segmentation method. Section 3 details the 
main steps of the proposed method. Experimental 
results are then demonstrated in Section 4. 
Conclusions and future work are finally given in 
Section 5. 

2 AUTOMATIC ROAD 
SEGMENTATION 

Figure 2 shows a block diagram for the proposed 
road segmentation method, in which four major 
steps are involved: (1) background-shadow model 
generation and updating, (2) moving object detection 
and tracking, (3) background pasting, and (4) road 
location. The details of these four steps are discussed 
in the next section. In this section, the basic idea and 
novelty of the proposed method is addressed.  

Input 
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Figure 2: Block diagram for automatic road segmentation. 

Let us look at an example shown in Figure 3 for 
illustrating the proposed method. Giving a video 
sequence of a traffic scene (Figure 3(a)), our 
ultimate goal is to locate the road areas of the scene 
(Figure 3(f)) in the video sequence. First of all, a 
background-shadow model of the scene is created 
from the input video sequence. This model contains 
both the background and shadow information of the 
scene in one model. Figure 3(b) shows a background 
image of the scene provided by the model. The 
model is then updated as time goes. This completes 
the step of background-shadow model generation 
and updating. Thereafter, moving objects are 
detected and tracked over the video sequence. Figure 
3(c) shows the detected objects at a certain instant in 
time. Note that most of uninteresting moving  
 

    

           (a)                       (b)                         (c) 

    

(d)                        (e)                       (f) 
Figure 3: An example for illustrating the road 
segmentation process: (a) the traffic scene under 
consideration, (b) a background image of the scene, (c) the 
moving objects detected at a certain time instant, (d) the 
background patches corresponding to the detected moving 
objects, (e) a preliminary road segment, and (f) the 
recovered full road surface of the scene. 
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objects, such as flipping leaves and grasses, waving 
flags, flashing lights, and the shadows 
accompanying moving objects can be ignored 
because they have been regarded as background 
objects during building the background-shadow 
model. Ideally, only moving vehicles are located in 
the step of moving object detection and tracking. 
However, this is usually not the case. The 
subsequent steps will compensate for to some extent 
this drawback. 

Moving vehicles are assumed to run on the road 
surface. Accordingly, the patches in the background 
image, called the background patches, that 
correspond to the moving objects are then extracted 
and pasted on a map, called the road map, shown in 
Figure 3(d). Repeating the steps of moving vehicle 
detection and background pasting, a preliminary 
road segment will eventually be established in the 
road map depicted in Figure 3(e). This preliminary 
road segment is inevitably error prone because of 
imperfect moving vehicle detection. We hence 
associate each pixel of the preliminary road segment 
with a degree of importance that is proportional to 
the times of applying background pasting to the 
pixel. Statistically, noisy pixels are random in nature 
and will have small degrees of importance. In the 
final step of road location, the preliminary road 
segment with its degrees of importance of pixels 
then serves as a seed, from which the full road 
region of the scene is progressively recovered by 
iteratively adding background pixels to the 
preliminary road segment based on both the 
proximities and affinities of the pixels to the 
preliminary road segment. Figure 3(f) shows the 
recovered road surface of the scene. 

3 IMPLEMENTATIONS OF 
MAJOR STEPS 

In this section, the four major steps: (1) background-
shadow model generation and updating, (2) moving 
object detection and tracking, (3) background 
pasting, and (4) road location, involved in the 
proposed road segmentation method are detailed. 

3.1 Background-shadow Model 
Generation and Updating 

A In the step of background-shadow model 
generation and updating, a Gaussian mixture 
background-shadow (GMBS) model (Wang et al., 
2011) of the traffic scene is created, which integrates 

both the background and shadow information of the 
scene in one model. The reason we generate such a 
model is twofold. First, shadows often confuse our 
vehicle detection in view that they distort vehicle 
shapes and may connect multiple vehicles into one. 
Second, shadow detection is a complex and time-
consuming process. Instead of applying shadow 
detection to every video image, we preserve in 
advance shadow information in the GMBS model so 
that we can rapidly identify shadows in images 
simply relying on the shadow information provided 
by the GMBS model. 

3.2 Moving Object Detection and 
Tracking 

An approach combining the temporal differencing 
and the level set techniques is employed to detect 
moving objects in video sequences (Wang et al., 
2008). Temporal differencing locates the image 
areas that have significant changes in characteristic 
between successive images. Since the time interval 
between two successive video images is extremely 
short, it is reasonable to assume that the two images 
have been taken under the same illumination 
condition.  

The level set technique (Paragios, 2006) provides 
a robust method to locate objects based on their 
edges even though involving imperfections. To use 
this technique, the initial contours of objects have to 
be provided. We group edges according to their 
closeness in both distance and property (i.e., edge 
magnitude) into clusters. Recall that an object may 
be contained in a single component or in a number 
of adjacent components in component image Ct. The 
level set method then progressively moves the 
contour toward the edges inside the contour with a 
speed function in a direction normal to itself. The 
contour will eventually enclose the object when it 
firmly hits the edges of the object.  

The above moving object detection procedure is 
somehow time consuming primarily due to the level 
set process that is iterative in nature. We introduce 
an object tracking process realized by the mean shift 
technique (Comaniciu et al., 2003) to reduce the 
number of object detections. Once a moving object 
is detected, its subsequent locations are predicted by 
the object tracking process. For each prediction, the 
object detection process confirms it within the 
vicinity of the predicted location. Such a cooperation 
of location prediction and confirmation has 
significantly expedited the moving object detection 
and tracking step. 
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3.3 Background Pasting 

In the background pasting step, the background 
patches corresponding to detected moving objects 
are pasted on an image, called the road map. 
Initially, road regions grow rapidly in the road 
image. The growth will gradually slow down until 
no obvious change is observed. A preliminary road 
segment can be attained. In general, the preliminary 
road segment contains several regions with different 
characteristics, e.g., asphalt pavements, lane marks, 
repaired road patches, and shadows falling on road 
surfaces. 

We group the image pixels of the preliminary 
road segment into clusters, each of which contains 
pixels having similar characteristics, using the fuzzy 
c-means technique (Chen et al., 1997). Small 
clusters are first ignored because they may result 
from noises. Recall that each pixel of the 
preliminary road segment possesses a degree of 
importance that is proportional to the number of 
moving vehicles passing through the pixel. We then 
compute the degrees of importance for the clusters 
based on those associated with their constituting 
pixels. We remove the clusters with small degrees of 
importance. These clusters may result from the 
perspective projections of large vehicles outside of 
the road region. Thereafter, for each remaining 
cluster its mean of characteristics of image pixels is 
calculated. Let {m1, m2, …, mc} be the means of 
clusters, in which c is the number of clusters. 
Finally, we compute the chamfer distances D of 
image pixels from the preliminary road segment. 
Figure 4 shows an example of the above processing. 

     

     

Figure 4: Five major clusters of homogeneous regions 
included in the preliminary road segment of Video 1. The 
top left is the background image and the others are 
homogeneous regions. 

3.4 Road Location 

In the road location step, the full road region is 
progressively recovered from the preliminary road 
segment. Figure 5 gives the algorithm of road 

location. In each iteration, the degree μ(x) of any 
image pixel x belonging to a road surface is first 
estimated based on both its characteristic a(x) and 
chamfer distance D(x), i.e., 

μ(x) =wg1(min
1≤k≤c

{ a(x) − mk }) + (1−w)g2 (D(x)) ,  (4) 

where mk is the mean vector of cluster k, gi(·)(I = 1, 
2) are Gaussian functions, and w is a weighting 
factor for balancing image characteristic and 
chamfer distance. The above equation states that the 
more comparable the characteristic of the pixel to 
that of any cluster and that the closer the pixel to the 
preliminary road segment the larger the degree of 
the pixel belonging to a road surface. The 
characteristics a(x) and mk are color vectors in our 
experiments. 

Having determined the membership grades of 
pixels belonging to road surfaces, instead of simply 
selecting a constant threshold for the membership 
grades, we introduce the fuzzy theoretic shadowed 
set approach (Pedrycz, 2009) to automatically 
determine a threshold for separating image pixels 
into road and non-road pixels. Unlike fuzzy sets that 
describe vague concepts in terms of precise 
membership functions (F:X→[,1]), shadowed sets 
model vagueness with non-numeric models 
(S:X→{0, [, 1], 1}. Function S possesses limited 
three-valued characterization and separates the 
universal set X into three subsets S0, S1 , and S[,1]. In 
other words, shadowed sets capture the essence of 
fuzzy sets at the same time reducing the numeric 
burden. 

Algorithm: Road Location 
Input:  D: Chamfer distance of preliminary road 

segmentation 
a(x): Characteristic of image pixel x 
{m1, m2, …, mc}: Means of characteristic of clusters 

Steps: 
1. w ← 0 
2. Computing degree of pixel x belong to a road surface 

using 

1 2
1

( ) (min{ ( ) }) (1 ) ( ( ))k
k c

wg w g Dμ
≤ ≤

= − + −x a x m x  

3. Computing threshold using 

α* = argmin
α

μ(x)
μ (x)≤α
 + (1− μ(x))− cardinality{x |α < μ(x) <1−α}

μ (x)≥1−α


 
Selecting α* as the threshold of μ(x) to classify pixel 
x into road and non-road points. 

4. Increase w and repeat 2-4 until α* becomes 
increasing. 

Figure 5: Algorithm for road location. 

Let α∈(0, 1/2) be an α-cut of the membership 
function in Equation (4). Accordingly, three regions, 
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referred to as the rejected ( 1

: ( )

:  ( )d
μ α

μ
≤

Ω 
x x

x x ), 

marginal ( 2

: ( ) 1

:  1 d
α μ α< < −

Ω ⋅
x x

x ), and fully accepted (

3

: ( ) 1

:  (1 ( ))d
μ α

μ
≥ −

Ω −
x x

x x ) regions, can be defined. 

Figure 6 shows an example membership function, 
from which the Ω1, Ω2, and Ω3, regions associated 
with a particular α-cut α are indicated. To condense 
uncertainty, it leads to the optimization problem of 
finding an α-cut that best balances between the 
vagueness (Ω2) and clearness (Ω1+Ω3) of the 
membership function, i.e., 

α* = arg min
α

Ω1 + Ω3 − Ω2

= arg min
α

 μ
x: μ (x)≤α
 (x)dx + (1− μ

x: μ (x)≥1−α
 (x))dx − 1⋅

x: α<μ(x)<1−α
 dx  

 

In the discrete case,  
*

( ) ( ) 1

arg min ( ) (1 ( )) cardinal{ | ( ) 1 }
x

α μ α μ α
α μ μ α μ α

≤ ≥ −

= + − − < < − 
x

x x x x . 

We then select α* as the threshold of the 
membership grades of image pixels to classify them 
into road and non-road points. 

The above process repeats for different w values. We 
start with w = 0, i.e., the definition of membership 
grade μ(x) of the image pixel at x completely 
depends on its chamfer distance D(x). Thereafter, w 
progressively increases, i.e., increasing the influence 

of the image characteristic a(x) of the pixel. In the 
beginning, α-cut decreases as w increases. We 
terminate the road location step right before α-cut 
becomes increasing. This is because we have 
empirically observed that α-cut is closely related to 
an error rate of road segmentation we defined. 

 

Figure 6: A shadowed set induced from a fuzzy set. 

4 EXPERIMENTAL RESULTS 

A number of videos taken under various conditions 
of weather, illumination, viewpoint, road type, and 
congestion have been employed for experiments. 
Videos were acquired using a camcorder that 
provides 30 images of size 320 by 240 per second. 
No particular specification about the installation of 
the camcorder has been imposed. The lengths of 
 

Table 1: Experimental results of demonstrative videos. 
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videos range from 2 to 3 minutes. Our algorithm 
written in C++ running on a PC at the rate of 2.5Hz 
takes about 30 to 150 seconds to complete the road 
segmentation of a video. The processing time 
depends on the complexities of both traffic and 
scene. Specifically, a slowly moving traffic needs a 
longer time to build the GMBS model of the scene. 

A scene comprising a large portion of road 
surface will take time to locate moving objects for 
generating a preliminary road segment. In this study, 
we pay more attention on efficacy than efficiency. 

Table 1 collects the input data, the intermediate 
and final results of some experimental videos. We 
refer to these videos as demonstrative videos from 
now on. The scenes, from which the videos are 
acquired, are depicted in the second column of the 
table. The third column shows the background 
images generated from the GMBS models of the 
scenes. We extract by hand from the background 
images the road surfaces for serving as ground truths 
displayed in the fourth column. The last two 
columns demonstrate the intermediate and final 
results of preliminary road segment as well as 
extracted road surface, respectively. The landscapes 
of the demonstrative videos include freeways 
(Videos 1 and 2), expressways (Videos 3 and 4), 
thoroughfares (Videos 5 and 6), streets (Videos 7 
and 8), intersections (Videos 9 and 13), suburban 
road (Video 10), campus road (Video 11), and 
mountain road (Video 12). In addition to distinct 
road types, the demonstrative videos have been 
involved different conditions of illumination 
(daylight, sunshine and shadow), weather (sunny, 
cloudy and rainy days), congestion (rush and off-
peak hours), and viewing direction. 

To evaluate the performance of the proposed road 
segmentation method, we define the error rate ε of 
road segmentation as follows. The symbols N, Ng, 
Ne, ng, and ne, they specify the numbers of pixels of 
the road image, the ground truth, the extracted road 
surface, the extracted road surface in and not in the 
ground truth, respectively. Accordingly, the number 
of misclassified pixels that are road pixels (i.e., false 
negatives) is Ng-ng and the number of misclassified 
pixels that are not road pixels (i.e., false positives) is 
Ne-ng. The total number of misclassified pixels is 
hence ( ) ( ) 2g g e g g e gN n N n N N n− + − = + − . We 
normalize this number with the size N of the road 

image to define error rate 
2g e gN N n

N
ε + −

= .  

In the road location step, parameter w plays an 
important role in defining the membership grades of 
image pixels belonging to road surface (Equation 4). 
The larger the value, the more significant the image 

characteristic and the less influential the chamfer 
distance in locating road surfaces. Table 2 shows the 
error rates ε of road segmentation of the 
demonstrative videos under different w. In this table, 
the minimum error rate is marked for each 
demonstrative video. The w values corresponding to 
the minimum error rates range from 0.2 to 0.35. This 
suggests that we may choose w within [.2-s, 0.35+s], 
where s is a small value, instead of the entire range 
of [, 1]. Although the searching range of w has been 
greatly reduced, we still face the issue as to which w 
will lead to the minimum error rate of road 
segmentation due to the fact that we don’t know the 
ground truth during processing. 

Recall that for each w an α-cut is determined for 
serving as the threshold of the membership degrees 
of image pixels belonging to road surfaces. Table 3 
shows the α-cuts of the demonstrative videos 
decided under different w. In this table, the 
minimum α-cuts are marked as well. Surprisingly, 
they exactly correspond to the minimum error rates 
in Table 2. In other words, minimum α-cuts can be 
indicative of minimum error rates. Moreover, the 
former are more reliable to identify than the latter. In 
our algorithm, the road location step terminates once 
the minimum α-cut is observed. 

Several factors have impacted on the performance 
of our road segmentation. Among these, the viewing 
direction of the camcorder may be the most critical 
one. In Table 2, the columns corresponding to 
Videos 5, 6, and 7 have considerably smaller error 
rates than the other columns. As we can see in Table 
1, these videos were acquired by the camcorder with 
its viewing directions nearly perpendicular to the 
road surfaces, or equivalently the tilt angles of the 
camcorder close to 90 degrees. Moreover, the tilt 
angles of the camcorder increase from Video 5 to 7 
and their corresponding minimum error rates 
decrease (7.8, 5.5, 4.7). In other words, the larger the 
tilt angle of the camcorder the lower the error rate of 
road segmentation. Seeing Video 10 in Table 1, it 
has the smallest tilt angle of the camcorder among 
the thirteen demonstrative videos and has a 
relatively high error rate (20.1). This is because 
vehicles captured by the camcorder with a small tilt 
angle will be more likely to occlude large areas 
outside the road. 

In Table 2, the columns corresponding to Videos 
3 and 4 have considerably larger error rates than the 
other columns. Taking look at the experimental 
results of these two videos in Table 1, both missed a 
large portion of road surface near the top of the road 
images. Our algorithm failed to detect moving 
objects present in the top rows of images because  
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Table 2: Error rates ε of road segmentation for the 
demonstrative videos under different w. 

 

they are too small. Defective preliminary road 
segments could result in imperfect road 
segmentation. Likewise, if a road area has no vehicle 
passing through during constructing the preliminary 
road segment, an incomplete road surface may be 
extracted. In the suburban road of Video 10, only 6 
vehicles passed by during taking the video for about 
three minutes. Moreover, none of these vehicles 
went through the road area close to the lower left 
corner of the road image. The same situation is also

observed in the campus road of Video 11, where 
only pedestrians and bicycles are allowed. Both 
kinds of the objects are small as well as slow. In 
these two cases, longer videos would somewhat 
compensate for the drawbacks. 

Another video sequence (Video 13) acquired in a 
rainy day has relatively large error rates, which are 
primarily resulting from the reflections of buildings 
on the road surface. The reflections of vehicles 
haven’t caused troubles because vehicles are on the 
road. The reflections of buildings possess image 
characteristics similar to those of the actual 
buildings. The lower portions of the buildings 
besides the road will be regarded as road areas 
because they are close to the road area. 

Finally, we compare the method proposed in this 
study with that previously reported in (Chung et al., 
2004). Basically, the two methods consist of the 
same four major steps. However, the previous 
method has several weaknesses. First, the 
background model is generated using a 
progressively accumulating histogram approach. The 
generated background model cannot avoid regarding 
such moving objects as flipping leaves 
 

Table 3: α-cuts of the demonstrative videos under different w. 

 

Table 4: Error rates ε of road segmentation for the previous and current methods. 
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and grasses, waving flags and flashing lights as 
foreground objects. Second, in the moving vehicle 
detection foreground objects are extracted simply 
using the background subtraction method. This 
method has suffered from illumination changes, 
especially shadows, as well as slowly moving 
traffics. Third, the morphological process ignores 
isolate road regions. This leads to defective 
preliminary road segments. Finally, there is no 
strategy for dealing with the problem of over-
estimate due to perspective projection of vehicles 
moving along the roadside. The above drawbacks 
associated with the previous method have been 
compensated for in the current method. We have 
applied both the previous and current methods to 
all the 13 experimental videos. However, the 
previous method only worked on six of them (i.e., 
videos 1, 7, 10, 11, 12, and 13). This is probably 
because of the associated drawbacks mentioned 
above. Table 4 shows the experimental results, in 
which except for video 11, the current method has 
outperformed the previous one for the rest videos, 
especially videos 1 and 12. 

5 CONCLUDING REMARKS 
AND FUTURE WORK 

In this paper, an automatic road segmentation 
method was presented. The proposed method is 
dedicated to static traffic scenes. Previous 
researches have paid more attention on either 
dynamic or restricted static scenes. As a matter of 
fact, a large number of traffic applications have to 
do with static traffic scenes and various conditions 
of environment, weather, illumination, viewpoint, 
and road type can make the road segmentation of 
static traffic scenes challenging too. A number of 
video sequences of traffic scenes under different 
conditions have been used in our experiments. The 
error rates of road segmentation of all experimental 
videos were within 25%. In terms of potential 
applications, the performance of the proposed road 
segmentation method can be acceptable. We will 
keep improving the performance of the current 
method and develop potential applications in our 
future work 
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