
Support of Scenario Creation by Generating Event Lists from 
Conceptual Models 

Kenta Goto1, Shinpei Ogata2, Junko Shirogane3, Takako Nakatani4 and Yoshiaki Fukazawa1 

1Department of Computer Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo, Japan 
2Graduate School of Science and Technology, Shinshu University, 4-17-1 Wakasato Nagano-shi, Nagano, Japan 

3Department of Communication, Tokyo Woman’s Christian University, 2-6-1 Zenpukuji Suginami-ku, Tokyo, Japan 
4Graduate School of Systems Management, University of Tsukuba, 3-29-1 Otsuka Bunkyo, Tokyo, Japan 

Keywords: Conceptual Model, Scenario, Requirements Definition, Use Case. 

Abstract: In the requirements definition phase, conceptual models are used to understand the developing software. 
Although scenarios are often described on the basis of conceptual models, there are cases that necessary 
requirements are omitted in the scenarios when the scenarios are created manually. Herein we propose an 
approach to support scenario creation from conceptual models where event lists of scenarios, which include 
checkpoints to define requirements, are generated from conceptual models automatically. The conceptual 
models represent the core resources of the software, the owner of the core resources, and use cases as class 
diagrams. Then software engineers and their clients arrange the event lists and define requirements as 
scenarios on the basis of the checkpoints. Our approach can support describing scenarios with all the 
necessary requirements from conceptual models. To confirm the effectiveness of our approach, we 
compared our approach to the all-manual approach. 

1 INTRODUCTION 

To understand the software domain, software 
engineers create conceptual models very early in the 
requirements definition phase according to the 
client’s requirements. Conceptual models are the 
basis for other models in the late development phase.  

On the other hand, in the requirements definition 
phase, operation flows are frequently described as 
scenarios written in a natural language. Scenarios 
represent interaction flows between users and the 
target software.  

Creating scenarios can be troublesome because 
necessary requirements are often omitted when 
scenarios are created manually on the basis of 
conceptual models. These omissions occur because 
the scenarios are often narrowed using only software 
engineers’ intention. Thus, describing scenarios on 
the basis of conceptual models depends on the skills 
and experience of the software engineers. If the 
requirements definitions are insufficient, software 
projects tend to fail (Clancy, 1995). Recently, some 
works have examined activities to help improve the 
quality of scenarios as requirements (Alspaugh and 
Antón, 2008) (Robertson and Robertson, 2012). 

To address this problem, we propose an approach 
that supports creating scenarios from conceptual 
models by allowing software engineers to describe 
scenarios with all necessary requirements on the 
basis of conceptual models. Concretely, software 
engineers initially describe a conceptual model using 
our template. Then Use Case Correspondence 
Models (UCCMs) are generated by dividing the 
conceptual models. Next event lists of scenarios are 
generated from the UCCMs. Each generated event 
includes a flag that represents a checkpoint to define 
requirements. Checkpoints indicate that internal 
processing of the target software may need to be 
defined. Finally software engineers and clients 
arrange the event lists and define requirements on 
the basis of the flags. Through this process, 
scenarios are created with all the necessary 
requirements. 

2 BASIC CONCEPTS 

2.1 Conceptual Models 

Conceptual models represent the target software

376 Goto K., Ogata S., Shirogane J., Nakatani T. and Fukazawa Y..
Support of Scenario Creation by Generating Event Lists from Conceptual Models.
DOI: 10.5220/0005327803760383
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 376-383
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



domain using the relations between each object 
(Olivé, 2007). Typically the conceptual models are 
created at the beginning of the requirements 
definition phase. Moreover, conceptual models are 
often used as the basis for various models. 
Conceptual models can be represented as class 
diagrams in UML (Unified Modeling Language).  

In our approach, conceptual models are created 
along with the conceptual model template that we 
define based on the knowledge level in the Analysis 
Patterns (Fowler, 1997). Figure 1 shows our 
conceptual model template, which has three classes: 
object, owner, and operation classes. The object 
class represents a core resource in the target 
software. The owner class represents the owner of 
the object class. The operation class indicates 
operations to the core resource. The operation class 
contains sub-classes that represent use cases to 
operate the core resource. We consider that system 
just composes of a core resource in software, an 
owner of the resource and operations for the 
resource, so the template consists of the three 
classes. However, we limit the number of the 
resource to one. In the case that there are some 
resources in software, it can be possible to express 
the case by creating some conceptual models on the 
basis of the template. 

Figure 2 shows an example of a conceptual 
model for a banking system created on the basis of 
our conceptual model template. The Customer, the 
Bank Account and the Bank Service class 
correspond to each class such as the owner, the 
object and the operation class in the template. The 
Customer has a Bank Account, which is a core 
resource of the banking system. The Bank Service is 
to access the Bank Account. In this conceptual 
model, the system has four use cases: withdrawal, 
balance inquiry, transfer, and deposit. 

2.2 Scenarios 

Operation flows of software are often written by 
scenarios, which are text-based narratives that 
indicate how a user operates software and how the 
software should behave. 

On the other hand, a sentence in scenarios is 
called an event. A use case has a pre-condition, 
which a user must satisfy at the beginning of a 
scenario, and a post-condition, which a user must 
satisfy upon completing a scenario (Cockburn, 
2000). 

 
Figure 1: Conceptual model template. 

 

Figure 2: Conceptual model of a banking system. 

2.3 Use Case Correspondence Models 

Generating scenarios from only conceptual models 
automatically is difficult because the conceptual 
models don’t express use cases such as scenarios. It 
needs to transform the conceptual models into the 
form of use cases for generating scenarios 
automatically or semi-automatically. Therefore, to 
generate scenarios from conceptual models in our 
approach, the conceptual models are divided into 
Use Case Correspondence Models (UCCMs). The 
UCCMs are the models we defined, they express 
structure of use cases such as subjects, objects and 
predicates in scenarios. Each UCCM corresponds to 
one use case. UCCMs include necessary items for 
scenarios such as: 

・ Identification of an actor in use cases 
・ Attributes used in each use case 
・ Classifications of the input and/or output item 
・ Pre-condition/post-condition 
These items express who, for which use case, for 

which attribute, and what to do in a scenario. Due to 
UCCMs, these items can be clarified. 

UCCMs are expressed as class diagrams in UML 
and are created on the basis of conceptual models. 
We define the UCCM template based on the 
knowledge level in the Analysis Pattern (Fowler, 
1997). Figure 3 shows our UCCM template, which 
is composed of three classes: object, operation, and 
actor classes. The object class has the same meaning 
as the one in the conceptual model template. The 
actor class indicates the actor in the use case. We 
regard the owner of the core resource in the target 
software as the actor in use cases, so the owner class 
is specified as the actor class. In the case that the 
owner is not to be the actor, generated scenarios 
from the UCCMs can be deleted by the judgment of 
software engineers and clients. The operation class 
is a subclass in conceptual models. Thus, one 
UCCM is generated for every subclass of the 
operation class in the conceptual models.  

Support�of�Scenario�Creation�by�Generating�Event�Lists�from�Conceptual�Models

377



 

Figure 3: UCCM template. 

The attributes of each UCCM class are used in 
each use case. Software engineers can delete 
unnecessary attributes. Additionally, software 
engineers can add pre- and post-conditions to the 
operation class and stereotypes to represent the 
attribute types such as input only, output only, and 
non-display. Table 1 shows a list of the stereotypes 
used in our approach. 

Figure 4 shows an example of the 
correspondence between the UCCM and the 
conceptual model. The top diagram is the conceptual 
model and the bottom diagram is the UCCM. Both 
models express the use case of withdrawal in the 
banking system shown in Fig. 2. Each class in the 
conceptual model corresponds to the class with the 
same name in the UCCM. Similarly, the UCCMs of 
the use cases for balance inquiry, the transfer, and 
the deposit are created. 

Table 1: List of stereotypes. 

Stereotype Meaning 
Input Only input item 

Output Only output item 
Non-display Not shown item used in the 

internal processing of the system 
 

 

Figure 4: Correspondence between the UCCM and the 
conceptual model. 

3 FEATURES 

Reduction of Missing Necessary Events 
The generated event lists include flags to verify 
whether internal processing is required. Software 

engineers extract the requirements for internal 
processing from clients based on the flags. If there 
are no requirements for a flag, only the flag is 
detected. However, it is important to confirm the 
necessity of each flag to reduce the number of 
missing requirements. 

Provision of a Strategy to Create Scenarios from 
Conceptual Models 
Conceptual models and scenarios are often described 
independently in software development. Creating 
conceptual models and scenarios independently may 
lead to inconsistencies between models. Hence, a 
strategy to create scenarios from conceptual models 
is necessary. In our approach, event lists of scenarios 
are generated from conceptual models automatically 
through generating UCCMs by our system. Then 
software engineers and clients create scenarios on 
the basis of the generated event lists. In this way, 
scenarios are directly created from conceptual 
models.  

Support to Understand Attributes used in each 
Event 
It is difficult to see attributes necessary in a use case. 
By UCCMs, software engineers can easily see the 
attributes in each use case because UCCMs simply 
express structure of use cases. 

4 APPROACH 

 

Figure 5: Flow of our approach.  

Our approach aims to support scenario creation from 
conceptual models. Figure 5 shows the flow of our 
approach, which consists of four phases. 

1. Analysis of the Conceptual Model 

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

378



2. Generation of the Use Case Correspondence 
Model 

3. Generation of Event Lists 
4. Requirements Definition 

4.1 Analysis of Conceptual Models 

Initially the conceptual model is represented as a 
class diagram by UML modeling tool astah* (astah, 
2014) and is created on the basis of our conceptual 
model template described in section 2.1. Then our 
system analyzes the conceptual model and extracts 
class names, attributes of each class, and subclasses 
of the operation class. 

4.2 Generation of UCCMs 

After analyzing the conceptual model, our system 
generates UCCMs automatically. First, the owner 
class is copied as the actor class. The object class of 
the conceptual model is copied to the UCCM. Then 
the subclass of the operation class in the conceptual 
model is copied to the UCCM. Next our system adds 
methods as pre- and post-conditions. These methods 
have stereotypes of <<pre-condition>> and <<post-
condition>>. 

For example, from the conceptual model of the 
banking system in Fig. 2, four UCCMs are generated 
automatically. Figure 6 shows an example of 
UCCMs for the withdrawal use case, which is one of 
the UCCMs of the banking system. The attributes 
and the class names are all copied from the 
withdrawal class in Fig. 2. 

If necessary, software engineers can edit the 
generated UCCMs. Then software engineers 
describe concretely the pre- and post-conditions in 
the operation class and delete unnecessary attributes. 
If necessary, stereotypes in Table 1 can be added to 
attributes. Figure 4 shows an example of UCCMs 
after applying these editing points to the generated 
UCCM in Fig. 6. 

 

Figure 6: UCCM generated from the conceptual model. 

4.3 Generation of Event Lists 

After generating the UCCMs, our system 
automatically generates event lists of the scenarios 
from the UCCMs. An event list is derived for each 

UCCM. However, the generated event lists do not 
represent the flow. 

To generate the event lists, our system uses all 
the attributes in each UCCM class as input items by 
the actor as well as output items from the target 
software. That is, every attribute generates two 
events. Each event in the event lists is composed 
three items: subject, predicate, and object. The 
subject represents the actor of a use case or the 
target software. To generate events for the input 
attributes, the subject is the actor, and the name of 
the actor class of the UCCM is used. To generate 
events for the output attributes, the subject is the 
system. The predicate is the input when the subject 
is the actor or the output when the subject is the 
system. For example, from the attribute of name in 
the Customer class in Fig. 6, the input and output 
events are generated by our system as: 
・The Customer inputs the name of the Customer. 
・The System outputs the name of the Customer 

to the Customer. 
When stereotypes are added to an attribute, 

events are generated based on the stereotypes. If a 
stereotype <<input>> (<<output>>) is added to an 
attribute, only an input (output) event is generated 
for the attribute. If a stereotype <<non-display>> is 
added to an attribute, both input and output events 
are not generated. If a stereotype is not added to an 
attribute, both input and output events are generated. 
In addition, our system adds flags as checkpoints to 
all events for reviewing necessity of internal 
processing events. These flags help software 
engineers describe scenarios with all necessary 
requirements after our system generates event lists. 
Figure 7 shows an example of an event list for the 
withdrawal use case in the banking system from the 
UCCM in Fig. 6. 

 

Figure 7: Generated event list for the withdrawal use case 
in the banking system from the UCCM in Fig. 6. 

Support�of�Scenario�Creation�by�Generating�Event�Lists�from�Conceptual�Models

379



4.4 Requirement Definition 

After generating event lists, software engineers and 
clients modify event lists and create scenarios. 
Concretely, they arrange event lists and confirm 
whether an internal processing event is required by 
reviewing each event. This confirmation is 
performed using the added flags as checkpoints for 
events. If necessary, the software engineers and the 
clients consider what type of internal processing is 
required and describe concrete description as events. 
If unnecessary, they delete the flags. Figure 8 shows 
an example of scenarios that are added an internal 
processing event. Once all the events are reviewed, 
scenarios creation is complete.  

 

Figure 8: Scenarios that are added an internal processing. 

5 EVALUATION 

We evaluated the effectiveness of scenario creation 
from conceptual models using our approach. In this 
evaluation, participants created scenarios using two 
types of approaches: our approach and manual 
creation. 

5.1 Scenario Creation 

Eight software engineering graduate students, who 
are familiar with UML and scenarios and can create 
class diagrams and scenarios, participated in the 
evaluation. This evaluation was performed on the 
basis of the case study methodology and guidelines 
(Runeson and Höst, 2009).  

The stakeholders in this evaluation were the roles 
of the client and software engineers. One of the 
experimenters assumed the role of the client while 
the participants acted as software engineer. For the 
evaluation, we prepared two conceptual models: a 
CD sales management system and a software 
development company system. Regardless of the 
approach, the participants used the aforementioned 
conceptual models to create scenarios. In our 
approach, the participants created scenarios along 
Section 4. In manual creation, the participants 
created scenarios directly from the conceptual 
models in their own ways. When the experimenter 

and the participant agreed on the created scenarios, 
we finished the experiment. Then we evaluated the 
effectiveness of our approach comparing scenarios 
described by each participant to correct scenarios 
that we prepared. 

The participants were divided into two groups. 
Each group had four participants. One group created 
scenarios of the CD sales management system by 
our approach and scenarios of the software 
development company system by manual creation. 
The other group created scenarios of the CD sales 
management system by manual creation and 
scenarios of the software development company 
system by our approach. Table 2 shows which 
conceptual model and which approach each 
participant used. A to H indicate the individual 
participants. After scenario creation, each participant 
completed a questionnaire with three items. 
Q1. Which approach creates scenarios with more 
of the necessary requirements?  
Q2. Which approach is easier to create scenarios?  
Q3. Which approach creates scenarios faster? 

Table 2: Conceptual model and the approach each 
participant used. 

 Our approach Manual creation 
CD  B, D, F, H A, C, E, G 
Development A, C, E, G B, D, F, H 

5.2 Results 

To compare the scenarios described by each 
participant to the correct scenarios, we counted the 
different points between the scenarios. Different 
points indicate classifications of input/output items, 
event orders, descriptions of an internal processing, 
and sentence compositions. In addition, we 
measured the time that each participant required to 
describe the scenarios. 

The different points for the classifications of the 
input/output items (I.O. Classification) are whether 
software engineers classify attributes in UCCMs into 
input/output items in scenarios correctly. For 
example, our scenario represents an attribute called 
“password number” as an input item, but if a 
participant classified “password number” as both 
input and output items, this was counted as a 
different point.  

The different points for the event orders (Event 
order) are whether software engineers describe each 
event in the appropriate line. If a participant 
described an event in another line compared to our 
scenario, it was considered a different point. 

The different points for the descriptions of an

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

380



internal processing (Internal processing) are whether 
internal processing events can be described. If our 
scenario had an internal processing event for an 
attribute, but the participant omitted the internal 
processing event, it was considered a different point. 

The different points for the compositions of a 
sentence (Composition) are whether expression of 
the sentence is the same with the correct scenarios. 
Concretely, we judged the different points by 
expression of subjects, predicates, objects and 
complements. 

Tables 3 and 4 show the results of the 
participants using our approach and manual creation 
for a CD sales management system, respectively. 
Tables 5 and 6 show the results of the participants 
using our approach and manual creation for a 
software development company system, 
respectively. 

Table 3: Different points in our approach for the CD sales 
management system. 

 

Table 4: Different points in manual creation for the CD 
sales management system. 

 

Table 5: Different points in our approach for the software 
development company system. 

 

Table 6: Different points in manual creation for the 
software development company system. 

 

In addition, the questionnaire responses were as 
follows. All participants indicated that our approach 
created scenarios with more of the necessary 
requirements (Q1) and was easier to use (Q2) than 
the manual approach. Half of the eight participants 
answered that our approach was able to create 
scenarios faster than manual creation (Q3), while the 
other four did not indicate which approach was 
faster. 

5.3 Discussion 

We analyzed the results with an emphasis on the 
different points.  

Regarding the classifications of the input/output 
items, only one participant made a mistake in the 
manual creation for the software development 
company system (Table. 6). Although participants 
using our approach did not make any mistakes, we 
cannot concretely assert that our approach helps 
classify input/output items more than manual 
creation.  

However, our approach assists in understanding 
the classifications of the input/output items easily by 
adding stereotypes to the attributes in UCCMs. As 
the number of sentences in the scenarios increases, it 
is difficult to verify the classifications using only the 
scenarios. After generating scenarios from 
conceptual models, mistakes are easily noticed by 
viewing the classifications using the stereotypes of 
the attributes in UCCMs. 

On the other hand, neither approach affected the 
event orders (Tables 3 – 6). However, this is not the 
case when the definitions of event flows are not 
considered. In our approach, software engineers 
define event flows only after reviewing the event 
lists with clients. Therefore, we plan to consider 
detailed rules to support definitions of the event 
flows in the future. 

For both conceptual models (CD sales 
management and software development), manual 
creation resulted in more different points in the 
descriptions of internal processing than our approach 
(Tables 3 – 6). Most participants omitted internal 
processing events using manual creation, while most 
participants defined them by our approach. For 
example, three of the four participants using manual 
creation omitted events such as: 
1. The System decreases by one from the stock 

and registers the stock to the CD database. 
2. The System calculates the contract value from 

the input number of items purchased and price. 
Example 1 is about the CD sales management 
system, example 2 is about the software 

Participant
I.O.

Classification
Event order

Internal
processing

Composition
Total

number
Time

B 0 0 0 0 0 0:43:28

D 0 0 0 3 3 0:51:09
F 0 0 0 0 0 0:35:39
H 0 0 0 2 2 0:35:58

Average 0 0 0 1.25 1.25 0:41:34

Participant
I.O.

Classification
Event order

Internal
processing

Composition
Total

number
Time

A 0 0 8 1 9 0:44:25

C 0 0 7 5 12 0:37:03
E 0 0 1 4 5 0:48:23
G 0 0 4 3 7 0:47:56

Average 0 0 5 3.25 8.25 0:44:27

Participant
I.O.

Classification
Event order

Internal
processing

Composition
Total

number
Time

A 0 0 0 0 0 0:45:12

C 0 0 0 1 1 0:31:10
E 0 0 1 0 1 0:43:55
G 0 0 1 0 1 0:37:24

Average 0 0 0.5 0.25 0.75 0:39:25

Participant
I.O.

Classification
Event order

Internal
processing

Composition
Total

number
Time

B 0 0 6 0 6 0:47:10

D 0 0 3 4 7 0:43:29
F 6 0 0 0 6 0:42:48
H 0 0 0 8 8 0:48:23

Average 1.5 0 2.25 3 6.75 0:45:28

Support�of�Scenario�Creation�by�Generating�Event�Lists�from�Conceptual�Models

381



development company system. However, all the 
participants using our approach did not omit them. 
Thus, flagging “internal processing” events in our 
approach was effective. Software engineers are 
likely to miss the internal processing in the 
requirements definition. By placing a flag in every 
event and checking each flag individually, software 
engineers can reduce the number of internal 
processing omissions. 

Both approaches resulted in some different 
points in the sentence compositions (Tables 3 – 6). 
For example of the different points in manual 
creation, the participants mistook events in the 
software development company system such as: 
Participant’s Scenario: 

The System outputs the name. 
Correct Scenario: 

The System outputs the name of the Administrator 
to the Administrator. 

In the example, “of the Administrator to the 
Administrator” was omitted using the manual 
approach but not our approach because our approach 
automatically generates the necessary base of the 
events that is able to be extracted automatically from 
classes in conceptual models. Also, for example of 
the different points in our approach, the participant’s 
event was incomplete in the CD sales management 
system such as: 
Participant’s Scenario: 

The System calculates the total sales number. 
Correct Scenario: 

The System calculates the total sales number by 
subtracting the number of the stock from the 
number of the arrival. 

In the example, “by subtracting the number of the 
stock from the number of the arrival” was not 
described because the event could not be extracted 
automatically from conceptual models. Overall our 
approach generated fewer different points than 
manual creation. Thus, our system generates the 
base of scenarios automatically, which helps prevent 
incorrect sentence compositions. 

Although a clear difference in the time required 
to create scenarios cannot be confirmed, the results 
and questionnaire responses indicate that our 
approach supports the creation of scenarios with the 
necessary requirements from conceptual models 
more efficiently than manual creation.  

The experiment validated our approach, but there 
are some threats to the validity. The number of 
participants and the types of domains are limited in 
this evaluation experiment, so increasing them may 
yield different results. In addition, the evaluation 
experiment about the scenario creation may depend 

on the judgment of the evaluator because scenarios 
are often written in natural languages, which are 
ambiguous. Therefore, an evaluation based on 
stricter rules is needed in the future. 

6 RELATED WORK 

Many studies have improved the quality of the 
requirements. Kamalrudin et al. improved the 
quality of requirements using an essential use case 
(EUC), which is shorter and simpler to describe than 
conventional use cases (Kamalrudin et al. 2011). To 
verify and improve the quality of the requirements, 
they compared EUCs to a template in the EUC 
interaction patterns library. Additionally, Kof 
proposed an approach to identify missing 
information such as messages using a message 
sequence chart (MSC) (Kof, 2007). The MSC 
includes missing information in textual scenarios. 
By translating scenarios to MSCs, missing 
information such as necessary objects and actions in 
scenarios is identified. These approaches identify 
omission of requirements by an automatic 
transformation process. On the other hand, our 
approach reduces the omission of requirements by 
interactions with clients. 

Other works have focused on generating natural 
languages from class diagrams. Burden and Heldal 
proposed a two-step process to generate a natural 
language (Burden and Heldal, 2011). First, a class 
diagram is transformed into an intermediate 
linguistic model. Next, the intermediate linguistic 
model is transformed into natural language text 
using class diagrams as a Platform-Independent 
Model (PIM) of the MDA process. Meziane et al. 
also generated natural language specifications from 
class diagrams (Meziane et al. 2008). They aimed to 
remove ambiguities of the natural language used in 
class diagrams. These approaches are similar to our 
approach, but they aim to check consistency 
between models, while we strive to reduce missing 
requirements. 

In the requirements definition phase, conceptual 
models are important artifacts to understand a 
software domain by software engineers and clients. 
Sagar et al. automatically created conceptual models 
from functional requirements written in a natural 
language (Sagar and Abirami, 2014). They extracted 
design elements of conceptual models from 
functional requirements using part-of-speech (POS) 
tags and classified their relationships by relation 
types. POS tags classify words into linguistic 
categories called parts of speech. Then conceptual 

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

382



models are created. Wanderley proposed an 
approach to realize consistency between scenarios 
and conceptual models using a mind map, which is 
the basis to generate a conceptual model (Wanderley 
and Silveria, 2012). The generated conceptual model 
is used to generate a vocabulary to define scenarios. 
These approaches help software engineers 
understand the target software domain by creating 
conceptual models. On the other hand, our approach 
helps software engineers comprehend the target 
software domain, allowing engineers to proceed to 
the next stage such as extraction of concrete 
requirements and creation scenarios on the basis of 
extracted requirements. 

7 CONCLUSIONS 

We present an approach to support scenario creation 
from conceptual models. Our approach can support 
creating scenarios with all the necessary 
requirements from conceptual models. We evaluated 
our approach by comparing scenarios created by our 
approach to those created manually. Our approach 
generated scenarios with more of the necessary 
requirements.  

In the future, the evaluation method should be 
refined and the number of participants and types of 
target software should be increased. Furthermore, 
we aim to support a user interface generation from 
conceptual models, which will allow software 
engineers and clients to more easily understand and 
define requirements. 

REFERENCES 

Alspaugh, A, Thomas. Antón, I, Annie. (2008): Scenario 
support for effective requirements. Information and 
Software Technology. ELSEVIER. 50(3): pp. 198-220. 

astah*:  http://astah.net/.  Accessed 4 Aug 2014. 
Burden, H. Heldal, R. (2011): Natural language generation 

from class diagrams. Proc. of the 8th International 
Workshop on Model-Driven Engineering, Verification 
and Validation. ACM. pp. 8:1--8:8. 

Clancy, T. (1995): The Standish Group Report CHAOS. 
The Standish Group. http://www.projectsmart.co.uk/ 
docs/chaos-report.pdf. Accessed 30 July 2014. 

Cockburn, A. (2000): Writing Effective Use Cases. 
Addison-Wesley. 

Fowler, M (1997): Analysis Patterns: Reusable Object 
Models. Addison-Wesley. 

Kamalrudin, M. Hosking, J. Grundy, J. (2011): Improving 
Requirements Quality using Essential Use Case 
Interaction Patterns. Proc. of 33rd International 

Conference on Software Engineering. ACM. pp. 531-
540. 

Kof, L. (2007): Scenarios: Identifying missing objects and 
actions by means of computational linguistics. Proc. of 
15th Requirements Engineering, IEEE. pp. 121 – 130. 

Meziane, F. Athanasakis, N. Ananiadou, S. (2008):  
Generating natural language specifications from UML 
class diagrams. Requirments Engineering. Springer. 
13(1): pp.1–18. 

Ohnishi, A. (2008): A Generation Method of Exceptional 
Scenarios from a Normal Scenario. IEICE 
TRANSACTIONS on Information and Systems. IEICE. 
Vol.E91-D No.4 pp. 881-887. 

Olivé, A. (2007): Conceptual Modeling of Information 
Systems. Springer Berlin Heidelberg. 

Robertson, Suzanne. Robertson, James (2012): Mastering 
the Requirements Process: Getting Requirements Right. 
Addison-Wesley. 

Runeson, P. Höst, M. (2009): Guidelines for conducting 
and reporting case study research in software 
engineering. Empirical software engineering. Springer. 
14(2):131-164.  

Sagar, Vidya, R, Bhala, Vidhu. Abirami, S. (2014): 
Conceptual modeling of natural language functional 
requirements. Journal of Systems and Software. 
Elsevier. 88: 25-41. 

Wanderley, F. Silveria, da, Silva, Denis. (2012): A 
Framework to Diminish the Gap between the Business 
Specialist and the Software Designer. Proc. of Eighth 
International Conference on the Quality of 
Information and Communications Technology. IEEE. 
pp. 199-204. 

Support�of�Scenario�Creation�by�Generating�Event�Lists�from�Conceptual�Models

383


