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Abstract: Independent driving is believed to be an important factor of quality of life for individual with autism 
spectrum disorder (ASD). In recent years, several computer technologies, particularly Virtual Reality (VR), 
have been explored to improve driving skills in this population. In this work a VR-based driving 
environment was developed for skill training for teenagers with ASD. Eight channels of physiological 
signals were recorded in real time for affect recognition during driving. A large set of physiological features 
were investigated to determine their correlation with four categories of affective states: engagement, 
enjoyment, frustration and boredom, of teenagers with ASD. In order to have reliable reference points to 
link the physiological data with the affective states, the subjective reports from a therapist were recorded 
and analyzed. Six well-known classifiers were used to develop physiology-based affect recognition models, 
which yielded reliable predictions. These models could potentially be used in future physiology-based 
adaptive driving skill training system such that the system could adapt based on individual affective states. 

1 INTRODUCTION 

Autism spectrum disorder (ASD) has a prevalence 
rate as high as 1 in 68 children in U.S. (CDC 2014). 
While at present there is no single accepted 
intervention, treatment, or known cure for ASD, 
there is growing consensus that intensive behavior 
and educational intervention programs can 
significantly improve long-term outcomes for 
individuals and their families (Rogers 1998; Cohen, 
Amerine-Dickens et al. 2006). However, many 
current intervention approaches show limited 
improvements in functional adaptive skills because 
traditional skill-based methodologies often failed to 
systematically match intervention strategies to 
specific underlying processing deficits associated 
with targeted skills. Additionally, such intervention 
approaches may have difficulties creating 
opportunities for addressing such skills and deficits 
within and across naturalistic settings in 
appropriately intensive dosages (Goodwin 2008). In 
this regard, technological intervention paradigms, 

including Virtual Reality (VR) platforms, have been 
suggested as potentially powerful tools for 
addressing these limits of current intervention 
paradigms. Moreover, given the limited availability 
of professionals trained in autism intervention, it is 
likely that emerging technology will play an 
important role in providing more accessible and 
individualized adaptive intervention in the future 
(Standen and Brown 2005; Tartaro and Cassell 2007; 
Lahiri, Bekele et al. 2013). 

VR-based intervention could be utilized to help 
children with ASD generalize learned skill to the 
real world not only by providing more control over 
how the basic skills are taught, but also the ability to 
systematically employ and reinforce these skills 
within many different, controllable, realistic 
interaction environments. In addition, the virtual 
world can be designed to break down, repeat, add 
and subtract aspects of the environment in any 
manner necessary to achieve a task goal. While VR-
based ASD intervention has become an active 
research field in recent years, more in-depth studies 
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are required to explore how skills learned in virtual 
environment are translated into real-world situations. 

Historically, VR environments applied to 
assistive intervention for children with ASD were 
designed to develop skills based on performance 
only (e.g., correct or incorrect and some other 
performance metrics). However, current research 
focuses the development of VR and other 
technologies that respond not only to explicit 
human-computer interactions (e.g., keyboard, mouse, 
joystick, etc.), but also to implicit interactions like 
eye gaze and physiological signals (Wilms, 
Schilbach et al. 2010; Bekele, Lahiri et al. 2013; 
Lahiri, Bekele et al. 2013). Such methods may offer 
potential to individualize applications. Ultimately, 
VR systems that not only assess performance in 
specific task but also measure eye gaze or 
physiological markers of engagement may lead to 
optimization of learning (Welch, Lahiri et al. 2009; 
Lahiri, Bekele et al. 2013). 

The main objective of this paper is to explore the 
reliability of using physiological signals to detect 
affective states in a VR-based driving simulation 
environment. The results show that physiological 
signals can be used as a reliable way to detect 
participants’ affective states in a driving task and 
these affective states together with performance 
could potentially be used to alter VR interactions. 

While there exists a body of literature that 
discusses interventions for individuals with ASD to 
develop social skills, language development and 
emotion recognition (Sundberg and Partington 1998; 
Bauminger 2002; Golan, Ashwin et al. 2010), only a 
few studies have addressed how to improve driving 
skills of ASD population. Cox and his colleagues’ 
study (Cox, Reeve et al. 2012) reported parents’ 
experiences about driving of young adults with ASD 
and provided suggestions to teach driving skills for 
ASD teenagers. Huang et al. (Huang, Kao et al. 2012) 
also addressed the factors associated with driving in 
teenagers with ASD. Reimer and his colleagues 
(Reimer, Fried et al. 2013) explored the differences 
between an ASD group and a control group in terms 
of physiology. However, only standard statistical 
techniques were used in this study instead of 
detecting affective states by using physiological 
signals. Our previous study (Wade, Bian et al. 2014) 
explored the differences between these two groups 
in a more comprehensive way. These studies provide 
us with useful information to design the driving 
system and are the foundation of the proposed work. 
As far as we know, there is no work on physiology-
based affect detection in driving skill training system 
for the ASD population. 

This paper is organized as follows. In Section II, we 
provide a brief background on VR-based driving 
task - the overall system description and how 
physiology is used to measure the affective states of 
the participants. This section is followed by a 
description of the driving task. In Section IV, we 
focus on the physiology-based affect detection 
system description and results of physiological data 
analysis. The implication of our results and future 
work are discussed in the last section. 

2 SYSTEM DESCRIPTION 

The Virtual Reality (VR) based driving system 
contained a VR module and three subsystems, which 
were a peripheral physiological data acquisition 
module, an EEG data acquisition module and an eye 
tracker module (Fig. 1). 

The virtual environment was developed via the 
Unity game engine (www.unity3d.com). Within 
Unity, we developed a graphical user interface, 
created behavior for vehicles, pedestrians and traffic 
lights, designed the driving scenario and embedded 
traffic rules. Participants interacted with the driving 
environment by operating a Logitech G27 driving 
controller that was mounted on a playseat (Fig. 2). 
The VR system was modeled as a video game with 
three difficulty levels: easy, medium and hard. Each 
level contained three assignments. Each assignment 
had eight trials which were designed in order to 
improve specific driving skill such as turning, speed-
maintenance, merging and following traffic laws. 
Physiological data, EEG data and eye gaze data were 
recorded continuously from the beginning of the 
experiment to the end. A therapist rated the 
participant’s affective states via a custom-designed 
online rating program. More details of VR module 
could be found in our previous papers (Bian, Wade 
et al. 2013; Wade, Bian et al. 2014). 

In this work, we only focused on the physiology-
based affect recognition during driving in VR.  Four 
categories of affective states, engagement, 
enjoyment, frustration, boredom, were chosen 
because of their importance in driving (Baker, 
D'Mello et al. 2010) as well as their detectability 
using peripheral physiological signals (Bradley and 
Lang 2000; Sarkar 2002; Rani, Sarkar et al. 2003; 
Liu, Rani et al. 2006; Welch, Lahiri et al. 2009). As 
can be seen from the framework of our study (Fig. 1), 
establishing an affect recognition model could lead 
to the development of an adaptive closed-loop 
driving skill training system. 
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Figure 1: Framework overview.

3 METHODS AND MATERIALS 

3.1 Experimental Setup 

The physiological signals were collected using the 
Biopac MP150 physiological data acquisition system 
(www.biopac.com) with a sampling rate of 1000 Hz. 
Several physiological signals were investigated. The 
acquired physiological signals were broadly 
classified as cardiovascular activities including 
electrocardiogram (ECG), photoplethysmogram 
(PPG); electrodermal activities (EDA) including 
tonic and phasic responses from galvanic skin 
response (GSR); electromyogram (EMG) activities 
from Corrugator Supercilii, Zygomaticus Major, and 
Upper Trapezius muscles; respiration and skin 
temperature. 

These signals were measured by using light-
weight, non-invasive wireless sensors (Fig. 2). ECG 
signal was collected from the chest using two 
disposable electrodes to record electrical activity 
generated by the heart muscle. PPG and GSR were 
measured from toes instead of fingers in order to 
reduce the motion artifact from driving. EMG was 
measured by placing surface electrodes on 
Corrugator Supercilii and Zygomaticus Major and 
Upper Trapezius muscles. Respiration was used to 
measure changes in thoracic circumference that 
occur as a participant breathes. Skin temperature was 
collected from the upper arm by using a temperature 
sensor. In addition, an EEG cap and an eye tracker 
were also used to detect EEG signal and eye gaze in 
this setup. 

 

Figure 2: Physiological sensors setup. 

A socket-based communication module was 
developed to transmit task-related (e.g., trial 
start/stop) event triggers from the virtual driving 
environment to the Biopac. Physiological signals 
along with task-related event triggers were sent over 
an Ethernet link to a physiological data logger 
computer to enable acquiring and logging of the 
signals in a time-synchronized manner with the VR-
based driving task (Fig. 3). 

3.2 Procedure 

Each participant completed six sessions in different 
days. The first and last session were pre and post 
sessions, which contained the exact same 
assignments. Participants usually completed a single 
session within approximately 60 minutes. At the 
start of each session, physiological sensors and EEG 
cap were placed on a participant’s body and the eye 
tracker  was  calibrated.  Participants watched a short 
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Figure 3: Experimental setup diagram. 

instruction video which explained basic instructions 
and game controls. After the tutorial, participants 
were asked to remain calm and relax for three 
minutes during which physiological, EEG, and eye 
gaze baseline data were collected. The baseline data 
were later used to offset environmental variability. 
Participants also had three minutes free practice in 
which there were no pedestrians and no other 
vehicles in the VR environment. This practice mode 
allowed participants to familiarize themselves with 
the game controls and virtual environment. 

After the three-minute practice, participants 
began the first of three assignments. Through the 
assignment, participants followed the navigation 
system and tried to obey traffic rules. Disobeying 
any traffic rules (i.e., running red light) caused a 
performance failure. In addition, in gaze contingent 
group, failing to look at a specific region of interest 
in specific trials (i.e., did not look at speedometer in 
school zone) also caused a gaze failure. Four failures 
would cause the assignment end and the game would 
go back to assignment selection menu. Time 
duration for each assignment varied from 2 minutes 
to 5 minutes depending on the participants’ 
performance. 
Because of suspected unreliability of self-report of 
teenagers with ASD, an experienced therapist was 
involved in the experiment. The therapist was seated 
next to the experiment room, watching the 
experiment from the view of two cameras (Fig. 3). 
The therapist rated the participants’ affective states 
in four categories: engagement, enjoyment, 
frustration and boredom by using a continuous rating 
scale from 0 to 9 via an online rating program. For 
each assignment, an overall rating was given after 
the assignment. Also, the therapist provided ratings 

when she felt the participants had obvious affective 
state changes. 

3.3 Participants 

We have recruited 12 male teenagers with ASD for 
this phase of the study. While it was not our 
intention to recruit all male participants, they were 
recruited randomly through the existing university 
clinical research registry and happened to be all 
males. This may partially be due to the fact that 
ASD prevalence in male population is four times as 
high as it is for female population (CDC 2014). All 
participants had a clinical diagnosis of ASD from a 
licensed clinical psychologist as well as cores at or 
above clinical cutoff on the Autism Diagnostic 
Observation Schedule (Lord, Risi et al. 2000). The 
Institutional Review Board (IRB) approval was 
sought and received for conducting the experiment. 
Ten participants’ physiological data were used for 
this paper because two of them were not able to 
follow the instructions to get valid physiological 
data. 

Table 1: Participant data. 

Participant NO. Age IQ 
ADOS total 

raw core 
ADOS CSS

ASD01 13.6 -- -- -- 
ASD02 15.1 80 16 9 
ASD03 14.3 86 14 8 
ASD04 14.6 99 -- -- 
ASD05 17.1 118 8 5 
ASD06 13.2 108 14 8 
ASD08 17.5 125 13 8 
ASD09 15.5 117 11 7 
ASD10 16.6 88 22 10 
ASD12 14.1 -- 11 7 

Note: ADOS_CSS = Autism Diagnostic Observation 
Schedule Calibrated Severity Score; IQ = composite score: 
Differential Ability Scales (General Conceptual Ability) or 
Wechsler Intelligence Scale for Children (Full Scale IQ). 

4 PHYSIOLOGICAL DATA 
ANALYSIS 

In this study, a group model was developed to 
classify affective states in four categories: 
engagement, enjoyment, frustration and boredom. A 
90-s window was chosen for sampling the 
continuously-recorded physiological data. The 90-s 
window was chosen for several reasons: it 
approximates the time needed for autonomic signal 
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such as skin conductance to recover and it also 
provides a level of smoothing when the features 
were extracted. The samples were labeled by the 
therapist’s overall rating for each assignment. The 
therapist’s ratings were mapped into high and low 
intensity for each category for binary classification. 

The recorded physiological signals were 
preprocessed for feature extraction. First, each signal 
was filtered using different filters such as high/low 
pass filter, notch filter etc. to reject outliers and 
artifacts. The signals were then standardized to be 
zero mean and unity standard deviation. In addition, 
baseline wander was removed from the PPG signal 
before peak detection as this signal is known to be 
affected by baseline wander. 

Several features were extracted for each channel 
of physiological signal. A brief explanation for all 
the features are listed in Table 2. 

The Waikato Environment for Knowledge 
Analysis (WEKA) (Hall, Frank et al. 2009), which is 
recognized as a landmark system in machine 
learning nowadays, was used to do feature selection 
and classification in this study. For each category, 
CorrelationAttributeEval (Hall 1999) algorithm was 
used to select features. This algorithm evaluated the 
value of a feature by measuring the correlation 
between it and the class. It ranked feature subsets 
according to a correlation based heuristic evaluation 
function. The bias of the evaluation function was 
toward subsets that contain features that were highly 
correlated with the class and uncorrelated with each 
other. Irrelevant features were ignored because they 
would have low correlation with the class. 
Redundant features were screened out as they would 
be highly correlated with one or more of the 
remaining features. Top ten features (Table 3) that 
had the highest correlations with the classes were 
chosen for further classification. 

Six different well-known classifiers were used 
for classification for each category. These classifiers 
were: 

BayesNet: SimpleEstimatior estimator and K2 
search algorithm were chosen. 

NaiveBayes: Numeric estimator precision values 
were chosen based on analysis of the training data. 

SVM: Radial basis function was chosen with a 
degree of 3. 

MultiLayerPerceptron: HiddenLayers were 
chosen by using (attribs + classes) / 2, learningRate 
was 0.3. 

RandomForest: The number of trees to be 
generated was 10, maxDepth was unlimited. 

J48 DecisionTree: The minimum number of 
instances per leaf was 2, 1 of 3 folds data was used 

for reduced-error pruning. 
10-fold cross validation was used. The 

classification accuracies for each category from 
different classifiers are shown in Figure 4. 

The highest accuracy for engagement, enjoyment, 
frustration and boredom were 77.78%, 79.63%, 
79.63% and 81.48%, respectively. These results are 
comparable to the accuracy of most up-to-date 
affective computing systems (Tao and Tan 2005; 
Jerritta, Murugappan et al. 2011). 

As we can see from the selected 10 features of 
each category, PPG, RSP, SCR, EMG_C and 
EMG_Z are most common for the chosen affective 
states. This indicates the possibility of using a 
smaller set of features with a relatively low 
computational cost for a potential closed-loop 
system. 

In this study, we focused on developing a group 
affective state prediction model instead of model for 
each individual. In the future, we want to use this 
group model to provide affective state feedback in a 
closed-loop system and potentially develop a more 
efficient driving system to teach teenagers with ASD 
basic driving skills. 

5 DISCUSSION 

There is a growing consensus that development of 
computer assistive therapeutic tools can make 
application of intensive intervention for teenagers 
with ASD more readily accessible. In recent years, 
several applications of advanced intervention that 
address deficit in driving for teenagers with ASD 
were investigated. However, these application 
lacked the ability of detect the affective cues of the 
teenagers, which could be crucial given the affective 
factors of teenagers with ASD have significant 
impacts on the intervention practice. 

In this work, we presented a physiology-based 
affect recognition framework for teenagers with 
ASD. 68 features were extracted from the recorded 
physiological data. Subsequently 10 features were 
selected by using CorrelationAttributeEval algorithm 
to overcome the overfitting problem. Six most 
commonly used machine leaning algorithms were 
used to classify four category of affective states. The 
developed model could reliably recognize affective 
states of the teenagers with ASD and provide the 
basis for physiology-based affect-sensitive driving 
skill training system. 

In the future, a real-time affect recognition 
system which dynamically shape the driving task 
will   be  developed.  We  will also  incorporate EEG 
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Table 2: Physiological features. 

Physiological signal Feature extracted Label used Unit of measurement 

Electrocardiogram 
(ECG/EKG) 

Sympathetic power 
Parasympathetic power 
Very low-frequency power 
Ratio of powers 
 
 
Mean Interbeat Interval (IBI) 
Std. of IBI 

power_sym 
power_para 
power_vlf 
para_vlf 
para_sym 
vlf_sym 
mean_ibi_ekg 
std_ibi_ekg 

Unit/s2 

Unit/s2 

Unit/s2 

No unit 
 
 
ms 
Standard deviation(no 
unit) 

Photoplethysmogram 
(PPG) 

Mean and std. of  amplitude of the peak 
values 
Mean and std. of heart rate variability 
 

ppg_peak_mean 
ppg_peak_std 
hrv_mean 
hrv_std 

µV 
No unit 
ms 
No unit 

Electrodermal activity 
(EDA) 

Mean and std. of tonic activity level 
 
Slope of tonic activity 
Mean and std. of amplitude of skin 
conductance response (phasic activity) 
Rate of phasic activity 
Mean and std. of rise time  
 
Mean and std. of recovery time 

SCL_mean 
SCL_sd 
SCL_slope 
SCR_mean 
SCR_sd 
 
SCR_rate 
tRise_mean 
tRise_std 
tHRecovery_mean 
tHRevovery_sd 

µS 
µS/s 
µS 
 
µS 
 
Response peaks/s 
 

Electromyographic 
Activity 
(EMG) 

Mean of Corrugator, Zygomaticus and 
Trapezius activities 
 
Std. of Corrugator, Zygomaticus and 
Trapezius activities 
 
Slope of Corrugator, Zygomaticus and 
Trapezius activities 
 
Number of burst activities per minute of 
Corrugator, Zygomaticus and Trapezius 
Mean of Corrugator, Zygomaticus and 
Trapezius burst activities 
 
Std. of Corrugator, Zygomaticus and 
Trapezius burst activities 
 
Mean and Median frequency of  
Corrugator, Zygomaticus and  
Trapezius 
 
 
 
Mean of the amplitude of Corrugator, 
Zygomaticus and Trapezius burst 
activities 

Cemg_mean 
Zemg_mean 
Temg_mean 
Cemg_std 
Zemg_std 
Temg_std 
Cemg_slope 
Zemg_slope 
Temg_slope 
Cburst_count 
Zburst_count 
Tburst_count 
Cburst_mean 
Zburst_mean 
Tburst_mean 
Cburst_std 
Zburst_std 
Tburst_std 
Cfreq_mean 
Cfreq_med 
Zfreq_mean 
Zfreq_med 
Tfreq_mean 
Tfreq_med 
Cburst_amp_mean 
Zburst_amp_mean 
Tburst_amp_mean 

µV 
 
 
No unit 
 
 
µV/s 
 
 
/min 
  
  
mS 
 
 
No unit 
 
 
Hertz 
 
 
 
 
 
µV 
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Table 2: Physiological features (cont.). 

Respiration 
(RSP) 

Mean amplitude 
Std. of amplitude 
Subband spectral entropy 
 
Minimum and maximum difference 
Change rate 
Power spectrum density 
 
 
Std. of Poincare plot geometry 
 
Mean and std. of peak valley magnitude 
Mean and std. of breath per minute 

RSP_mean 
RSP_std 
RSP_subbandSpectr
alEntropy({1,2,3}) 
RSP_minmax_diff 
RSP_rate 
RSP_low_power 
RSP_high_power 
RSP_firstOrder_std 
RSP_poincare_SD1 
RSP_poincare_SD2 
PVM_mean 
PVM_std 
RRI_mean 
RRI_std 

No unit 
 
 
 
 
 
 
 

Peripheral temperature 
(SKT) 

Mean temperature 
Slope of temperature 
Std. of temperature 

temp_mean 
temp_slope 
temp_std 

F 
F/s 
No unit 

Table 3: Selected features for each category of affective states. 

Category Features selected 

Engagement 
RSP_subbandSpectralEntropy(1), hrv_mean, SCR_rate, Zemg_mean, RSP_mean, PVM_std, SCL_sd, 
SCL_slope, Cburst_amp_mean, ppg_peak_mean 

Enjoyment 
hrv_mean, RSP_mean, ppg_peak_mean, Cburst_count, Cemg_slope, Zburst_count, Temg_slope, 
PVM_std,Zburst_mean,Cburst_amp_mean 

Frustration 
Cemg_std, RSP_subbandSpectralEntropy(2), RSP_subbandSpectralEntropy(3), PVM_mean, 
RSP_firstOrder_std, temp_slope, RSP_std, RRI_std, Zfreq_med, RSP_low_power 

Boredom 
tRise_sd, hrv_mean, temp_mean, tRise_mean, SCR_sd, SCR_rate, RSP_subbandSpectralEntropy(3), 
RSP_subbandSpectralEntropy(2), Zfreq_mean, Cburst_count 

 

 

Figure 4: Classification accuracies for each category of 
affective states. 

 

Figure 4: Classification accuracies for each category of 
affective states (cont.). 
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signal and eye gaze in order to give more 
individualized feedback. 
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