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Abstract: The combination of top-K network representation of the data stream with community detection is a novel
approach to streaming networks sampling. Keeping an always up-to-date sample of the full network, the
advantage of this method, compared to previous, is that it preserves larger communities and original network
distribution. Empirically, it will also be shown that these techniques, in conjunction with community detection,
provide effective ways to perform sampling and analysis of large scale streaming networks with power law
distributions.

1 INTRODUCTION

Large Scale Social Networks (LSSN) sampling has
emerged as a hot research topic during the recent
years. Approaches using full network data revealed
to be ineffective, not only due to its computational
constraints, but also because of the inherent difficul-
ties to analyze huge networks and draw conclusions
by its results observation. In social network analy-
sis, the goal is to get more information from the data,
with the least dissociation possible from the nodes of
the network.

In this paper, we propose a new method for large-
scale network sampling. The method performs an
online sampling from a graph stream. The pro-
posed algorithm selects, in real-time, the k-most ac-
tive nodes on the network using the Space-Saving al-
gorithm (Metwally et al., 2005). We show that the
proposed sampling preserves the same distribution of
the original network. We empirically demonstrate that
the proposed sampling method can be used to repre-
sent global community structure of large networks in
a summarized fashion. The results are empirically ob-
tained by simulation of data streaming from databases
and with a common commodity computer.

The paper is organized as follows. Section 2
presents the related work regarding methods for large-
scale networks sampling. Section 3 introduces the
algorithm for top-K Networks sampling. In Section
4 we use the proposed method in a large scale so-
cial networks dataset from the a telecommunications
industry, showing the effectiveness of the proposed

method. The last Section highlights the major con-
tributions, and discuss further work to enhance the
method.

2 RELATED WORK

2.1 Sampling Large Static Networks

Random sampling and snowball sampling are two of
the most used strategies to perform sampling on static
networks.

Hu and Lau (2013) present a survey on static
graph sampling methods and a throughout theoreti-
cal overview. This work in progress is continuously
updated and is an important reference for researchers
in this field.

In snowball sampling (Goodman, 1961) a start-
ing node is chosen. After getting the start node, its
1st, 2nd, to n order connections are gathered until the
network reaches the chosen size for analysis. This
approach, while easy to implement, has known prob-
lems: it is biased toward the part of the network sam-
pled, and may miss other features. Nevertheless, it is
one of the most common sampling approaches.

The random sampling (Granovetter, 1976), ran-
domly selects a certain percentage of nodes and keeps
all edges between them. As alternative, randomly se-
lects a certain percentage of edges and keeps all nodes
that are mentioned. The main problem with this ap-
proach is that edge sampling is biased towards high
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degree nodes, while node sampling might lose some
structural characteristics of the network. Again, this
is an easy method to implement.

The task, therefore, must be to sample a sub-graph
in such a way that the sub-graph is representative of
the original graph. A major question is what it means
for a sample to be representative of the original net-
work. Existing works consider such measures as sim-
ilarity in degree distributions and clustering coeffi-
cients (Hübler et al., 2008; Leskovec and Faloutsos,
2006). Leskovec and Faloutsos (2006) present a large
variety of graph sampling algorithms. They conclude
that methods combining random node selection and
some vicinity exploration give best network samples.
They show that a 15% sample is usually enough, to
match the properties of the original graph and that no
list of network properties serving as basis for sam-
pling evaluation will ever be perfect.

2.2 Sampling Large Streaming
Networks

Several approaches have been proposed to gather in-
formation from streaming graphs. Typical Social
Networks analysis problems like counting of trian-
gles, degree measurements, page rank and community
detection, among others, have been already imple-
mented following a data stream approach. Network
sampling of streaming graphs is still an area open for
further research. Ahmed et al. (2012) presents a novel
approach to graph streaming sampling. According
to the authors, there was no previous contribution to
streaming graphs sampling. The authors propose a
novel sampling algorithm, PIES, based on edge sam-
pling and partial induction by selecting the edges that
connect sampled nodes.

Papagelis et al. (2013) introduces sampling-based
algorithms that quickly obtains a near-uniform ran-
dom sample of nodes in its neighbourhood, given a
selected node in the social network. The authors also
introduce and analyse variants of these basic sampling
schemes, aiming the minimization of the total number
of nodes in the visited network, by exploring correla-
tions across samples.

Recently, Ahmed et al. (2014) propose a generic
stream sampling framework for big-graph analytics,
called Graph Sample and Hold (gSH). It samples from
massive graphs sequentially in a single pass, one edge
at a time, while maintaining a small state in memory.

Most of these approaches achieve node random
sampling through graph streaming. Our objective is
diverse. We aim to achieve sampling for specific
nodes with high degree. Ahmed et al. (2014) provide
means for doing such a sampling with their method

focusing on edge sampling and uniform sampling of
edges at random. Thus, the sampling method might
lead to the selection of a large number of higher-
degree nodes but it was not tested on resulting net-
work communities, which is the aim of our work.

3 top-K NETWORKS

Scientific community has been trying to achieve effi-
cient ways of doing data streams and graph summa-
rization. The exact solution implies the knowledge of
all the nodes and edges frequency, therefore this exact
solution might be impossible to achieve in large-scale
networks. The proposed method aims the summariza-
tion by filtering out less connected nodes. Thus, the
proposed sampling approach is biased towards high
frequent nodes in the stream. This differentiates the
proposed method from previous attempts mentioned
in the RELATED WORK section that focus on get-
ting non-biased sampling methods.

3.1 top-K Itemsets

The problem of finding the most frequent items in
a data stream S of size N is mainly how to dis-
cover the elements ei whose relative frequency fi
is higher than a user specified support fN, with
0 � f � 1 (Gama, 2010). Given the space require-
ments that exact algorithms addressing this problem
would need (Charikar et al., 2002), several algorithms
were already proposed to find the top-k frequent el-
ements, being roughly classified into counter-based
and sketch-based (Metwally et al., 2005). Counter-
based techniques keep counters for each individual
element in the monitored set, which is usually a lot
smaller than the entire set of elements. When an el-
ement is identified as not currently being monitored,
various algorithms take different actions to adapt the
monitored set accordingly. Sketch-based techniques
provide less rigid guarantees, but they do not monitor
a subset of elements, providing frequency estimators
for the entire set.

Simple counter-based algorithms, such as Sticky
Sampling and Lossy Counting, were proposed
in (Manku and Motwani, 2002), which process the
stream in compressed size. Yet, they have the dis-
advantage of keeping a large amount of irrelevant
counters. Frequent (Demaine et al., 2002) keeps only
k counters for monitoring k elements, incrementing
each element counter when it is observed, and decre-
menting all counters when an unmonitored element is
observed. Zeroed-counted elements are replaced by
new unmonitored elements. This strategy is similar
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to the one applied by Space-Saving (Metwally et al.,
2005), which gives guarantees for the top-m most fre-
quent elements. Sketch-based algorithms usually fo-
cus on families of hash functions which project the
counters into a new space, keeping frequency estima-
tors for all elements. The guarantees are less strict but
all elements are monitored. The CountSketch algo-
rithm (Charikar et al., 2002) solves the problem with a
given success probability, estimating the frequency of
the element by finding the median of its representative
counters, which implies sorting the counters. Also,
the GroupTest algorithm (Cormode and Muthukrish-
nan, 2005) employs expensive probabilistic calcula-
tions to keep the majority elements within a given
probability of error. Despite the fact of being gen-
erally accurate, its space requirements are large and
no information is given about frequencies or ranking.

3.2 Sampling Algorithm for top-K
Networks

Algorithm 1 represents the proposed top-K method
application using the Space-Saving algorithm. This
type of application is based on landmark windows
(Gama, 2010), it implies a crescent number of in-
spected events in the ever-growing time window. This
landmark application is also useful in other contexts,
e.g., when the network is relatively small and the user
wants to check all events in it.

Basic landmark windows experiments proved to
suffer from the problems we wished to avoid, like sur-
passing memory limits. This happens when the num-
ber of nodes and edges exceeds dozens of thousands
of nodes. The top-K algorithm application, based on
Landmark Window, enables an efficient approach for
large-scale data. It focuses on the influential nodes
and discards less connected nodes, which are the most
frequent for power law distribution. The alternative
option for sliding windows (Gama, 2010) would not
be appropriate for the top-K approach, since it may
remove less recent graph nodes. Those nodes might
yet be included in the top-K list we wish to maintain.

In our scenario, top-K representation of data
streams implies knowing the K elements of the simu-
lated data stream from the database. Network nodes
that have higher frequency of outgoing connections,
incoming connections, or even specific connections
between any node A and B, may be included in the
graph, as well as their connections.

For this application, the user can insert as input
a start date and hour and also the maximum num-
ber of top-K nodes to be represented (the K param-
eter) along with their connections. With the inserted
start date and hour, the top-K application is expected

to return the evolving network of the top-K nodes.
Functions getTopKNodes and updateTopNodesList in
Algorithm 1 implement the Space-Saving algorithm.
As the network evolves over time, new top-K nodes
are added to the graph. Nodes that exit top-K list of
numbers are removed from the top-K list and, thus,
removed from the graph along with their connections.

Algorithm 1 : top-K Pseudo-Code for outgoing connec-
tions.
Input: start, k param, tinc . start timestamp, k

parameter and time increment
Output: edges

1: R fg . data rows
2: E fg . edges currently in the graph
3: R getRowsFromDB (start)
4: new time start
5: while (R <> 0) do
6: for all edge 2 R do
7: be f ore GETTOPKNODES(k param)
8: UPDATETOPNODESLIST(edge) . update

node list counters
9: a f ter GETTOPKNODES(k param)

10: maintained be f ore
T

a f ter
11: removed be f orenmaintained
12: for all node 2 a f ter do . add top-K

edges
13: if node� edge then
14: ADDEDGETOGRAPH(edge)
15: E E

S
fedgeg

16: end if
17: end for
18: for all node 2 removed do . remove non

top-K nodes and edges
19: REMOVENODEFROMGRAPH(node)
20: for all edge 2 node do
21: E E nfedgeg
22: end for
23: end for
24: end for
25: new time new time+ tinc
26: R getRowsFromDB (new time)
27: end while
28: edges E

3.3 Communities of top-K Nodes

The top-K communities in the scope of this work are
detected considering only the top-K nodes and their
1st and 2nd order connections. Our method samples
the original network with a method aiming to keep the
characteristics and community structure of the origi-
nal network. We apply top-K sampling to obtain the
nodes that belong to the top-K group. To retrieve their
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Figure 1: The original Louvain algorithm steps.

network we do a query to the database collecting all
connections/edges representing the network with the
neighbors of the top-K nodes. After having the sam-
pled networks, the Louvain Method (Blondel et al.,
2008) is applied to find the communities.

Figure 1 briefly explains how the Louvain algo-
rithm works. In this figure the sequences describe the
individual steps that the algorithm performs for de-
tecting communities. It is non deterministic and per-
forms a greedy optimization method to maximize the
modularity of all the network partitions. A two-step
optimization is performed for each iteration. In step
1, the algorithm seeks for small communities by lo-
cally optimizing the modularity. Only local changes
of communities are allowed. In step 2, nodes belong-
ing to the same community are aggregated in a single
node representing that community in order to build a
new aggregated network of communities. Steps are
repeated iteratively until no increase of modularity is
possible and a hierarchy of communities is produced.
Figure 1(a) represents the initial network; Figure 1(b)
represents initial individual node communities; Fig-
ure 1(c) represents local modularity optimization after
first step; Figure 1(d) represents community aggrega-
tion results and the new initial communities; Figure
1(e) and Figure 1(f), are the two Louvain steps, where
the local modularity optimization and community ag-
gregation for the second iteration are presented; The
algorithm stops at the 2nd iteration, once increasing
modularity is no longer possible.

4 CASE STUDY

Telecommunication networks generate large amount
of continuous data from users and network equip-
ment. In this particular case study, we use Call De-
tail Records (CDR) log files, retrieved from equip-
ment distributed geographically. CDR implicitly de-
fines a network, where nodes are clients. An edge cor-
responds to a call between two clients. The stream of
phone calls defines a network stream. Considering the
large amount of calls occurred per second, we clas-
sify this particular dataset as large-scale network data.

The network data has, on average 10 million calls per
day. The phone numbers were changed to different
identifiers to preserve users anonymity. A call be-
tween A and B phones is represented by an edge in
the social network. Because some individuals receive
and make more than one call, the full networks has an
average of 6 million of unique users/nodes per day.
The dataset contains anonymous data for 135 days.
For each edge/call, timestamp information shows the
date and hour of the beginning of the call. The num-
ber of calls made per second varies from around 10 at
mid-night and reaches its peak at mid-day with 280.

Our goal with this case study was to test if we
can use the proposed top-K method on large-scale
telecommunications networks. We started by inspect-
ing the distribution of the data. We then applied the
method and expected the distribution to be maintained
for the different top-K scenarios with different set-
tings for the K parameter.

After this initial study we wanted to investigate if
the larger communities obtained from top-K networks
were representative of the original data, focusing on
the larger communities. Moreover, we also needed to
evaluate if the communities were coherent as the data
streaming evolved over time.

4.1 Data Distribution

To study the distribution of the available data, we ag-
gregate the data in two different ways:
1. Count the number of calls, per day, from phone A

to B i.e. A!B
2. Count the number of calls, per day, from each

caller phone
After the previous operation we observed the dis-

tribution of the aggregated data and there is some ev-
idence these representations have a power law distri-
bution (Barabasi, 2005) as can be seen in Figure 2(a)
and Figure 3(a). These figures illustrate that, regard-
ing a day period, it is expected a high amount of single
calls between some A!B phones and a low amount
of many calls between A!B phones. Moreover, we
can expect a lower amount of highly active callers
and a larger amount of low activity callers. We also
plotted the distribution of the daily aggregated data
with a log-log representation as seen in Figure 2(b)
and Figure 3(b). These illustrations show a monomial
approximation which indicates that both are derived
from power law distributions.

We test the hypothesis that both distributions fol-
low a power law using the method described in Gille-
spie (2014). We use the software available in the pow-
eRlaw R package. The Figure 4 illustrates the hy-
pothesis test for power law distribution presenting the
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(a) (b)

Figure 2: A!B Calls Distribution (a) and log-log plot (b).

(a) (b)

Figure 3: Distribution of the Caller Calls (a) and log-log
plot (b).

mean estimate of parameters xmin, a and the p-value,
being xmin the lower bound of the power law distribu-
tion. Estimation parameter a is the scaling parameter
(”Par 1” in Figure 4, Figure 7 and Figure 8) and a

> 1. The dashed-lines give approximate 95% confi-
dence intervals. The observed p-value when testing
the null hypothesis H0 that the original data is gener-
ated from a power law distribution is 0.1. Thus, H0
cannot be rejected because the p-value is superior to
0.05. After proving that the data has power law dis-
tribution, there was evidence that the proposed top-K
sampling method is a good approach for this dataset.
The next section regards the distribution and charac-
teristics of the top-K method application.

4.2 top-K Sampling Distributions and
Characteristics

As the majority of data concerns isolated calls be-
tween two phones, our goal is to get a sampled ver-
sion of the data that represents the network of most
active users in the network. The Space Saving algo-
rithm is applied with different settings and different
k parameter, i.e. 10000, 50000 and 100000. The

Figure 4: Original Network - Caller power law Distribution
hypothesis Test.

respective top-K networks were then extracted from
querying the database. Finally, the density and clus-
tering coefficient of these networks were compared
with the values of the original network (Figure 5 and
Figure 6 ).

Figure 5: Density comparison between original network
and Top-K Space Saving Sampling.

Figure 6: Clustering Coefficient comparison between origi-
nal network and Top-K Space Saving Sampling.

Figure 7: Top-10000 Network - Caller power law Distribu-
tion hypothesis Test.

Figure 8: Top-50000 Network - Caller power law Distribu-
tion hypothesis Test.

The analysis of Figure 5 and Figure 6 leads to
conclude that: i) the density of sampling generated
networks lowers as the K parameter of Space Saving
Sampling algorithm increases; ii) the clustering co-
efficient of sampling generated networks is more than
two times the clustering coefficient of the original net-
work, even though it still holds a low value; iii) as
the K parameter of Space Saving sampling algorithm
increases, the clustering coefficient does not seem to
have a significant variation. Figure 7 represents the
hypothesis test for power law distribution regarding
the top-10000 network and for the most active callers.
The observed p-value is 0.82. Thus, we cannot reject
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Figure 9: Community elements matching for same day period.

the hypothesis H0 because the p-value is higher than
0.05.

Continuing the tests, Figure 8 represents the hy-
pothesis test for power law distribution regarding the
top-50000 network and for the 50000 most active
callers. The observed p-value is 0.16. Therefore we
cannot reject the hypothesis H0. We also did the hy-
pothesis test for power law distribution for the top-
100000 network regarding 100000 most active caller
numbers. Testing the null hypothesis H0 that the top-
100000 network for the callers is generated from a
power law distribution the observed p-value is 0 so
we cannot accept it because it is inferior to 0.05.

4.3 Original and Sampled top-K
Communities Comparison

For the community detection task, both for the origi-
nal network and the top-K networks, we selected the
Louvain Method described in (Blondel et al., 2008).
Figure 9 represents the matching between community
elements taken from the top-10000 network and for
the original network communities without sampling.
This task was done for an entire day of data streaming.
The matching of communities between both Louvain
Method results is done by retrieving the percentage of
matching elements between any top-k network com-
munity and the original network communities.

Further analysis of Figure 9 shows the matching
of the 100 largest communities for the sampled net-
work and the 20 largest original network’s commu-
nities. The value of element matching varies with a
color gradient between 0 (yellow) and 1 (blue). There
is considerable matching of the top-10000 sampling
communities and the 20 largest communities of the
caller original network. These highly active callers
and the communities they belong to are therefore rep-
resented in the top-K sampling as we expected.

Other days in the dataset were also analysed. The
results are very similar and consistent throughout full
day data comparisons and for the complete dataset of
more than 100 days. In all comparisons it is visible
that larger original dataset communities are matched
by communities retrieved with the proposed top-K
sampling method.

4.4 Communities of Consecutive Days
Samples

Figure 10 represents the matching between commu-
nity elements taken from the top-10000 network com-
munities on consecutive days of the week. The match-
ing in this case corresponds to the percentage of
matching elements between any top-k network com-
munity of one day and all the top-k network commu-
nities of the following day data.

The matching of the 20 largest communities for
consecutive days of daily sampled networks is intu-
itive with this representation. There is considerable
matching of the top-10000 sampling communities on
consecutive days. This leads to conclude that there
is high stability of larger communities as time pro-
gresses throughout the week. Similar results were ob-
tained with several combinations of consecutive days

Figure 10: Consecutive days community elements match-
ing.
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over the 135 days of the available data. We also ob-
served that there was some decreasing of matching el-
ements when consecutive days represented transition
from workdays to weekend days or vice versa. This
is expected since the behaviour of major intervenients
in the network favour higher activity in working days.

5 CONCLUSIONS

The top-k application is a suitable approach to our
data that presents a power law distribution. This en-
ables the focus on the influential individuals and dis-
cards isolated connections. The use of Space-Saving
algorithm to sample top-K elements in a network is
able to keep the original network’s power law fea-
tures. The Louvain Method enables the generation of
representative communities with the most active ele-
ments in the network. This method for evolving net-
works sampling enables the use of a common com-
modity computer for massive network analysis. Fu-
ture work will use Ahmed et al. method and compare
it with our method for community detection. We also
have the objective of testing the method with real-time
data streaming systems.
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