
An Human Perceptive Model for Person Re-identification

Angelo Cardellicchio1, Tiziana D’Orazio1, Tiziano Politi2 and Vito Renò1
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Abstract: Person re-identification has increasingly become an interesting task in the computer vision field, especially
after the well known terroristic attacks on the World Trade Center in 2001. Even if video surveillance systems
exist since the early 1950s, the third generation of such systems is a relatively modern topic and refers to
systems formed by multiple fixed or mobile cameras - geographically referenced or not - whose information
have to be handled and processed by an intelligent system. In the last decade, researchers are focusing their
attention on the person re-identification task because computers (and so video surveillance systems) can handle
a huge amount of data reducing the time complexity of the algorithms. Moreover, some well known image
processing techniques - i.e. background subtraction - can be embedded directly on cameras, giving modularity
and flexibility to the whole system. The aim of this work is to present an appearance-based method for person
re-identification that models the chromatic relationship between both different frames and different areas of
the same frame. This approach has been tested against two public benchmark datasets (ViPER and ETHZ) and
the experiments demonstrate that the person re-identification processing by means of intra frame relationships
is robust and shows great results in terms of recognition percentage.

1 INTRODUCTION

Since the September 11 attacks, the increased need of
security has led to the development of new techniques
to identify and prevent security threats in crowded en-
vironments. One of the most studied problems is per-
son re-identification (PRID), i.e. the task of identify
the same individual given a set of frames taken from
two or more non-overlapping cameras covering the
same environment.

Each computer vision system that performs video
surveillance tasks must deal with challenging and crit-
ical aspects due to:

� noisy signals provided by the cameras;

� illumination and viewpoint variations;

� background clutter with occlusion phenomenas;

� low image quality.

Ideally, given an initial dataset divided in a probe
set and a gallery set, the PRID pipeline begins with
a feature-extraction step, where a robust set of fea-
tures is extracted from each frame and combined in a
signature vector that should characterize the observa-
tion avoiding ambiguities (i.e. a person with a blue
shirt and white trousers and another person with a

red blouse and pink skirt should have different sig-
natures). Finally, each signature of the probe set has
to be compared with the others of the gallery set in
order to find the best match.

There are several approaches used to do this com-
parison, but they can be divided in two macro cate-
gories:

Unsupervised Approaches use a fixed metric to
compare the signatures extracted from different
frames.

Supervised Approaches learn a metric matrix M us-
ing an optimization criterion which maximizes the
distance between different signatures in order to
have isolated clusters in the vector space of the
features.

In literature, the most used types of features
are texture-based and color-based ones. Some ap-
proaches like (Farenzena et al., 2010) combine both
types of features to extract the signature, while oth-
ers ((Yang et al., 2014),(Matsukawa et al., 2014)) use
only color-based ones, which have been proven to be
more effective when the image resolution is low.

Finally, the effectiveness of the PRID pipeline can
be evaluated in the single-shot or in the multiple-shot
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case. In the first case, only two frames per each sub-
ject are given: one in the gallery set and one in the
probe set; in the other case, multiple frames per each
individual are given, so each frame of the probe set
can be tested against several frames of the gallery
set. Generally speaking, the single-shot case is more
challenging than the multi-shot one because the al-
gorithms must be trained with only one sample per
person.

The focus of this work is to build an human per-
ceptive model as a base for a video surveillance sys-
tem. As a consequence, we need to focus on the way
humans perform PRID, i.e. using perceptive informa-
tion instead than mere numerical one.

Intuitively, humans use both short-term and long-
term biometric features to perform PRID. While the
first kind of features refere to traits which can change
in short periods of time, like clothes, features of the
second kind usually don’t change in the whole life-
time, like fingerprints or retina. Given the low qual-
ity of images acquired by CCTV cameras and the re-
quirement for a non-pervading PRID system, long-
term features cannot be currently used in a proper
way; instead, short-term features may be used for
PRID, as they will be likely retained between differ-
ent views of the same individual taken in near tempo-
ral spots.

Two different requirements have driven the devel-
opment of the proposed methodology: improve quali-
tative PRID performances and lower PRID algorithm
computational cost.

As for the first requirement, actual PRID meth-
ods focus primarily on quantitative performance, i.e.
the maximization of the number of correctly matched
frames, which can be statistically characterized by the
first rank of a CMC curve. While this approach is the-
oretically correct (i.e. if a method gets a good value
of the first rank of the CMC, it works), a change of
perspective may be necessary. In fact, given a PRID
dataset, it can be shown that some frame sets are am-
biguous, i.e. the correct match is hard to be identi-
fied even from an human operator. An example of an
ambiguous frame set is given in figure 1(a), while in

(a) Ambiguous frameset

(b) Non-ambiguous frameset

Figure 1: Ambiguity of different frame subsets.

figure 1(b) an example of non-ambiguous frame set is
shown: ideally, a good PRID algorithm should never
fail in the second situation.

The second requirement implies that we should
look for a (relatively) unexpensive set of feature upon
which build our frame signature, as PRID systems
need to run in real time in order to be effective.

Following these consideration, we model the way
humans perform PRID characterizing each couple of
frame by means of both chromatic inter-relationships,
which refer to similarity between a couple of different
frames, and intra-relationships, which refer to simi-
larity between different areas of the same frame.

A similar approach has been proposed in (Kvi-
atkovsky et al., 2013), where the authors divide each
frame in two parts (upper and lower) and characterize
color point clouds from each part by means of shape
context descriptors (Belongie et al., 2002), whose
shapes are supposed to be retained between different
views of the same individual. Unfortunately, this ap-
proach doesn’t analyze possible dependecies between
different parts of the same image.

In order to fill this gap and compute the intra-
relationships, we firstly divide each frame in n dif-
ferent horizontal stripes, like (Yang et al., 2014),
(Truong Cong et al., 2010); then, we extract several
color-based features using color histograms (Swain
and Ballard, 1992), which have been proven to be ro-
bust to pose and illumination changes; lastly, we com-
pare obtained signature in order to find the best match.
The division in n different horizontal stripes allows to
retain the spatial information which is not enfolded in
color histograms.

The rest of the work is organized as follows: in
the second section an introduction on color models is
given, then in the third section the proposed method-
ology is exposed; the fourth section contains experi-
ments and results carried out on two public datasets
(ViPER and ETHZ). In the fifth and last section we
discuss the conclusions and gives an overview on fu-
ture works and perspectives.

2 METHODOLOGY

2.1 Modeling Chromatic Content

2.1.1 Diagonal-offset Model

We first introduce the diagonal-offset model (Fin-
layson et al., 2005), which can be used to map colors
under illumination conditions i to the corresponding
colors under illumination conditions f through a lin-
ear model:

An�Human�Perceptive�Model�for�Person�Re-identification

639



0@R f

G f

B f

1A=

0@a 0 0
0 b 0
0 0 c

1A�
0@Ri

Gi

Bi

1A+

0@or

og

ob

1A
where a, b, and c are the first degree terms and or,
og and ob the offsets. Various types of illumination
changes can be defined exploiting this model: specifi-
cally, in (Van de Sande et al., 2010) the authors intro-
duce:

Light Intensity Changes i.e. changes with a con-
stant value of light-mapping coefficents a = b =
c = k and a null offset vector;

Light Intensity Shifts i.e. changes with a constant
value of light-mapping coefficents a = b = c = 1
and a constant value of offset vector coefficents
or = og = ob = h;

Light Intensity Changes and Shifts i.e. changes
with a constant value of light-mapping coefficents
a = b = c = k and a constant value of offset vector
coefficents og = og = ob = h;

Light Color Changes i.e. changes with a non-
constant value of light-mapping coefficents a 6=
b 6= c and a null offset vector;

Light Color Changes and Shifts i.e. changes with
a non-constant value of light-mapping coefficents
a 6= b 6= c and a non-constant value of light-
mapping coefficents or 6= og 6= ob.

The diagonal-offset model is useful to character-
ize chromatic variations due to different image ac-
quisition settings and evaluate the robustness of each
color model described in the next paragraph.

2.1.2 Color Models

In our work, we used some of the most significant
color models known in literature.

rgb is obtained normalizing the RGB color model.
Its main advantage is it is invariant to light inten-
sity changes.

HSV color model describes colors in terms of hue,
saturation and value of illuminant intensity. We
discard intensity information, considering only H
and S to improve the robustness to light changes.

Log-Chromaticity Color Space is defined in (Gev-
ers and Smeulders, 1999) as:

c1 = ln
� R

G

�
;c2 = ln

� B
G

�
In (Kviatkovsky et al., 2013) it is proven this
model is invariant to illumination intensity and
color changes and shifts.

We now give an exhaustive overview of our method-
ology.

2.2 Modeling Chromatic Relationships

Among all chromatic features, color histograms are
the most widely used in PRID as they are invariant to
variations in pose and view angle ((Farenzena et al.,
2010), (Yang et al., 2014), (Matsukawa et al., 2014),
(Truong Cong et al., 2010)). Unfortunately, they bring
two disadvantages:

1. loss of shape information, i.e. information about
texture or body parts shape;

2. loss of spatial information, i.e. information about
the spatial disposition of the colors in the image.

As for shape information, video surveillance cameras
usually capture low quality frames, thus making this
kind of information not discriminative in PRID appli-
cations. However, spatial information is discrimina-
tive, because the spatial relationship between differ-
ent areas of an individual is supposed to be retained
in short periods of time.

Our approach overcomes the lack of spatial infor-
mation introducing the concept of Differential Spa-
tiogram (DS), a mathematical structure which enfolds
both intra and inter relationships between frames.
DSs are calculated combining Inter distances Vectors
(IrV) and Intra distances Matrices(IaM), whose ex-
traction and merging processes into the DS are de-
tailed in the following paragraphs.

2.2.1 Inter Distances Vector

Inter frame relationships are computed extracting a
distance vector for each pair of frames, one from the
probe set and one from the gallery set. Given two
frames a and b, their Inter distance Vector is defined
as:

IrV 0ab =
�
D1ab : : : Dnab

�
In the above formula, Diab represents the distance be-
tween the i� th strip of the frame a and the corre-
sponding one taken from the frame b.

In the single-shot case the cardinality of both the
probe set Ip and of the gallery set Ig is m; as a con-
sequence, m2 IrVs have to be computed, one for each
pair (i; j) where i 2 Ip and j 2 Ig. Therefore, we can
estimate the computational complexity related to the
calculation of IrVs for the whole dataset as O(m2 �n)
operations, where n is the number of the considered
horizontal stripes. D can be any kind of distance met-
ric; in the experimental section, we will show the re-
sults obtained using the Bhattacharyya one.

It is interesting to note that the computational cost
can be approximated to O(m2) in the very common
case where n� m.
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2.2.2 Intra Distances Matrix

Intra frame distances characterize chromatic relation-
ships between different areas of the same image. As-
suming a strong hypothesys about the aspect of an in-
dividual, i.e. it can not vary between two different
views, it is likely that intra-distances will be retained
and therefore are useful for the PRID pipeline. Intra-
distances can be modeled by means of an Intra Dis-
tances Matrix defined as:

IaM f =

0BBBB@
0 D12 : : : D1n
...

. . . . . . D2n
...

. . . Dn�1n
0 : : : : : : 0

1CCCCA
In the above formula, n is the number of segment

in which each frame is divided. The computation of a
IaM for the whole dataset O(m2 � n2) operations. As
before, D can be any kind of distance metric, and the
computational cost can be lowered to O(m2) if n�m.

2.2.3 Differential Spatiogram

Given a couple of images a 2 Ip and b 2 Ig, we can
combine IrV and IaM to rely chromatic variations be-
tween different areas of both a and b with initial chro-
matic content of the two frames.

The DS is defined as:

DSab =

0BBBB@
IrVab(1) D12 : : : D1n

0 IrVab(2)
. . . D2n

...
. . . . . . Dn�1n

0 : : : 0 IrVab(n)

1CCCCA
In the above formula, Di j is defined as:

Di j =
p
[IaMa(i; j)� IaMb(i; j)]2 � [IrVab(i) � IrVab( j)]

where i� j.
This formulation allows to characterize intra-
chromatic relationships while taking in account inter-
chromatic relationships, i.e. even if IaM differences
between two areas a and b of two images i and j may
be comparable, it is not guaranteed that chromatic
components of the k-th strip of i and j are similar.

DS have an upper triangular matricial structure,
which gives the possibility to exploit its algebrical
properties to extract a set of metrics from it. We
propose three indexes:

Trace:
Tr(DSab) =

n

å
i=1

DSab(i)

Determinant:

Det(DSab) =
n

Õ
i=1

DSab(i)

Sum:

Sum(DSab) =
n

å
i=1

n

å
j=1

DSab(i; j)

An interesting property of both Tr and Det is that
they are linearly dependent on the eigenvalues of the
DS, which correspond to IrV values (because DS has
a upper triangular structure). In addition, we expect
that the Tr metric should behave better than the Det
one when the two i-th strips of the images a and b are
similar, i.e. when:

IrVab(i)< e;e! 0

In fact, given the above condition:

Det(DSab) =
n

Õ
i=1

DSab(i)! 0

while on the contrary:

Tr(DSab) =
n

å
i=1

DSab(i) 6= 0

Ideally, Tr will better characterize chromatic rela-
tionships when only one strip of the frame a is very
similar to the corresponding on taken from the frame
b, while others aren’t. However, in real cases it is ex-
tremely unlikely to find this situation.

Both Tr and Det metrics don’t enfold intra frame
information, but Sum does. As a consequence, we
expect it to have slightly better PRID performances
if compared to the others. We will show the results
obtained with the last metric in the next section.

3 EXPERIMENTAL RESULTS

3.1 Experimental Settings

For our experiments, we test our approach against two
public PRID datasets, VIPeR and ETHZ.

VIPeR (Gray and Tao, 2008) is one of the most used
dataset for PRID. It contains 632 image pairs, ob-
served from two different camera views, each one
associated with one person. VIPeR dataset is par-
ticulary challenging, because of severe illumina-
tion changes and viewpoint variations.
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ETHZ (Ess et al., 2007) contains three scenes cap-
tured from moving cameras. The first sequence
contains 83 pedestrians, for a total of 4857 im-
ages; the second scene contains 35 pedestrian, for
a total of 1936 images; the third and last scene
contains 28 pedestrians, for a total of 1762 im-
ages. This dataset is not hard as VIPeR in terms
of pose variations, but it offers some challenging
aspects like illumination changes and occlusions.

As for settings, for VIPeR we follow the widely-
used setup ((Farenzena et al., 2010), (Yang et al.,
2014), (Kviatkovsky et al., 2013)) which consider half
of the overall image pairs, i.e. 316 image paris. As
our method is unsupervised, we don’t need a train-
ing set and a validation set. The test is splitted in
two phases: in the first one, images from the first
camera are treated as probe set, while frames from
the second as gallery set; in the second phase, probe
and gallery set are switched. Finally, the average of
CMC curves from first and second phase is taken as
one trial, and we consider 100 trials of evaluation in
order to achieve a statistical significance. As in the
other methods, the average of the first 50 ranks are
reported.

The setup for ETHZ is different, and it recalls the
one used in (Zheng et al., 2009). Firstly, we randomly
select one image per each subject in order to build
the gallery set; the other images will form the probe
set. We then estimate the matching between probe
and gallery set for each image of the probe set. As for
VIPeR, we will repeat the whole process 100 times
to achieve a statistical significance, and we will show
the first 7 ranks (as the cardinality of the gallery set
is significantly smaller than the cardinality of VIPeR
dataset).

3.2 Quantitative Results using Different
Color Models and Metrics

In this section we show PRID quantitative perfor-
mances using the various color spaces depicted in sec-
tion 2 and a fusion histogram obtained by the concate-
nation of HS and log-chromaticity histograms.

We will solve the following problem: given a pair
of frames a 2 Ip and b 2 Ig, and a metric M extracted
from DSab, for every frame taken from the probe set
we search for the frame of the gallery set that mini-
mizes the M metric:

argmin
a;b

(M(DSab))

Then we use this information to calculate the rank
of every matched frame, building the CMC curve and

quantifying the performances of the PRID pipeline
exploiting the DS.

We first evaluate the various metrics depicted in
section 2.2.3. We expect the performances of Sum
will be slight better than the performances of Tr and
Det, as shown in figure 2(a). We point out that it is due
to the fact that intra-relationships are relevant: this
can change according to the dataset, and a method to
dinamically choose which metric is the most relevant
has to be developed.

Figures 2(b-e) compare quantitative PRID perfor-
mances of Sum metric using various color models on
VIPeR and on each sequence of ETHZ, respectively.

(a) Sum, Tr and Det -
VIPeR

(b) Sum - VIPeR

(c) Sum - ETHZ seq.1 (d) Sum - ETHZ seq.2

(e) Sum - ETHZ seq.3

Figure 2: Comparison of different metrics on ETHZ and
VIPeR datasets.

It is clear that HS, log-chromaticity and fusion
color spaces behave better than RGB and normalized
RGB, as expected. An interesting consideration is
while fusion get best performances on VIPeR, HS be-
haves better on ETHZ: as a consequence, PRID per-
formances are influenced by the color space in use,
and the research of an adaptive method to identify the
color space which guarantee best performances may
be an interesting topic.
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4 CONCLUSIONS AND FUTURE
WORKS

In this paper an approach to model the way humans
perform PRID embedding both intra and inter frame
chromatic relationships has been presented. Our ap-
proach also lowers the computational cost related to
the feature extraction and the signature matching.

Differential Spatiograms have been proved to be
easily exploitable to characterize relationships be-
tween frames extracted from CCTV videos, as it has
been show that a relatively limited number of opera-
tions is needed to calculate the feature matrix; more-
over, the algebraic properties of the Differential Spa-
tiogram can be use to add new knowledge to the
whole system.

As this is a snapshot of a work in progress, it may
be interesting to focus on future works.

In particular, we plan to focus on following points:

� Exploit of DS to Elaborate New Metrics: we plan
to elaborate better metrics which exploit algebraic
properties of the DS in order to enhance PRID
performances;

� Elaborate Score Matrices, combining data from
multiple features (like MSCR (Forssén, 2007) or
SCR (Bak et al., 2010)) and dinamically evaluate
the best one to use at runtime, according to the
properties of the dataset;

� Elaborate a Classification Module, which can cat-
egorize different frames and narrow the cardinal-
ity of the frame sets where PRID is performed;
this will improve performances both in terms of
PRID and computational cost;

� Elaborate a Supervised Approach, as this kind of
methods has been proved to be more effective than
unsupervised one;

� Elaborate a Qualitative-based Metric to support
CMCs in the evaluation of qualitative PRID per-
formances, as only first ranks of the CMC are rel-
evant to effective PRID.
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