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Abstract: Nowadays, time interval data is ubiquitous. The requirement of analyzing such data using known techniques 
like on-line analytical processing arises more and more frequently. Nevertheless, the usage of approved mul-
tidimensional models and established systems is not sufficient, because of modeling, querying and processing 
limitations. Even though recent research and requests from various types of industry indicate that the handling 
and analyzing of time interval data is an important task, a definition of a query language to enable on-line 
analytical processing and a suitable implementation are, to the best of our knowledge, neither introduced nor 
realized. In this paper, we present a query language based on requirements stated by business analysts from 
different domains that enables the analysis of time interval data in an on-line analytical manner. In addition, 
we introduce our query processing, established using a bitmap-based implementation. Finally, we present a 
performance analysis and discuss the language, the processing as well as the results critically. 

1 INTRODUCTION 

Nowadays, time interval data is recorded, collected 
and generated in various situations and different ar-
eas. Some examples are the resource utilization in 
production environments, deployment of personnel in 
service sectors, or courses of diseases in healthcare. 
Thereby, time interval data is used to represent obser-
vations, utilizations or measures over a period of 
time. Put in simple terms, time interval data is defined 
by two time values (i.e. start and end), as well as de-
scriptive values associated to the interval: like labels, 
numbers, or more complex data structures. Figure 1 
illustrates a sample database of five records. 
 

 

Figure 1: A sample time interval database with intervals de-
fined by [start, end), an id, and three descriptive values. 

For several years, business intelligence and ana-
lytical tools have been used by managers and business 

analysts, inter alia, for data-driven decision support 
on a tactical and strategic level. An important tech-
nology used within this field, is on-line analytical pro-
cessing (OLAP). OLAP enables the user to interact 
with the stored data by querying for answers. This is 
achieved by selecting dimensions, applying different 
operations to selections (e.g. roll-up, drill-down, or 
drill-across), or comparing results. The heart of every 
OLAP system is a multidimensional data model 
(MDM), which defines the different dimensions, hi-
erarchies, levels, and members (Codd, 1993). 

The need of handling and analyzing time interval 
data using established, reliable, and proven technolo-
gies like OLAP is desirable in this respect and an es-
sential acceptance factor. Nevertheless, the MDM 
needed to model time interval data has to be based on 
many-to-many relationships which have been shown 
to lead to summarizability problems. Several solu-
tions solving these problems on different modeling 
levels have been introduced over the last years, lead-
ing to increased integration effort, enormous storage 
needs, almost always inacceptable query perfor-
mances, memory issues, and often complex multidi-
mensional expressions (Mazón et al., 2008; Kimball 
and Rose, 2013). Additionally, these solutions are, 

54 Meisen P., Keng D., Meisen T., Recchioni M. and Jeschke S..
TIDAQL - A Query Language Enabling on-Line Analytical Processing of Time Interval Data.
DOI: 10.5220/0005348400540066
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 54-66
ISBN: 978-989-758-096-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



 

considering real-world scenarios, only applicable to 
many-to-many relationships having a small cardinal-
ity which is mostly not the case when dealing with 
time interval data. As a result, the usage of MDM and 
available OLAP systems is not sufficient, even 
though the operations (e.g. roll-up, drill-down, slice, 
or dice) available through such systems are desired. 

Enabling such OLAP like operations in the con-
text of time interval data, requires the provision of ex-
tended filtering and grouping capabilities. The former 
is achieved by matching descriptive values against 
known filter criteria logically connected using opera-
tors like and, or, or not, as well as a support of tem-
poral relations like starts-with, during, overlapping, 
or within (Allen, 1983). The latter is applied by 
known aggregation operators like max, min, sum, or 
count, as well as temporal aggregation operators like 
count started or count finished (Meisen et al., 2015).  

The application of the count aggregation operator 
for time interval data is exemplified in Figure 2. The 
color code identifies the different types of a time in-
terval (e.g. cleaning, maintenance, room service, mis-
cellaneous). Furthermore, the swim-lanes show the 
location. The figure illustrates the count of intervals 
for each type over one day across all locations (e.g. 
POS F5 and POS F6) using a granularity of minutes 
(i.e. 1,440 aggregations are calculated). 

 

Figure 2: On top the time interval data (10 records) shown 
in a Gantt-Chart, on the bottom the aggregated time-series. 

In this paper, we present a query language allow-
ing to analyze time interval data in an OLAP manner. 
Our query language includes a data definition (DDL), 
a data control (DCL), and a data manipulation lan-
guage (DML). The former is based on the time inter-
val data model introduced by Meisen et al., (2014), 
whereby the latter supports the two-step aggregation 
technique mentioned in Meisen et al., (2015). Fur-
thermore, we outline our query processing which is 
based on a bitmap-based implementation and sup-
ports distributed computing.  

This paper is organized as follows: In section 2, 
we discuss related work done in the field of time in-
terval data, in particular this section provides a conci-

se overview of research dealing with the analyses of 
time interval data. We provide an overview of time 
interval models, discuss related work done in the field 
of OLAP, and present query languages. In section 3, 
we introduce our query language and processing. The 
section presents among other things how a model is 
defined and loaded, how temporal operators are ap-
plied, how the two-step aggregation is supported, how 
groups are defined, and how filters are used. We in-
troduce implementation issues and empirically evalu-
ate the performance regarding the query processing in 
section 4. We conclude with a summary and direc-
tions for future work in section 5. 

2 RELATED WORK 

When defining a query language, it is important to 
have an underlying model, defining the foundation 
for the language (e.g. the relational model for SQL, 
different interval-based models for e.g. IXSQL or 
TSQL2, the multidimensional model for MDX, or the 
graph model for Cypher). Over the last years several 
models have been introduced in the field of time in-
tervals, e.g. for temporal databases (Böhlen et al., 
1998), sequential pattern mining (Papapetrou et al., 
2009, Mörchen, 2009), association rule mining 
(Höppner and Klawonn, 2001), or matching 
(Kotsifakos et al., 2013).  

Chen et al., (2003) introduced the problem of min-
ing time interval sequential patterns. The defined 
model is based on events used to derive time inter-
vals, whereby a time interval is determined by the 
time between two successive time-points of events. 
The definition is based on the sequential pattern min-
ing problem introduced by Agrawal and Srikant 
(1995). The model does not include any dimensional 
definitions, nor does it address the labeling of time 
intervals with descriptive values.  

Papapetrou et al., (2005) presented a solution for 
the problem of “discovering frequent arrangements of 
temporal intervals”. An e-sequence is an ordered set 
of events. An event is defined by a start value, an end 
value and a label. Additionally, an e-sequence data-
base is defined as a set of e-sequences. The definition 
of an event given by Papapetrou et al., is close to the 
underlying definition within this paper (cf. Figure 1). 
Nevertheless, facts, descriptive values, and dimen-
sions are not considered. 

Mörchen (2006) introduced the TSKR model de-
fining tones, chords, and phrases for time intervals. 
Roughly speaking, the tones represent the duration of 
intervals, the chords the temporal coincidence of 
tones, and the phrases represent the partial order of 
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chords. The main purpose of the model presented by 
Mörchen is to overcome limitations of Allen’s (1983) 
temporal model considering robustness and ambigu-
ousness when performing sequential pattern mining. 
The model neither defines dimensions, considers 
multiple labels, nor recognizes facts.  

Summarized, models presented in the field of se-
quential pattern mining, association rule mining or 
matching do generally not define dimensions and are 
focused on generalized interval data, or support only 
non-labelled data. Thus, these models are not suitable 
considering OLAP of time interval data, but are a 
guidance to the right direction. 

Within the research community of temporal data-
bases different interval-based models have been de-
fined (cf. Böhlen et al., 1998). The provided defini-
tions can be categorized in weak and strong models. 
A weak model is one, in which the intervals are used 
to group time-points, whereas the intervals of the lat-
ter carry semantic meaning. Thus, a weak interval-
based model is not of further interest from an analyt-
ical point of view, because it can be easily trans-
formed into a point-based model. Nevertheless, a 
strong model and the involved meaning of the differ-
ent operators – especially aggregation operators – are 
of high interest from an analytical view. Strong inter-
val-based models presented in the field of temporal 
databases lack to define dimensions, but present im-
portant preliminary work. 

In the field of OLAP, several systems capable of 
analyzing sequences of data have been introduced 
over the last years. Chui et al. (2010) introduced S-
OLAP for analyzing sequence data. Liu and Runden-
steiner (2011) analyzed event sequences using hierar-
chical patterns, enabling OLAP on data streams of 
time point events. Bebel et al., (2012) presented an 
OLAP like system enabling time point-based sequen-
tial data to be analyzed. Nevertheless, the system nei-
ther support time intervals, nor temporal operators. 
Recently, Koncilia et al., (2014) presented I-OLAP, 
an OLAP system to analyze interval data. They claim 
to be the first proposing a model for processing inter-
val data. The definition is based on the interval defi-
nition of Chen et al., (2003) which defines the inter-
vals as the gap between sequential events. However, 
Koncilia et al., assume that the intervals of a specific 
event-type (e.g. temperature) for a set of specific de-
scriptive values (e.g. POS G2) are non-overlapping 
and consecutive. Considering the sample data shown 
in Figure 1, the assumption of non-overlapping inter-
vals is not valid in general (cf. record 2,285,965 and 
2,285,971). Figure 3 illustrates the model of Koncilia 
et al. showing five temperature events for POS G2 
and the intervals determined for the events. Koncillia 

et al. mention the support of dimensions, hierarchies, 
levels, and members, but lack to specify what types 
of hierarchies are supported and how e.g. non-strict 
relations are handled. 

 

Figure 3: Illustration of the model introduced by Koncilia 
et al., (2014). The intervals (rectangles) are created for each 
two consecutive events (dots). The facts are calculated us-
ing the average function as the compute value function. 

Also recently, Meisen et al., (2014) introduced the 
TIDAMODEL “enabling the usage of time interval data 
for data-driven decision support”. The presented 
model is defined by a 5-tuple ሺ,	,	,	,	ሻ in which 
 denotes the time interval database,  the set of de-
scriptors,  the time axis,  the set of measures, and 
 the set of dimensions. The time interval database  
contains the raw time interval data records and a 
schema definition of the contained data. The schema 
associates each field of the record (which might con-
tain complex data structures) to one of the following 
categories: temporal, descriptive, or bulk. Each de-
scriptor of the set  is defined by its values (more spe-
cific its value type), a mapping- and a fact-function. 
The mapping-function is used to map the descriptive 
values of the raw record to one or multiple descriptor 
values. The mapping to multiple descriptor values al-
lows the definition of non-strict fact-dimension rela-
tionships. Additionally, the model defines the time 
axis to be finite and discrete, i.e. it has a start, an end, 
and a specified granularity (e.g. minutes). The set of 
dimensions  can contain a time dimension (using a 
rooted plane tree for the definition of each hierarchy) 
and a dimension for each descriptor (using a directed 
acyclic graph for a hierarchy’s definition). Figure 4 
illustrates the modeled sample database of Figure 1 
using the TIDAMODEL.  

 

Figure 4: Data of the sample database shown in Figure 1 
modeled using the TIDAMODEL (Meisen et al., 2014). 

The figure shows the five intervals, as well as the 
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values of the descriptors location (cf. swim-lane) and 
type (cf. legend). Dimensions are not shown. The 
used mapping function for all descriptors is the iden-
tity function. The used granularity for the time dimen-
sion is minutes. 

Another important aspect when dealing with time 
interval data in the context of OLAP, is the aggrega-
tion of data and the provision of temporal aggregation 
operators. Kline and Snodgrass (1995) introduced 
temporal aggregates, for which several enhanced al-
gorithms were presented over the past years. Never-
theless, the solutions are focused on one specific ag-
gregation operator (e.g. SUM), do not support multi-
ple filter criteria, or do not consider data gaps. Kon-
cilia et al., (2014) address shortly how aggregations 
are performed using the introduced compute value 
functions and fact creating functions. Temporal oper-
ators are neither defined nor mentioned. Koncilia et 
al., point out that some queries need special attention 
when aggregating the values along time, but a more 
precise problem statement is not given. Meisen et al., 
(2015) introduce a two-step aggregation technique for 
time interval data. The first one aggregates the facts 
along the intervals of a time granule and the second 
one aggregates the values of the first step depending 
on the selected hierarchy level of the time dimension. 
Figure 5 illustrates the two-step aggregation tech-
nique. In the illustration, the technique is used to de-
termine the needed resources within the interval 
[16:30, 16:34]. Within the first step, the sum of the 
resources for each granule is determined and within 
the second step the maximum of the determined val-
ues is calculated, i.e. 14. Additionally, they introduce 
temporal aggregation operators like started or fin-
ished count. 

 

 

Figure 5: Two-step aggregation technique presented by 
Meisen et al., (2015). 

The definition of a query language based on a 
model and operators (i.e. like aggregations), is com-
mon practice. Regarding time-series, multiple query 
languages and enhancements of those have been in-
troduced (cf. Rafiei and Mendelzon, 2000). In the 
field of temporal databases time interval-based query 
languages like IXSQL, TSQL2, or ATSQL have been 
defined (Böhlen et al., 1998) and within the analytical 

field, MDX (Spofford et al., 2006) is a widely used 
language to query MDMs. Considering models deal-
ing with time interval data in the context of analytics, 
Koncilia et al., (2014) published the only work the 
authors are aware of that mentions a query language. 
Nevertheless, the query language is neither formally 
defined nor further introduced. 

Summarized, it can be stated that recent research 
and requests from industry indicate that the handling 
of time interval data in an analytical context is an im-
portant task. Thus, a query language is required capa-
ble of covering the arising requirements. Koncilia et 
al., (2014) and Meisen et al., (2014, 2015) introduced 
two different models useful for OLAP of time interval 
data. Different temporal aggregation operators, as 
well as standard aggregation operators, are also pre-
sented by Meisen (2015). Nevertheless, a definition 
of a query language useful for OLAP and an imple-
mentation of the processing are, to the best of our 
knowledge, not formally introduced. 

3 THE TIDA QUERY LANGUAGE 

In this section, we introduce our time interval data 
analysis query language (TIDAQL). The language was 
designed for a specific purpose; to query time interval 
data from an analytical point of view. The language 
is based on aspects of the previously discussed 
TIDAMODEL. Nevertheless, the language should be 
applicable to any time interval database system which 
is capable of analyzing time interval data. Neverthe-
less, some adaptions might be necessary or some fea-
tures might not be supported by any system. 

3.1 Requirements 

The requirements concerning the query language and 
its processing were specified during several work-
shops with over 70 international business analysts 
from different domains (i.e. aviation industry, logis-
tics providers, service providers, as well as language 
and gesture research). We aligned the results of the 
workshop with an extended literature research. Table 
1 summarizes selected results. 

Table 1: Summary of the requirements concerning the time 
interval analysis query language (selected results). 

Requirement Description 
Data Control Language (DCL) 
[DCL1]: authorization 

aspects 
It is expected that the language encom-
passes authorization features, e.g. user 
deletion, role creation, granting and re-
voking permissions. 
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Table 1: Summary of the requirements concerning the time 
interval analysis query language (selected results). (cont.) 

[DCL2]: permissions 
grantable on global and 

model level 

Permissions must be grantable on a 
model and a global level. It is expected 
that the user can have the permission to 
add data to one model but not to an-
other. For simplicity, it should be pos-
sible to grant or revoke several permis-
sions at once. 

Data Definition Language (DDL) 
[DDL1]: loading and 

unloading 
The language has to offer a construct to 
load new and unload models. The 
newly loaded model has to be available 
without any restart of the system. An 
unloaded model has to be unavailable 
after the query is processed. However, 
queries currently in process must still 
be executed. 

[DDL2]: non-onto, 
non-covering, non-

strict hierarchies 

Each descriptor dimension must sup-
port hierarchies which might be non-
onto, non-covering, and / or non-strict 
(cf. Pedersen, 2000). 

[DDL3]: raster levels A raster level is a level of the time di-
mension. For example: the 5-minute 
raster-level defines members like 
[00:00, 00:05) … [23:55, 00:00). Sev-
eral raster levels can form a hierarchy 
(e.g. 5-min  30-min  60-min  
half-day  day). 

Data Manipulation Language (DML) 
[DML1]: raw data 

records 
The language must provide a construct 
to select the raw time interval data rec-
ords. 

[DML2]: time-series by 
time-windows 

The language must support the specifi-
cation of a time-window for which 
time-series of different measures can be 
retrieved. 

[DML3]: temporal 
operators 

It must be possible to use temporal op-
erators for filtering as e.g. defined by 
Allen (1983). Depending on the type of 
selection (i.e. raw records or time-se-
ries) the available temporal operators 
may differ. 

[DML4]: The two-step 
aggregation technique 

Meisen et al., (2015) present a two-step 
aggregation technique which has to be 
supported by the language. Both aggre-
gation operators (see Figure 5) must be 
specified by a query selecting time-se-
ries, no pre-defined measure should be 
necessary. 

[DML5]: complete 
time-series 

A time-series is selected by specifying 
a time-window (e.g. [01.01.2015, 
02.01.2015) and a level (e.g. minutes). 
The resulting time-series must contain 
a value for each member of the selected 
level, even if no time interval covers the 
specified member. The value might be 
N/A or null to indicate missing infor-
mation. 

[DML6]: insert, update 
and delete 

The language must offer constructs to 
insert, update and delete time interval 
data records. 

[DML7]: open, half-
open, or closed 

intervals 

The system should be capable of inter-
preting intervals defined as open, e.g. 
(0, 5), closed, e.g. [0, 5], or half-
opened, e.g. (0, 5].  

Table 1: Summary of the requirements concerning the time 
interval analysis query language (selected results). (cont.) 

[DML8]: meta-
information  

It is desired that the language supports 
a construct to receive meta-information 
from the system, e.g. actual version, 
available users, or loaded models. 

[DML9]: bulk load It is desired, that the language provides 
a construct to enable a type of bulk 
load, i.e. increased insert performance.

3.2 Data Control Language 

The definition of the DCL is straight forward to the 
DCL known from other query languages e.g. SQL. As 
defined by requirement [DCL1], the language must 
encompass authorization features. Hence, the lan-
guage contains commands like ADD, DROP, MODIFY, 
GRANT, REVOKE, ASSIGN and REMOVE. In our imple-
mentation, the execution of a DCL command always 
issues a direct commit, i.e. a roll back is not sup-
ported. Figure 6 shows the syntax diagram of the 
commands. Because of simplicity, a value is not fur-
ther specified and might be a permission, a username, 
a password, or a role. 

 

Figure 6: Commands of the DCL query language. 

To fulfill the [DCL2] requirement, we define a 
permission that consists of a scope-prefix and the per-
mission itself. We define two permission-scopes 
GLOBAL and MODEL. Thus, a permission of the 
GLOBAL scope is defined by 

 

GLOBAL.<permission> 
 

(e.g. GLOBAL.manageUser). Instead, a permission 
of the MODEL scope is defined by 

 

MODEL.<model>.<permission> 
 

(e.g. MODEL.myModel.query). 
 

For query processing, we use the Apache Shiro au-
thentication framework (http://shiro.apache.org/). 
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Shiro offers annotation driven access control. Thus, 
the permission to e.g. execute a DML query is per-
formed by annotating the processing query method. 

3.3 Data Definition Language 

The DDL is used to define, add, or remove the models 
known by the system. [DDL1] requires a command 
within the DDL which enables the user to load or un-
load a model. The syntax diagram of the LOAD and 
UNLOAD command is shown in Figure 7. A model can 
be loaded by using a model identifier already known 
to the system (e.g. if the model was unloaded), or by 
specifying a location from which the system can re-
trieve a model definition to be loaded. Additionally, 
properties can be defined (e.g. the autoload property 
can be set, to automatically load a model when the 
system is started). In the following subsection, we 
present an XML used to define a TIDAMODEL. 

 

Figure 7: Commands of the DDL query language. 

3.3.1 The XML TIDAMODEL Definition 

As mentioned in section 2, the TIDAMODEL is defined 
by a 5-tuple ሺ,	,	,	,	ሻ. The time interval database 
 contains the raw record inserted using the API or 
the INSERT command introduced later in section 
3.4.1. From a modelling perspective it is important for 
the system to retrieve the descriptive and temporal 
values from the raw record. Thus, it is essential to de-
fine the descriptors  and the time axis  within the 
XML definition. Below, an excerpt of an XML file 
defining the descriptors of our sample database 
shown in Figure 1 is presented:  
 

<model id="myModel"> 
 <descriptors> 
  <string id="LOC" name="location" /> 
  <string id="TYPE" name="type" /> 
  <int id="RES" null="true" /> 
 </descriptors> 
</model> 
 

The excerpts shows that a descriptor is defined by a 
tag specifying the type (i.e. the descriptor implemen-
tation to be used), an id-attribute, and an optional 

name-attribute. Additionally, it is possible to define if 
the descriptor allows null values (default) or not. To 
support more complex data structures (and one’s own 
mapping functions), it is possible to specify one’s 
own descriptor-implementations: 
 

<descriptors> 
 <ownImpl:list id="D4" /> 
</descriptors> 
 

Our implementation scans the class-path automati-
cally, looking for descriptor implementations. An 
added implementation must provide an XSLT file, 
placed into the same package and named as the con-
crete implementation of the descriptor-class. The 
XSLT file is used to create the instance of the own 
implementation using a Spring Bean configuration 
(http://spring.io/). 
 

<!-- File: my/own/desc/List.xslt --> 
<xsl:template match="ownImpl:list"> 
 <xsl:call-template name="beanDesc"> 
  <xsl:with-param name="class"> 
    my.own.desc.List 
  </xsl:with-param> 
 </xsl:call-template> 
</xsl:template> 
 
The time axis of the TIDAMODEL is defined by: 
 
<model id="myModel"> 
 <time> 
  <timeline start="20.01.1981"  
            end="20.01.2061" 
            granularity="MINUTE" /> 
 </time> 
</model> 
 

The time axis may also be defined using integers, i.e. 
[0, 1000]. Our implementation includes two default 
mappers applicable to map different types of temporal 
raw record value to a defined time axis. Nevertheless, 
sometimes it is necessary to use different time-map-
pers (e.g. if the raw data contains proprietary tem-
poral values) which can be achieved using the same 
mechanism as described previously for descriptors. 

Due to the explicit time semantics, the measures 
defined within the TIDAMODEL are different than 
the ones typically known from an OLAP definition. 
The model defines three categories for measures, i.e. 
implicit time measures, descriptor bound measures, 
and complex measures. The categories determine 
when which data is provided during the calculation 
process of the measures. Our implementation offers 
several aggregation operators useful to specify a 
measure, i.e. count, average, min, max, sum, mean, 
median, or mode. In addition, we implemented two 
temporal aggregation operators started count and 
finished count, as suggested by Meisen et al., (2015). 
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We introduce the definition and usage of measures in 
section 3.4.2.  

The TIDAMODEL also defines the set of dimen-
sions . The definition differs between descriptor di-
mensions and a time dimension, whereby every di-
mension consists of hierarchies, levels, and members. 
It should be mentioned that, from a modelling point 
of view, each descriptor dimension fulfills the re-
quirements formalized in [DDL2] and that the time 
dimension supports raster-levels as requested in 
[DDL3]. The definition of a dimension for a specific 
descriptor or the time dimension can be placed within 
the XML definition of a model using: 
 
<model id="myModel"> 
 <dimensions> 
  <dimension id="DIMLOC" descId="LOC"> 
   <hierarchy id="LOC"> 
    <level id="HOTEL"> 
     <member id="DREAM" rollUp="*" /> 
     <member id="STAR" rollUp="*" /> 
     <member id="ADV" reg="TENT" 

         rollUp="*" /> 
    </level> 
    <level id="ROOMS"> 
     <member id="POSF" reg="POS F\d" 

         rollUp="DREAM" /> 
     <member id="POSG" reg="POS G\d" 

         rollUp="DREAM" /> 
    </level> 
    <level id="STARROOMS"> 
     <member id="POSA" reg="POS A\d" 

         rollUp="STAR" /> 
    </level> 
   </hierarchy> 
  </dimension> 
 </dimensions> 
</model> 
 

Figure 8 illustrates the descriptor dimension defined 
by the previously shown XML excerpt. The circled 
nodes are leaves which are associated with descriptor 
values known by the model (using regular expres-
sions). Additionally, it is possible to add dimensions 
for analytical processes to an already defined model, 
i.e. to use it only for a specific session or query. The 
used mechanism to achieve that is similar to the load-
ing of a model and will not further be introduced. 
 

 

Figure 8: Illustration of the dimension created with our 
web-based dimension-modeler as defined by the XML ex-
cerpt. 

The definition of a time dimension is straight for-
ward to the one of a descriptor dimension. Neverthe-
less, we added some features in order to ease the def-
inition. Thus, it is possible to define a hierarchy by 
using pre-defined levels (e.g. templates like 
5-min-raster, day, or year) and by defining the level 
to roll up to, regarding the hierarchy. The following 
XML excerpt exemplifies the definition: 
 

<model id="myModel"> 
 <dimensions> 
  <timedimension id="DIMTIME"> 
   <hierarchy id="TIME5TOYEAR"> 
    <level id="YEAR" template="YEAR" 

       rollUp="*" /> 
    <level id="DAY" template="DAY"  

       rollUp="YEAR" /> 
    <level id="60R" template="60RASTER"  

        rollUp="DAY" /> 
    <level id="5R" template="5RASTER"  

        rollUp="60R" /> 
    <level id="LG" template="LOWGRAN"  

        rollUp="5R" /> 
   </hierarchy> 
  </timedimension> 
 </dimensions> 
</model> 
 

A defined model is published to the server using the 
LOAD command. The following subsection introduces 
the command, focusing on the loading of a model 
from a specified location.  

3.3.2 Processing the LOAD Command 

The loading of a model can be triggered from differ-
ent applications, drivers, or platforms. Thus, it is nec-
essary to support different loaders to resolve a speci-
fied location. In the following, some examples illus-
trate the issue. When firing a LOAD query from a web-
application, it is necessary that the model definition 
was uploaded to the server, prior to executing the 
query. While running on an application server, it 
might be required to load the model from a database 
instead of loading it from the file-system. Thus, we 
added a resource-loader which can be specified for 
each context of a query. Within a servlet, the loader 
resolves the specified location against the upload-di-
rectory, whereby our JDBC driver implementation is 
capable of sending a client’s file to the server using 
the data stream of the active connection. After retriev-
ing and validating the resource, the implementation 
uses a model-handler to bind and instantiate the de-
fined model. As already mentioned, the bitmap-based 
implementation presented by Meisen et al., (2015) is 
used. The implementation instantiates several indexes 
and bitmaps for the defined model. After the 
instantiation,  the  model  is  marked  to be up and run-
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ning by the model-handler and accepts DML queries. 
Figure 9 exemplifies the initialized bitmap-based in-
dexes filled with the data from the database of Figure 
1. 

 

Figure 9: Example of a loaded model (cf. Meisen et al., 
2015) filled with the data shown in Figure 1. 

3.4 Data Manipulation Language 

Considering the requirements, it can be stated that the 
DML must contain commands to INSERT, UPDATE, 
and DELETE records. In addition, it is necessary to 
provide SELECT commands to retrieve the time inter-
val data records, as well as results retrieved from ag-
gregation (i.e. time-series). Furthermore, a GET com-
mand to retrieve meta-information of the system is 
needed. 

3.4.1 INSERT, UPDATE and DELETE 

Figure 10 illustrated the three commands INSERT, 
UPDATE, and DELETE using syntax diagrams which 
fulfill the requirement [DML6]. The INSERT com-
mand adds one or several time interval data records 
to the system. First, it parses the structure of the data 
to be inserted. The query-parser validates the correct-
ness of the structure, i.e. the structure must contain 
exactly one field marked as start and exactly one field 
marked as end even though the syntax diagram sug-
gest differently. Additionally, the parser verifies if a 
descriptor (referred by its id) really exists within the 
model. Finally, it reads the values and invokes the 
processor by passing the structure, as well as the val-
ues. The processor iterates over the defined values, 
validates those against the defined structure, uses the 
mapping functions of the descriptors to receive the 
descriptor values, and calls the mapping function of 

the time-axis. The result is a so-called processed rec-
ord which is used to update the indexes. The persis-
tence layer of the implementation ensures that the raw 
record and the indexes get persisted. Finally, the 
tombstone bitmap is updated which ensures that the 
data is available within the system. 

 

Figure 10: Syntax diagrams of the commands INSERT, 
UPDATE and DELETE. 

A deletion is performed by setting the tombstone 
bitmap for the specified id to 0. This indicates that the 
data of the record is not valid and thus the data will 
not be considered by any query processors anymore. 
The internally scheduled clean-up process removes 
the deleted records and releases the space.  

An update is performed by deleting the record 
with the specified identifier and inserting the record 
as described above. 

To support bulk load, as desired by [DML9], an 
additional statement is introduced. The statement 
SET  BULK  TRUE is used to enable the bulk load, 
whereby SET  BULK  FALSE stops the bulk loading 
process. When enabling the bulk load, the system 
waits until all currently running INSERT, UPDATE, or 
DELETE queries of other sessions are performed. New 
queries of that type are rejected across all sessions 
during the waiting and processing phase. When all 
queries are handled, the system responds to the bulk-
enabling query and expects an insert-like statement, 
whereby the system directly starts to parse the incom-
ing data stream. As soon as the structure is known, all 
incoming values are inserted. The indexes are only 
updated in memory. If and only if the memory capac-
ity reaches a specified threshold, the persistence-layer 
is triggered. In this case, the current data in memory 
is flushed and persisted using the configured persis-
tence-layer (e.g. using the file-system, a relational da-
tabase, or any other NoSQL database). The memory 
is also flushed and persisted whenever a bulk load is 
finished.  
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3.4.2 SELECT Raw Records and 
Time-series 

The SELECT command is addressed by the require-
ments [DML1], [DML2], [DML3], [DML4], 
[DML5], and [DML7]. Figure 11 illustrates the select 
statements to select records and time-series. Because 
of space limitations, we removed more detailed syn-
tax diagrams for the LOGICAL and GROUP 
EXPRESSION. The non-terminal MEASURES is speci-
fied later in this subsection when introducing the 
SELECT TIMESERIES in detail. 

 

Figure 11: Syntax diagrams of the SELECT RECORDS and 
SELECT TIMESERIES commands. 

As illustrated, the intervals can be defined as 
open, half-open or closed (cf. [DML7]). The pro-
cessing of the intervals is possible, thanks to the dis-
crete time-axis used by the model. Using a discrete 
time-axis with a specific granularity makes it easy to 
determine the previous or following granule. Thus, 
every half-open or open interval can be transformed 
into a closed interval using the previous or following 
granule. Hence, the result of the parsing always con-
tains a closed interval which is used during further 
query processing. 

As illustrated in Figure 11, the SELECT RECORDS 
statement allows to retrieve records satisfying a logi-
cal expression based on descriptor values (e.g. 
LOC="POS  F5"  OR  (TYPE="cleaning"  AND 
DIMLOC.LOC.HOTEL="DREAM")) and/or fulfilling a 
temporal relation (cf. [DML3]). Our query language 
supports ten different temporal relations following 
Allen (1983): EQUALTO, BEFORE, AFTER, MEETING, 
DURING, CONTAINING, STARTINGWITH, FINISH‐
INGWITH, OVERLAPPING, and WITHIN. The inter-
ested reader may notice that Allen introduced thirteen 
temporal relationships. We removed some inverse re-
lationships (i.e. inverse of meet, overlaps, starts, and 
finishes). When using a temporal relationship within 
a query, the user is capable of defining one of the in-
tervals used for comparison. Thus, the removed in-
verse relationships are not needed, instead the user 
just modifies the self-defined interval. In addition, we 
added the WITHIN relationship which is a combina-
tion of several relationships and allows an easy selec-
tion of all records within the user-defined interval (i.e. 

at least one time-granule is contained within the user-
defined interval).  

When processing a SELECT  RECORD query, the 
processor initially evaluates the filter expression and 
retrieves a single bitmap specifying all records ful-
filling the filter’s logic (cf. Meisen et al., 2015). In a 
second phase, the implementation determines a 
bitmap of records satisfying the specified temporal re-
lationship. The two bitmaps are combined using the 
and-operator to retrieve the resulting records. De-
pending on the requested information (i.e. count, 
identifiers, or raw records (cf. [DML1])), the imple-
mentation creates the response using bitmap-based 
operations (i.e. count and identifiers) or retrieving the 
raw records from the persistence layer. Figure 12 de-
picts the evaluation of selected temporal relationships 
using bitmaps and the database shown in Figure 1. 

 

Figure 12: Examples of the processing of temporal relation-
ships using bitmaps (and the sample database of Figure 1). 

 

Figure 13: Syntax diagrams of the MEASURES definition. 

The SELECT TIMESERIES statement specifies a 
logical expression equal to the one exemplified in the 
SELECT RECORDS statement. In addition, the state-
ment specifies a GROUP EXPRESSION which de-
fines the groups to create the time-series for (e.g. 
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GROUP BY DIMLOC.LOC.ROOMS). Furthermore, the 
measures to be calculated for the time-series and the 
time-window (cf. [DML2]) are specified. It is also 
possible to specify several comma-separated mea-
sures. Figure 13 shows the syntax used to specify 
measures (cf. MEASURES in Figure 11).  

A simple (considering the measures) example of a 
SELECT TIMESERIES query is as follows: 
 

SELECT TRANSPOSE(TIMESERIES)  
 OF MAX(SUM(RESOURCES)) AS "needed Res"  
 ON DIMTIME.TIME5TOYEAR.5RASTER 
 FROM myModel  
 IN [01.01.2015, 02.01.2015) 
 WHERE DIMLOC.LOC.HOTEL="DREAM" 
 GROUP BY TYPE 
 

As required by [DML4], a measure can be defined us-
ing the two-step aggregation technique. The first ag-
gregation (in the example SUM) is specified for a spe-
cific descriptor and the second optional aggregation 
function (in the example MAX) aggregates the values 
across the stated level of the time-dimension. 

When processing the query, the system retrieves 
the bitmaps for the filtering and the grouping condi-
tions. The system iterates over the bitmaps of the 
specified groups and the bitmaps of the granules of 
the selected time-window. For each iteration, the im-
plementation combines the filter-bitmap, group-bit-
map, and the time-granule-bitmap and applies the 
first aggregation function. The second aggregation 
function is applied whenever all values of a member 
of the specified time-level are determined by the first 
step (cf. Figure 6). This processing technique ensures 
that for each time-granule a value is calculated, even 
if no interval covers the granule (cf. [DML5]). 

3.4.3 GET Meta-information 

[DML8] demands the existence of a command which 
enables the user to retrieve meta-information, like the 
version of the system. This requirement is fulfilled by 
adding a GET command to the query language. A 
statement like GET VERSION, GET USERS, or GET 
MODELS enables the user to retrieve information pro-
vided from the system. Filtering is currently not re-
quired and thus, not supported. 

4 IMPLEMENTATION ISSUES 

This section introduces selected implementation as-
pects of the language and its query processing. First, 
we introduce processing implementations for the 
most frequently used query-type SELECT 
TIMESERIES and show performance results for the 

different algorithms. In addition, we present consid-
erations of analysts using the language to analyze 
time interval data and address possible enhancements. 

4.1 SELECT TIMESERIES Processing 

In section 3, we outlined the query processing based 
on the TIDAMODEL and its bitmap-based 
implementation (cf. section 3.3.2 and 3.4.2). For a de-
tailed description of the bitmap-based implementa-
tion we refer to Meisen et al., (2015). In this section, 
we introduce three additional algorithms which are 
capable to process the most frequently used SELECT 
TIMESERIES queries, introduced in section 3.4.2. 

Prior to explaining the algorithms, it should be 
stated, that we did not implement any algorithm based 
on AGGREGATIONTREEs (Kline and Snodgrass, 
1995), MERGESORT, or other related aggregation al-
gorithms defined within the research field of temporal 
databases. Such algorithms are optimized to handle 
single aggregation operators (e.g. count, sum, min, or 
max). Thus, the implementation would not be a ge-
neric solution usable for any query. Nevertheless, 
such algorithms might be useful to increase query 
performance for specific, often used measures. It 
might be reasonable to add a language feature, which 
allows to define a special handling (e.g. using an 
AGGREGATIONTREE) for a specific measure.  

Next, we introduce our naive implementation. All 
three presented algorithm do not support queries us-
ing group by, multiple measures, nor multi-threading 
scenarios. To support these features, commonly used 
techniques (e.g. iterations and locks) could be used. 
The algorithm filters the records of the database, 
which fulfill the defined criteria of the IN (row 04) 
and WHERE clause (row 06). Next, it calculates the 
measure for each defined range (row 10). The calcu-
lation of each measure depends mainly on its type (i.e. 
measure of lowest granularity (e.g. query #1 in Table 
2), measure of a level (e.g. query #2), or two-step 
measure (e.g. query #3)). Because of space limita-
tions, we state the complexity of the calc-method in-
stead of presenting it. The complexity is O(k∙n), 
with k being the number of granules covered by the 
TimeRange and n being the number of records. 
The other algorithms we implemented are based on 
INTERVALTREEs (INTTREE) as introduced by Kriegel 
(2001). The first one (A) - of the two INTTREE - based 
implementations - uses the tree to retrieve the relevant 
records considering the IN-clause (row 05 of the na-
ive algorithm). Further, the algorithm proceeds as the 
naive algorithm.  
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01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 

TimeSeries naive(Query q, Set r) { 
  TimeSeries ts = new TimeSeries(q); 
  // filter time def. by IN [a, b] 
  r = filter(r, q.time()); 
  // filter records def. by WHERE 
  r = filter(r, q.where()); 
  // it. ranges def. by IN and ON 
  for (TimeRange i : q.time()) { 
    // filter records for the range   
    r’ = filter(r, i); 
    // det. measures def. by OF    
    ts.set(i, calc(i, r’, q.meas()); 
  } 
  return ts; 
} 

 

The second implementation (B) differs from the first 
one, by created a new INTTREE for every query.  

 
01 
02 
03 
04 
 
 
05 
06 
07 
08 
09 
10 
11 
12 
13 

TimeSeries iTreeB(Query q, Set r) { 
  TimeSeries ts = new TimeSeries(q); 
  // filter records def. by WHERE 
  IntervalTree iTree =  
      createAndFilter(r, q.in(),  
                         q.where()); 
  // it. ranges def. by IN and ON 
  for (TimeRange i : q.time()) { 
    // use iTree to filter by i 
    r’ = filter(iTree, i); 
    // det. measures def. by OF    
    ts.set(i, calc(i, r’, q.meas()); 
  } 
  return ts; 
} 

 

As shown, the algorithm filters the records according 
to the IN- and WHERE-clause and creates an INTTREE 
for the filtered records (row 04). When iterating over 
the defined ranges, the created iTree is used to re-
trieve the relevant records for each range (row 08). 

4.2 Performance 

We ran several tests on an Intel Core i7-4810MQ with 
a CPU clock rate of 2.80 GHz, 32 GB of main 
memory, an SSD, and running 64-bit Windows 8.1 
Pro. As Java implementation, we used a 64-bit JRE 
1.6.45, with XMX 4,096 MB and XMS 512 MB. We 
tested the parser (implemented using ANTLR v4) and 
processing considering correctness. In addition, we 
measured the runtime performance of the processor 
for the three introduced algorithms (cf. section 4.2), 
whereby the data and structures of all algorithms were 
held in memory to obtain CPU time comparability. 
We used a real-world data set containing 1,122,097 
records collected over one year. The records have an 
average interval length of 48 minutes and three de-
scriptive values: person (cardinality: 713), task-type 
(cardinality: 4), and work area (cardinality: 31). The 
used time-granule was minutes (i.e. time cardinality: 

525,600). We tested the performance using the 
SELECT  TIMESERIES queries shown in Table 2. 
Each query specifies a different type of query (i.e. dif-
ferent measure, usage of groups, or filters) and was 
fired 100 times against differently sized sub-sets of 
the real-world data set (i.e. 10, 100, 1,000, 10,000, 
100,000, and 1,000,000 records).  

Table 2: The shortened queries used for testing. 

# Query 
1 OF COUNT(TASKTYPE) IN [01.JAN, 01.FEB) 
WHERE WA.LOC.TYPE='Gate' 

2 OF SUM(TASKTYPE) ON TIME.DEF.DAY 
IN [01.JAN, 01.FEB) WHERE WORKAREA='SEN13'

3 OF MAX(COUNT(WORKAREA)) ON TIME.DEF.DAY 
IN [01.JAN, 01.FEB) WHERE TASKTYPE='short'

 

The results of the runtime performance tests are 
shown in Figure 14. As illustrated, the bitmap-based 
implementation performs better than the naive and 
INTTREE algorithms when processing query #1 and 
#3. Regarding query #2 the INTTREE-based imple-
mentations perform best. As stated in Table 3, the 
most important criterion to determine the perfor-
mance is the selectivity. Regarding a low selectivity 
the INTTREE-based algorithm (B) performs best.  

Table 3: Statistics of the test results. 

number of records selectivity 

in DB 
selected by query selected / in DB 

#1 #2 #3 #1 #2 #3 
101 1 0 0 0.1000 0.0000 0.0000
102 5 0 7 0.0500 0.0000 0.0700
103 12 2 46 0.0120 0.0020 0.0460
104 147 9 480 0.0147 0.0009 0.0480
105 1.489 121 5.148 0.0149 0.0012 0.0515
106 15.378 1.261 51.584 0.0154 0.0013 0.0516

 

Nevertheless, considering persistency and reading 
of records from disc the algorithm might perform 
worse. We would also like to state briefly, that other 
factors (e.g. kind of aggregation operators used) in-
fluence the performance of the bitmap algorithm, so 
that it outperforms the INTTREE-based implementa-
tion, even if a low selectivity is given. 

4.3 Considerations 

The query language and processing introduced in this 
paper, is currently used within different projects by 
analysts and non-experts of different domains to ana-
lyze time-interval data. In the majority of cases, the 
introduced language and the processing is capable of 
satisfying the user’s needs. Nevertheless, there are 
limitations, issues, and preferable enhancements. In 
the following, we  introduce  selected requests/impro-
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Figure 14: The measured average CPU-time performance (out of 100 runs per query). 

vements: 
1. The presented query language and its processing 

do not support any type of transactions. A record 
inserted, updated, or deleted is processed by the 
system as an atomic operation. Nevertheless, roll-
backs needed after several operations have to be 
performed manually. This generally increases im-
plementation effort on the client-side. 

2. The presented XML definition of dimensions (cf. 
3.3.1) uses regular expressions to associate a 
member of a level to a descriptor value. Regular 
expressions are sometimes difficult to be formal-
ized (especially for number ranges). An alterna-
tive, more user-friendly expression language is 
desired. 

3. The UPDATE and DELETE commands (cf. 3.4.1) 
need the user to specify a record identifier. The 
identifier can be retrieved from the result-set of an 
INSERT-statement or using the SELECT  REC‐
ORDS command. Nevertheless, users requested to 
update or delete records by specifying criteria 
based on the records’ descriptive values. 

4. When a model is modified, it has to be loaded to 
the system as new, the data of the old model has 
to be inserted and the old model has to be deleted. 
Users desire a language extension, allowing to up-
date models. Nevertheless, the implications of 
such a model update could be enormous. 

5 CONCLUSIONS 

In this paper, we presented a query language useful to 
analyze time interval data in an on-line analytical 
manner. The language covers the requirements 
formalized by several business analyst from different 
domains, dealing with time interval data on a daily 
basis. We also introduced four different implementa-
tions useful to process the most frequently used type 
of query (i.e. SELECT TIMESERIES). An important 

task for future studies is to confirm, or define new 
models and present novel implementations solving 
the problem of analyzing time interval data. In addi-
tion, future work should focus on distributed and in-
cremental query processing (e.g. when rolling-up a 
level). The mentioned considerations (cf. section 4.3) 
of our introduced language and its implementation 
should be investigated. Another interesting area con-
sidering time-interval data is on-line analytical min-
ing (OLAM). Future work should study the possibili-
ties of analyzing aggregated time series to discover 
knowledge about the underlying intervals. Finally, an 
enhancement of the processing of the two-step aggre-
gation technique should be considered. Depending on 
the selected aggregations an optimized processing 
strategy might be reasonable. 
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