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1 RESEARCH PROBLEM

Decision making is a major area of AI. A central part
of it is emulating human decision making via super-
vised or unsupervised learning. Much of this research
is based on delivering systems that are capable of pro-
ducing optimal solutions based on rules for any given
problem. In most of the supervised learning mod-
els, a computational agent learns from the feedback
of the human supervisor. The other side, judging hu-
man decisions by an AI system, has not been explored
as much.

In most applications related to human decision
making, the actors are aware of the true or expected
value and cost of the actions. The available choices
are deterministic and known to the actor, and the
goal is to find some choice or allowed combination
of choices that maximizes the expected utility value.
The decisions taken can be either dependent or inde-
pendent of actions taken by other entities that are part
of the decision-making problem. In bounded ratio-
nality, however, such optimization is often not possi-
ble due to time constraints, the lack of accurate com-
putation power by humans, the cognitive limitation
of mind, and/or insufficient information possessed by
the actor at the time of taking the decision. With these
limited resources, the decision-maker in fact looks for
a solution that seems satisfactory to him rather than
optimal. Thus bounded rationality raises the issue of
getting a measure of the quality of decisions made by
the person.

Humans make decisions in diverse scenarios
where knowledge of the best outcome is uncertain.
This pertains to various fields, for example online
test-taking, trading of stocks, and prediction of future
events. Most of the time, the evaluation of decisions,
considers only a few parameters. For example, in test-
taking one might consider only the final score; for
a competition, the results of the game; for the stock
market, profit and loss, as the only parameters used
when evaluating the quality of the decision. We re-
gard these as extrinsic factors.

Although bounded-rational behavior is not pred-
icated on making optimal decisions, it is possible to

re-evaluate the quality of the decision, and thus move
from bounded toward strict rationality, by analyzing
the decisions made with entities that have higher com-
puting power and/or a longer timespan. This approach
gives a measure of the intrinsic quality of the decision
taken. Ideally, this removes all dependence on factors
beyond the agent’s control, such as, performance by
other agents (on tests or in games) or accidental cir-
cumstances (which may affect profit or loss).

Decisions taken by humans are often effectively
governed by satisficing, a cognitive heuristic that
looks for an acceptable sub-optimal solution among
possible alternatives. Satisficing plays a key role in
bounded rationality contexts. It has been documented
in various fields, including but not limited to eco-
nomics, artificial intelligence and sociology (Wiki-
Books, 2012). We aim to measure the loss in qual-
ity and opportunity from satisficing and express the
bounded-rational issues in terms of depth of thinking.

Let us illustrate the principles in the case of chess.
The problems of determining whether a given chess
position is winnable for the player to move, and find-
ing a winning move if one exists, are held to be com-
putationally infeasible.1 The limited capability of the
mind is responsible for this state of action, as the
agent knows it is not possible to be certain about the
optimal move in a limited time. There is again a key
difference between this setting and the situation when
solving any multiple-choice question, where the ex-
aminer usually knows the answer right away.

The other issue with satisficing is the effect of
short-term gain. Most often short-term gains look
lucrative, but eventually turn out to have come from
poor choices. In chess, a similar scenario may occur
when an amateur player falls into the trap of capturing
a “hanging” piece on the board, which may however
be “poisoned”, meaning that the opponent can retali-
ate and win in a few moves.

In multiple-choice-question scenarios, there is no
standard metric to evaluate the answers. Any aptitude

1In complexity theoretic terms, when chess is extended
to armies of 2n pieces each on an n�n board, both problems
are complete for exponential time, or for polynomial space
in the presence of a generalized “50-move draw rule”.
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test allows multiple participants to answer the same
problem, and based on their responses, the difficulty
of the problem is measured. The desired measure of
difficulty is used when calculating the relative impor-
tance of the question on their overall scores. The first
issue is how to distinguish the intrinsic difficulty of a
question from a simple poor performance by respon-
dents? A second issue is how to judge whether a ques-
tion is hard because it requires specialized knowledge,
requires deep reasoning, or is “tricky”—with plausi-
ble wrong answers. Classical test theory approaches
are less able to address these issues owing to design
limitations such as in test questions, with only one an-
swer receiving credit.

2 OUTLINE OF OBJECTIVES

We have identified three research goals:

1. Find an intrinsic way to judge the difficulty of de-
cision problems, such as test questions,

2. Quantify a notion of depth of thinking, by which
to identify satisficing and measure the degree of
boundedness in rational behavior.

3. Use an application context (namely, chess) in
which data is large and standards are well known
so as to calibrate extrinsic measures of perfor-
mance reflecting difficulty and depth. Then trans-
fer the results to validate goals 1 and 2 in applica-
tions where conditions are less regular.

Putting together all these aspects, we have de-
veloped a model that can segregate agents by their
skill level via rankings based on their decisions and
the difficulty of the problems faced, rather than be-
ing based only on total test scores and/or outcomes of
games. Moreover, it is possible to predict an actor’s
future performance based on the past decisions made
by similar agents.

In our setting, we have chosen chess games played
by thousands of players spanning a wide range of
ranking. The moves played in the games are ana-
lyzed with chess programs, called engines, which are
known to play stronger than any human player. We
can assume that given considerable time, an engine
can provide an effectively optimal choice at any po-
sition along with the numeric value of the position,
which exceeds the quality of evaluation perceived by
even the best human players.

This approach can be extended to other fields of
bounded rationality, for example stock market trad-
ing and multiple choice questions, for several reasons,
one being that the model itself does not depend on any

game-specific properties. The only inputs are numer-
ical values for each option, values that have authori-
tative hindsight and/or depth beyond a human actor’s
immediate perception. Another is the simplicity and
generality of the mathematical components governing
its operation, which are used in other areas.

Our work aims to measure the intrinsic quality of
human decisions, identifying general features inde-
pendent of chess. This paper demonstrates the rich-
ness and efficacy of our modeling paradigm. We show
how it embraces both values and preference ranks,
lends itself to multiple statistical fitting techniques
that act as checks on each other, and gives consistent
and intelligible results in the chess domain. It is thus
both a rich testbed for methodological issues that arise
in other areas, and a fulcrum for transferring evalua-
tion criteria established with big data to other appli-
cations.

3 STATE OF THE ART

Various descriptive theories of decision models have
been proposed to date. Prospect theory, the most
popular decision model, was introduced by Kahne-
man and Tversky (Kahneman and Tversky, 1979).
Prospect theory handles a few fundamental require-
ments for dealing with decision measures, such as
eliminating clearly inferior choices and simplifying
and ordering outcomes. It introduced the concept of
‘reference dependence’, where outcomes are scaled to
the current evaluation, situation, or ‘status quo’. An-
other suggestion made in the model is measuring the
scaled outcome differently based on whether the deci-
sion causes gains or losses relative to the ‘status quo’.
That is, different utility functions are used for scaling
losses or gains related to the current status. The model
also introduced a notion of decision weights by con-
verting the probability p to p(p), where p is a convex
function that moderates initially extreme probability
estimates.

Fox and Tversky (Tversky and Fox, 1995; Fox,
1999; Fox and Tversky, 1998) extended this model to
decision making in a way that moved the focus from
risk (known event probabilities) to uncertainty (un-
known event probabilities). The measure of uncer-
tainty was used to derive weights for each decision.
Further improvement was done in the rank dependent
utility (RDU) theories, where the basis of decision
weighting function was changed from the probabil-
ity of ‘winning x’ to the probability of ‘winning x or
more’.

In response to prospect theory, Loomes and Sug-
dem (Loomes and Sugden, 1982) introduced regret
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theory – which yielded better justification of some
empirical results than prospect theory. In this model,
the utility value is composed of two components: the
evaluation of the outcome obtained, and differences
between that outcome and the other discarded out-
comes. Lopes (Lopes, 1987) proposed a third ma-
jor theory, called security-potential/aspiration (SP/A)
theory. It assumes that the decision-maker simultane-
ously considers two distinct criteria in making deci-
sions: a utility value and a measure of progress toward
achieving some pre-set goal.

Sequential sampling/accumulation based models
are the most influential type of decision models to
date. Decision field theory (DFT) applies sequential
sampling for decision making under risk and uncer-
tainty (Busemeyer and Townsend, 1993). One im-
portant feature of DFT is ‘deliberation’, i.e., the time
taken to reach a decision. DFT is a dynamic model
of decision making that describes the evolution of the
preferences across time. It can be used as a predic-
tor not only of the decisions, but also of the response
times. Deliberation time (combined with the thresh-
old) controls the decision process. The threshold is
an important parameter which controls how strong the
preference needs to be to get accepted.

Although IRT models do not involve any decision
making models directly, they provide tools to measure
the skill of a decision-maker. IRT models are used
extensively in designing questionnaires which judge
the ability or knowledge of the respondent. The item
characteristic curve (ICC) is central to the represen-
tation of IRT. The ICC plots p(q) as a function of q,
where q and p(q) represent the ability of the respon-
dent and his probability of choosing any particular
choice, respectively. Morris and Branum et al. have
demonstrated the application of IRT models to ver-
ify the ability of the respondents with a particular test
case (Morris et al., 2005).

On the chess side, a reference chess engine E �
E(d;mv) was postulated in (DiFatta et al., 2009). The
parameter d indicates the maximum depth the engine
can compute, where mv represents the number of al-
ternative variants the engine used. In their model, the
fallibility of human players is associated to a likeli-
hood function L with engine E to generate a stochastic
chess engine E(c), where E(c) can choose any move
among at max mv alternatives with non zero probabil-
ity defined by the likelihood function L.

In relation to test-taking and related item-response
theories (Baker, 2001; Thorpe and Favia, 2012; Mor-
ris et al., 2005), our work is an extension of Rasch
modeling (Rasch, 1960; Rasch, 1961; Andersen,
1973; Andrich, 1988) for polytomous items (Andrich,
1978; Masters, 1982; Linacre, 2006; Ostini and Ner-

ing, 2006), and has similar mathematical ingredients
(cf. (Wichmann and Hill, 2001; Maas and Wagen-
makers, 2005)). Rasch models have two main kinds
of parameters, person and item parameters. These are
often abstracted into the single parameters of actor lo-
cation (or “ability”) and item difficulty. It is desir-
able and standard to map them onto the same scale in
such a way that ‘location > difficulty’ is equivalent to
the actor having a greater than even chance of getting
the right answer, or of scoring a prescribed norm in
an item with partial credit. For instance, the famil-
iar 0:0� 4:0/F-to-A grading scale may be employed
to say that a question has exactly B level difficulty if
half of the B-level students get it right. The formulas
in Rasch modeling enable predicting distributions of
responses to items based on differences in these pa-
rameters.

4 METHODOLOGY

Our work builds on the original model of Regan and
Haworth (Regan and Haworth, 2011), which has two
person parameters called s for sensitivity and c for
consistency. The main schematic function E(s;c) is
determined by regression from training data to yield
an estimation of Elo rating, which is the standard
measure of player quality or strength in the chess
world. The threshold for “master” is almost univer-
sally regarded as 2200 on this scale, with 2500 serv-
ing as a rating threshold for initial award of the ti-
tle of Grandmaster, and 2000 called “Expert” in the
Unites States. The current world champion Magnus
Carlsen’s 2877 is 26 points higher than the previ-
ous record of 2851 by former world champion Garry
Kasparov. Computer programs running on consumer-
level personal computers are, however, reliably esti-
mated to reach into the 3200s, high enough that no hu-
man player has been backed to challenge a computer
on even terms since then-world champion Vladimir
Kramnik (currently 2760) lost a match on December
2006 to the Deep Fritz 10 program running on a quad-
core PC. This fact has raised the ugly eventuality of
human cheating with computers during games, but
also furnishes the reliable values for available move
options that constitute the only chess-dependent input
to the model.

Our main departure from Rasch modeling is that
the engine’s “authoritative” utility values are used to
infer probabilities for each available response, with-
out recourse to a measure of difficulty on the Elo
scale itself. That is, we have no prior notion of “a
position of Grandmaster-level difficulty”, or “expert
difficulty”, or “beginning difficulty” per-se. Chess
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problems, such as White to checkmate in two moves
or Black to move and win, are commonly rated for
difficulty of solution, but the criteria for these do
not extend to the vast majority of positions faced in
games, let alone their reference to chess-specific no-
tions (such as “sacrifices are harder to see”). Instead,
we aim to infer difficulty from the expected loss of
utility from that of the optimal move, and separately
from other features of the computer-analysis data it-
self. Hence we propose a new name for our paradigm:
“Converting Utilities into Probabilities”. Thus far, we
have worked with utility values from only the highest
depth of an engine’s search.

4.1 Chess Engines and their Evaluations

The Universal Chess Interface (UCI) protocol used by
most major chess engines specifies two basic modes
of searching, called single-pv and multi-pv, and or-
ganizes searches in both modes to have well-defined
stages of increasing depth.2 Depth is in unit of plies,
also called half-moves.3 In single-pv mode, at any
depth, only the best move is analyzed and reported
fully. If a better move is found at a higher depth, the
evaluation of the earlier selected move is not necessar-
ily carried forward any further. Whereas, in multi-pv
mode, we can select the number ‘ of moves to be ana-
lyzed fully. The engine reports the evaluation of each
of the ‘ best moves at each depth. In our work, we
run the engine in ‘-pv mode with ‘ = 50, which cov-
ers all legal moves in most positions and all reason-
able moves in the remaining positions. Table 1 shows
output from the chess engine Stockfish 3 in multi-pv
mode at depths up to 19.4

Prior to our paper (Biswas and Regan, 2015), all
work on the Regan-Haworth model used only the val-
ues in the rightmost column. This doctoral research
uses and interprets the data in all columns. We have
used multiple engines. Part of our research has in-
volved finding “correction factors” between engines
to bring their values for the same positions into line.

2In all but a few engines the depths are successive in-
tegers. (The engine Junior used to produce evaluation at
depths at an interval of 3 i.e., 3-6-9-12. . . .) Also ‘pv’ stands
for “principal variation”.

3A move by White followed by a move by Black equals
two plies.

4The position is at White’s 29th move in the 5th game
of the 2008 world championship match between Kramnik-
Anand with Forsyth Edwards Notation (FEN) code
“8/1b1nkp1p/4pq2/1B6/PP1p1pQ1/2r2N2/5PPP/4R1K1 w
- - 1 29”. Values are from White’s point of view in units
of centipawns, figuratively hundredths of a pawn.

5 RESEARCH PLAN

Decision making is studied from both normative and
descriptive standpoints. Normative theories concen-
trate on making the best decision in any situation,
whereas descriptive theories focus on how humans ac-
tually make decisions. In our proposed model, we
concentrate on the descriptive side. We assume we
have an AI agent that provides an ‘optimal’ or near-
optimal solution with the help of analytic machinery
developed within the normative approach. We ana-
lyze the authoritative data of the AI agent to infer
psychometric quantities about the nature of the posi-
tion/problem in advance of learning how humans give
response to them.

Our goal is to map IRT models in the chess con-
text, evaluate on our extensive data, and use the in-
verse mapping to make inferences about IRT model-
ing itself. The main motivation for using IRT mod-
els is the notion of discrimination, which is governed
by the difficulty of the problem. Rasch models, the
most popular specialization of IRT models, define an
item parameter as a measure of the intrinsic difficulty
apart from performance results and personal ability
parameters. IRT models include various other item
parameters to make the model robust and get a better
fit. Contrary to the IRT models, where the probabil-
ity of choosing among the choices is derived from the
responses of humans, our model estimates the prob-
ability of choices from the evaluation by authorities,
namely AI chess engines of supreme strength.

We aim to incorporate the idea of depth or process
of deliberation by fitting the moves of the chess play-
ers to itemized skill levels based on depth of search
and sensitivity. We will first analyze the results and
later compare those to the reference fallible agents
in the game context model of (Regan and Haworth,
2011). The ability of a player can be mapped to vari-
ous depths of the engines. An amateur player’s search
depth for choosing any move may often not exceed
two plies, whereas for a grandmaster it might be pos-
sible to analyze moves at ply-depths as high as 20. In
this model, we will attempt to generate a mapping be-
tween engine depths and player ratings, and use it to
quantify depths of thinking of human players on all
rating levels.

The two central contributions of the proposed
work are the marriage of IRT models to traditional
decision making processes, as quantified in chess, and
the integration of depth as a concept. It may be possi-
ble to judge among various modern IRT models to de-
duce which yields better results in the chess context.
For now we consider the so-called two-parameter
(2PL) model (Baker, 2004). There are two varieties
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Table 1: Example of move evaluation by chess engines.
Moves 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Nd2 +230 +137 +002 +002 +144 +103 +123 +158 +110 +067 +064 +006 +002 +024 +013 -037 -018 000 000
Qg8 +205 +205 -023 -023 -059 -031 -058 -065 -066 -066 -053 -053 -103 -053 -053 -053 -053 -053 -053
Qh5 +101 +101 +034 +034 +034 -031 -058 -065 -066 -066 -053 -053 -103 -053 -053 -053 -053 -053 -053
Kf1 +108 +108 +108 +082 +029 +006 -087 -087 -090 -087 -048 -048 -087 -087 -077 -092 -092 -092 -092
Bxd7 +139 +139 -023 -023 -031 -039 -071 -071 -016 -020 -023 -023 -023 -017 -043 -042 -042 -083 -095
Rd1 +044 +044 +044 +016 -100 -094 -104 -124 -121 -121 -139 -143 -136 -150 -148 -122 -109 -122 -109
Nh4 +284 +161 +161 +161 +129 +116 +102 +046 +063 +028 +025 +028 -014 -078 -087 -097 -097 -127 -131
Kh1 +078 +078 +078 +051 -037 000 -019 -165 -165 -140 -140 -124 -157 -152 -185 -158 -158 -158 -172
Qg5 -107 -107 -091 -107 -113 -113 -130 -120 -202 -202 -197 -209 -200 -202 -200 -200 -189 -201 -174
Ng5 +402 +299 +299 +242 +163 +090 +008 +008 -033 -048 -041 -067 -067 -067 -115 -150 -150 -194 -177
Qh4 -107 -107 -107 -107 -113 -113 -130 -120 -202 -202 -186 -209 -203 -202 -200 -200 -189 -201 -191
Rf1 +003 +003 +003 -022 -138 -138 -138 -150 -168 -196 -183 -181 -220 -216 -205 -203 -211 -224 -205
h3 +084 +084 +084 +057 -237 -207 -230 -230 -257 -292 -279 -258 -249 -250 -253 -248 -249 -213 -236
Nxd4 -074 -074 -030 -054 -128 +243 +139 +139 +139 +091 +098 +098 +107 +093 +082 +061 -259 -250 -250
h4 +081 +081 +081 +055 -267 -267 -252 -243 -251 -255 -255 -247 -232 -246 -221 -244 -253 -253 -253
Ra1 +020 +020 +020 -007 -120 -120 -133 -145 -174 -196 -170 -211 -213 -172 -200 -217 -231 -231 -274
Rb1 +022 +022 +022 -005 -158 -158 -158 -145 -223 -196 -179 -172 -179 -209 -209 -217 -231 -231 -274
Qh3 +093 +093 +050 +050 -059 -019 -104 -104 -126 -208 -239 -210 -259 -217 -279 -310 -312 -312 -298
a5 +136 +136 +102 -191 -181 -181 -181 -288 -288 -288 -304 -327 -375 -376 -345 -428 -428 -430 -424
Be2 +097 +048 +062 +062 -051 -075 -205 -205 -278 -278 -282 -352 -379 -379 -375 -406 -447 -456 -451

to choose from, for 2PL models: normal and logis-
tic ogive models. We choose the logistic 2PL model
for its recent popularity, tractability, and compara-
ble performance to that of the normal ogive model.
The logistic ogive model employs a family of two-
parameter cumulative distribution functions (CDF).
For over a century, the logistic ogive has been used
as a model for the growth of plants, people and popu-
lations. However, the use of this as a model for IRT is
relatively new (Baker, 2004).

IRT models are widely used in the design, anal-
ysis, and scoring of test questions, and in measuring
human abilities or aptitude. When used for testing
scores, the two parameters in the model are called
item discrimination ai 2 (0;+¥) and item difficulty
bi 2 (�¥;+¥). They are related by:

Pi(q) = P(a�i ;bi;q) = Y(Zi) =
eZi

1+ eZi
=

1
1+ e�Zi

:

(1)
where Zi is a logit with value Zi = a�i (q� bi), and
a�i is the reciprocal of the standard deviation of the
logistic function.5

5.1 Concept of Depth of Thinking

In most decision theory literature, deliberation time
is measured in units of seconds. In real-life decision
making, when we try to judge the quality of a deci-
sion, it is very difficult to store the exact timing in-
formation for each decision. Moreover, the popular
belief that quality of decisions is directly proportional

5The asterisk on a is the normalization factor relative
to a normal ogive model. I.e., to achieve the same item
characteristic curve, the a value calculated in the logistic
model needs to be multiplied by a factor of about 1:702.

to the deliberation time is not applicable in every sce-
nario. Sometimes the correct decision looks reason-
able at the beginning of deliberation, loses its ‘charm’
after a while, yet finally appears as the best choice to
the decision-maker. In the present setting, there is no
way possible to conclude that the correct decision has
come from a quick response or at an expense of higher
deliberation time.

Chess tournaments place limits on the collective
time for decisions, such as giving 120 minutes for a
player to play 40 moves, but allow the player to bud-
get this time freely. Meanwhile, chess offers an in-
trinsic concept of depth apart from how much time a
player chooses to spend on a given position. In game
theory, depth represents the number of plies a player
thinks in advance. In chess, a turn consists of two
plies, one for each player. We can visualize depth in
chess as the depth of the game tree. In our model,
the evaluation of each chess position comes from the
engine with values for each move at each depth in-
dividually. We use regression to derive the ability of
thinking by utilizing move-match statistics for various
depths.

5.2 Concept of Difficulty of a Problem

While the notion of difficulty of a problem is well
known in the IRT literature, the concept seems to
be little studied in decision making theories. We ar-
gue that having many possible options to choose from
does not make the problem hard. Rather the difficulty
lies in how close in evaluation the choices are to each
other, in how “turbulent” they are from one depth to
the next. The perception of difficulty differs among
decision-makers of various abilities. The difficulty
parameter b is the point on the ability scale where a
decision-maker has a 0:50 probability of choosing the
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correct response.

5.3 Concept of Discrimination

The discriminating power a is an item (or problem)
parameter. An item with higher discriminating power
can differentiate decision-makers around ability level
b better. For 2PL logistic IRT model, a contributes
to the slope of the ICC at b. In the decision making
domain, a problem with high “swing” may be a better
discriminator for decision-makers, since less compe-
tent decision-makers may be attracted to answers that
look good at low depths, but lose value upon greater
reflection.

5.4 Differential Weights for Questions

Following on from (Regan and Haworth, 2011), vari-
ous weighting mechanisms were designed to indicate
the importance of the position in measuring the intrin-
sic quality of the player. The two prominent weight-
ing used are ‘entropy weighting’ å pi log(1=pi) and
‘fall-off weighting’ å pidi. Here pi and di

represent the probability of the ith move and the
scaled deviation of the ith move in evaluation from
the best move, respectively. In this current model, an
explicit weighting mechanism is not required. This
is the fundamental advantage of using IRT models.
IRT models perform the statistical adjustment auto-
matically for differences between various test items
by means of item parameters, which in our case are
difficulty and discrimination parameters. We propose
to study them further.

6 IRT MODELING AND CHESS
DATA ANALYSIS

Each chess position can be compared to a question
asked to a student to answer. We treat the positions
as independent and identically distributed (iid). The
number of legal positions is astronomical (Shannon,
1950; Allis, 1994) and even in top level games, play-
ers often leave the “book” of previously played posi-
tions by move 15 or so. The lack of critical positions
that have been faced by many players makes it hard to
derive the item discrimination and difficulty parame-
ters for chess positions in the traditional IRT manners.

For typical IRT models, the expectation of the cor-
rect response for a particular examinee (of a certain
given ability) for a question is determined by the ratio
of the number m of respondents with correct answers
to the total number n of respondents. If we know the
abilities of the respondents beforehand, we can create

k subgroups of examinees, where each subgroup has
the same ability. Assuming each subgroup consists of
f j respondents where j 2 (1::k), and r j in each sub-
group give the correct answer, the probability of an-
swering correctly is deemed to be p j = r j= f j. But in
our chess domain we do not have ‘n’. So instead we
use the utility values (evaluations) of the engines to
generate the probability. There is a clear advantage in
adopting this approach. Besides mitigating the prob-
lem of having enough respondents/players, we do not
need any additional estimation to evaluate the abil-
ity parameter of the examines, rather the evaluation at
various depths yields this. The various depth param-
eters without any additional tweaks work comparable
to the ability parameter of the IRT models.

For achieving this goal, we need to address the
fundamental question of how to calculate the estimate
of the probability of playing the correct move, which
is a similar paradigm for a decision-maker’s proba-
bility of finding the optimal solution. This part plays
the most critical role in the whole design and requires
us to introduce the technique to convert utilities into
probabilities.

We can assume that a player of Elo rating e on av-
erage plays or thinks up to/around depth d. For any
particular depth d, for a position t, we have a number
‘ of available options a1;a2; : : : ;a‘ and a list of corre-
sponding values Ud = (ud

1 ;u
d
2 ; : : : ;u

d
‘ ). A player does

not know the values, but by means of his power of dis-
crimination can assign higher probability of playing a
move i with higher ud

i . For our basic dichotomous
model, we are only concerned about the probability
of playing the best move where there are only two bi-
nary decisions possible, namely Pi and Qi, which rep-
resent the probability of playing the correct and some
incorrect move, respectively. Later we will extend
our model to the polytomous case, along the lines of
the Generalized Partial Credit Model (GPCM) (Mu-
raki, 1992) where we consider different probability
for each move and can evaluate the probability of the
played move.

This model is significantly different from the
method analyzed in (Regan and Biswas, 2013). Here
we will ignore the consistency c parameter. Results
in (Regan and Haworth, 2011) show that in the hu-
man range from Elo 2000 to 2800, the c parameter
varies only between about 0.465 and 0.520 and for
constant s this makes a difference of under 200 Elo
points. Hence we focus on the sensitivity measure s,
which works as the decision-theoretic threshold pa-
rameter when finalizing any chosen move. The only
condition enforced in calculating the probabilities is
for any i; j, if ui > u j then pi > p j. Our thesis is that
deliberation time and deliberation capability limit the
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ability of the player to think beyond a certain ‘depth’.

6.1 Converting Utilities into
Probabilities

For calculating the probability, we measure the de-
viation of all the legal moves from the best evalua-
tion (u�;d) at any particular depth d for any partic-
ular position. This generates the delta vector Dd =
d1;d ;d2;d ; : : : ;d‘;d . If the best move at depth d is m j,
where j 2 f1; : : : ; ‘g, then u�;d = u j;d and d j;d = 0. We
perform prior scaling based on the evaluation of the
position before the played move. In our paper (Re-
gan et al., 2014), we have shown how humans per-
ceive differences in the evaluation and are prone to
more error when either side has a tangible advantage.
This observation inspired and required us to calculate
the decision-makers’ di;d not simply as (u�;d � ui;d),
but rather as the integral from u�;d to ui;d . We adopt
the same scaling used in (Regan and Haworth, 2011),
where the differential dµ= 1

1+ajzjdz with a= 1, whose
integral gives ln(1+ z), was found to level the Aggre-
gate Difference (AD) histogram very well. For gen-
erating probabilities from utility values, we re-used
the exponential transformations from (Regan and Ha-
worth, 2011), but with fixed parameters, via pi =

e�2di

å
‘
j=1 p j

. (This also yields the depth-specific probabil-

ities pi;d used to quantify ‘trickiness’ in Section 7.2
below.) The choice of the constant 2 can be modified
by fitting the sensitivity parameter s at a later stage,
but nonetheless promises to be a good starting point.

6.2 Fitting ICC for Estimating Item
Parameters

Once the probabilities of the moves are calculated,
our next task is to generate item parameters for the
two-parameter logistic ICC model. We simplify
Equation (1) by setting a = a , b = ab and Zi =
a+bqi. The resulting equation becomes:

Pi = P(qi) = P(a;b;qi) =
1

1+ e�(a+bqi)
=

1
1+ e�Z :

(2)
For estimating the item parameters from the

probability we have already deduced, we use Least
Squares Estimation (LSE). We try to find the min-
imum L (sum of squared residuals): L(a;b) =

å
d
i=1(pi � Pi)

2. In our model, a residual is defined
as the difference between the actual probability value
of the dependent variable and the value predicted by
the model. The details of the Newton-Raphson based
iterative procedure to estimate a and b are shown in
Appendix 8.

6.3 The ICC-move Choice
Correspondence

When an IRT model is deployed in the context of
a theory of testing, the major goal is to procure a
measure of the ability of each examinee. In item re-
sponse theory, this is standardly the maximum like-
lihood estimate (MLE) of the examinee’s unknown
ability, based upon his responses to the items on the
test, and the difficulty and discrimination parameters
of these items. When we apply this idea for chess
moves assessed by various chess engines, we follow
the same procedure. We first calculate the MLE for
the moves the player played. This is performed by
evaluating the positions by various chess engines and
then assigning the probability of playing the correct
move at every depth. Finally, we use maximum like-
lihood estimation to get the ability parameter of the
player. We convert the ability parameter to the intrin-
sic rating by regressing on our milepost data set. Thus
dichotomous IRT corresponds to the “Move-Match”
(MM) test in chess (Regan and Haworth, 2011).

When we extend the model from dichotomous to
polytomous responses, we consider not only the best
move probability, but also the probabilities of all the
moves. This incurs methodological complications
whose empirical effects we have shown in (Regan and
Biswas, 2013) and in not-yet published work. Results
show that for chess move data, versions of MLE are
verifiably inferior to other fitting methods. This may
not be a defect in the chess setting – rather, it argues
that the standard use of MLE in other applications
may be unwittingly inferior, and that alternatives to
MLE should be formulated and promoted.

For the completion of this estimation we make
four assumptions. First, the value of the item pa-
rameters are known or derived from engine evalua-
tion. Second, examinees are i.i.d sample or indepen-
dent objects and it is possible to estimate the param-
eters for examinees independently. Third, the posi-
tions given to the players are independent objects too.
Though the positions may come from the same game
we assume those to be uncorrelated. Fourth, all the
items used for MLE are modeled by the ICCs of the
same family.

If a player j 2 f1; : : : ;Ng faces n positions (either
from a single game or any set of random positions)
and the responses are dichotomously scored, we ob-
tain ui; j 2 f0;1g (1 for matching; 0 for not) where i 2
f1; : : : ;ng designates the items. This yields a vector
of item responses of length n: U j = (u1 j;u2 j; : : : ;un j).
From our third assumption, all the ui j are i.i.d sam-
ples. Considering all the assumptions, the probability
of the vector of item responses for a given player can
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be produced by the likelihood function

Prob(U jjq j) =
n

Õ
i=1

P
ui j
i (q j)Q

1�ui j
i (q j): (3)

This yields the log-likelihood function
L = logProb(U jjq j)

=
n

å
i=1

[ui j logPi j(q j)+(1�ui j) logQi j(q j)]:

Since the item parameters for all the n items are
known, only derivatives of the log-likelihood with re-
spect to a given ability will need to be taken:

¶L
¶q j

=
n

å
i=1

ui j
1

Pi j(q j)

¶Pi j(q j)

¶q j

+
n

å
i=1

(1�ui j)
1

Qi j(q j)

¶Qi j(q j)

¶q j
: (4)

When Newton-Raphson minimization is applied
on L, an ability estimator q j for the player is obtained.

6.4 The Ability-rating Correspondence

For converting the ability measure into the ratings in
the standard Elo scale, we perform linear regression
on our main data set. The data set comprises games
in which both the players were within 10 Elo rating
points of the ‘milepost’ values: 2700, 2600, . . . , 1800,
run under standard time controls in individual player
round-robin or small-Swiss tournaments. We use var-
ious fitting methods and compare their performances
in estimating the ability for each milepost value. The
mapping between ability and Elo ratings gives us a
simple linear regression function for computing the
conversion. We name this rating the intrinsic perfor-
mance rating (IPR), which measures the performance
of the player based on the moves played instead of
game results. The use of Average Difference, not just
the MM test, makes this correspond to polytomous
settings.

6.5 The Master Plan

We aim to shed light on the following problems, for
application domains such as test-taking for which we
can establish a correspondence to our chess model:
Do the intrinsic criteria for mastery transferred from
the chess domain align with extrinsic criteria inferred
from population and performance data in the applica-
tion’s own domain? How close is the agreement and
what other scientific regularities, performance mile-
posts, and assessment criteria may be inferred from
it? What does this say about distributions, outliers,
and the effort needed for mastery, in relation to topics
raised popularly by Gladwell (Gladwell, 2002; Glad-
well, 2011)?

7 EXPECTED OUTCOME

Our model can be used for predictive analysis and
data mining. Moreover, the model represents how hu-
mans perceive differences in choices in case of un-
certainty. This information can be used for modeling
agents based on preferences. Modeling an agent also
depends on various other parameters specific to the
intuition or favoritism of the player. The approach
can be extended to various board games and strate-
gic (online) gaming. This model also gives an insight
about performances of an agent in time constrained
environments.

To extend the model for other domains, we only
need to configure any ‘artificial’ or ‘optimal’ de-
cision making agents to ‘think’ at some particular
strength/depth and use the data to analyze the prob-
lem. The model can also be used to ‘verify’ how
chosen decisions eventually impacted the outputs in
various applications, such as weather forecasting or
prediction of events.

7.1 Risk and Uncertainty

Risk and uncertainty, as defined in (Kahneman and
Tversky, 1979; Tversky and Fox, 1995), are closely
related. Mauboussin (Mauboussin, 2013) distin-
guished them by the following means: while both
risk and uncertainty involve unknown outcomes, in
risk the underlying outcome distribution is known,
whereas for uncertainty it is not. Analyzing chess
positions up to a certain depth provides us the op-
portunity to model both risk and uncertainty. As the
number of legal moves is known for any position, the
outcome distribution can be calculated up to a limited
depth. But due to the exponential growth of the depth
tree in chess, a player cannot guarantee that his anal-
ysis of moves is correct. Even if the expected line of
the game is played, the player is uncertain of the final
evaluation, let alone the issue of being surprised by an
overlooked line from the opponent.

For example, suppose a player thinks out to depth
d = 10, but we analyze (e.g. with Stockfish) out to
depth D = 19. Moves by the opponent which, if
found, would yield disadvantageous values for the
player at depth d constitute risk. Values from depth
d + 1 to D represent uncertainty. Our research plan
aims to quantify and analyze these separate effects.

7.2 Trickiness

For measuring trickiness, we can compare the top
level exposure å

l
i=1 pidi versus the w(d) depth-

weighted exposure åi åd w(d)pi;ddi. We expect tricky
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moves to be a good discriminator for decision-
makers.

7.3 Notion of Advantage

One prominent feature of chess positions that does
not have a clear correspondence in test taking is the
degree of advantage or disadvantage for the player to
move. In chess, this is connected to the player’s prob-
ability of winning the game, or more precisely, the
expectation counting wins and draws as 1 and 0:5, re-
spectively. Our research (Regan et al., 2014) shows
that this probability also depends on the difference in
ratings between the player and the opponent, whereas
in test taking there is no “opponent”. We would like to
infer some relations to the concepts of the test taker’s
probability of getting a question correct. One idea is
that “advantage” may reflect the degree of preparation
for certain parts of the test.

7.4 Speed-accuracy Trade-off

The model can be applied to verify the impact on ac-
curacy if faster decisions are taken. The effect is well
known in chess tournaments (Chabris and Hearst,
2003), almost all of which use a time control at move
40. Players often use up almost all of the allotted time
before move 30 or so, thus incurring ‘time pressure’
for 10 or more moves. The paper (Regan et al., 2011)
shows a steep monotonic increase in errors by move
number up to 40, then a sudden drop off as players
have more time. Our yet-unpublished work has quan-
tified the drop of intrinsic rating at Rapid and Blitz
chess played at faster controls. We expect that our
model will be capable of verifying the effect in other
decision applications as well.

7.5 Agent Modeling

This model can be extended to model decision-
makers which would be advantageous to plan strategy
for or against him/her. For player modeling, we need
to find various characteristics unique to the player.
IPR, besides providing the measure of the quality of
decisions, is a strong indicator of the aptitude level. It
can be used to find out any specific trend followed
by the player while taking decisions. In the con-
text of chess, this could be the players’ preference of
knight over the bishop, or propensity for positional
games rather than tactical ones. Measures of blunders
and the proclivity for procrastination also could con-
tribute in the player modeling. This may be relevant
for player profiling in other online battle games.

7.6 Cheating Detection and Verification

Proved and alleged instances of cheating with com-
puters at chess have increased many-fold in recent
years. Technologies such as Google Glass, sensor net-
works, etc., have made the problem of cheating a per-
sistent threat. If a successful technique for detection
of cheating is possible, the same idea can be applied
to other fields of online gaming or online test-taking.
Our model provides the means of cheating detection
in a natural way. We aim to compare this model with
other predictive analytic models used in fraud detec-
tion.

7.7 Multiple-criteria Decision Analysis

Our model can be applied for multiple-criteria deci-
sion analysis and verifying the rationality of the in-
trinsic quality measured with respect to multi-criteria
decision rules. In standard chess tournaments, the to-
tal allotted time to play the first 40 moves are fixed.
The longer a player ponders on a given move, the
lesser time he can spend to make other moves. This
scenario is prevalent in any test-taking environment.
In a setting, where an examinee cannot return to pre-
vious questions, he often needs to split his time for
each question keeping in mind the difficulty of future
questions. In all these scenarios, the decision maker
eventually makes the final decision in differentiate be-
tween alternatives based on his preference. Prior ar-
ticulation of preferences in multiple-criteria decision
problems plays a key role in agent modeling.

7.8 Decision Making in Multi-Agent
Environment

Does the quality of the decisions of any agent get af-
fected based on the presence of other agents? How
does a player play against a weaker versus a stronger
opponent? How does an examinee response when he
knows the other examinees are far either far supe-
rior or inferior than him? Our model tries to answer
these questions and measures the displacement from
the mean in these either extreme cases.

In this work, we have furnished various measure-
ment procedures to quantify the quality of human de-
cisions. Our proposed model generates the prediction
of choices made by any decision-makers for any prob-
lems. It also ranks the decision-makers by the quality
of the decisions made. The model is established via
the evaluations generated by an AI agent of supreme
strength, and represents the goodness of choice. We
expect that with improved processing power, higher
storage capacity, and sophisticated search algorithms,
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AI agents in the near future will produce results far
better in almost every aspect than a human possibly
can. We aim to leverage this phenomenon so as to
judge human decisions by ‘machines’ in our model.

These procedures can also be employed to model
a decision-maker by tuning down to match the
decision-maker’s native characteristics. Numerous
aspects like a speed-accuracy trade-off, effect of pro-
crastination and the impact of time pressure also can
be analyzed, and their effect on performances by the
decision-makers can be tested. Other fields where
this model can be applied include, but are not limited
to, economics, psychology, test-takings, sports, stock
market trading, and software benchmarking.

We wish to devise a tool to measure the qual-
ity of human decisions from the performances. We
hope this tool can be used for personnel assessment to
cheating detection. Though we have concentrated on
the chess domain which is a constrained environment,
we wish to apply the learning to adapt the model to
fit in other domains, from test-taking to stock market
trading.

8 STAGE OF THE RESEARCH

Research on judging decisions made by fallible (hu-
man) agents is not as much advanced as research on
finding optimal decisions, and on the supervision of
AI agents’ decisions by humans. Human decisions
are often influenced by various factors, such as risk,
uncertainty, time pressure, and depth of cognitive ca-
pability, whereas decisions by an AI agent can be ef-
fectively optimal without these limitations. The con-
cept of ‘depth’, a well-defined term in game theory
(including chess), does not have a clear formulation
in decision theory. To quantify ‘depth’ in decision
theory, we can configure an AI agent of supreme com-
petence to ‘think’ at depths beyond the capability of
any human, and in the process collect evaluations of
decisions at various depths. One research goal is to
create an intrinsic measure of the depth of thinking
required to answer certain test questions, toward a re-
liable means of assessing their difficulty apart from
the item-response statistics.

Currently, we are working on relating the depth of
cognition by humans to depths of searching alterna-
tives, and using this information to infer the quality
of decisions made, so as to judge the decision-maker
from his decisions. Our research extends the model
of Regan and Haworth to quantify depth, plus related
measures of complexity and difficulty, in the context
of chess. We use large data from real chess tourna-
ments and evaluations of chess programs (AI agents)

of strength beyond all human players. We then seek to
transfer the results to other decision-making fields in
which effectively optimal judgments can be obtained
from either hindsight, answer banks, or powerful AI
agents. In some applications, such as multiple-choice
tests, we establish an isomorphism of the underlying
mathematical quantities, which induces a correspon-
dence between various measurement theories and the
chess model. We provide results toward the objective
of applying the correspondence in reverse to obtain
and quantify the measure of depth and difficulty for
multiple-choice tests, stock market trading, and other
real-world applications and utilizing this knowledge
to design intelligent and automated systems to judge
the quality of human or artificial agents.
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APPENDIX

LSE Estimation of Logistic Model

Equation for 2PL logistic IRT model is:

Pi = P(qi) = P(a;b;qi) =
1

1+ e�(a+bqi)
=

1
1+ e�Z

(5)
This yields

¶Pi

¶a
= PiQi

¶Pi

¶b
= PiQiqi

¶Qi

¶a
=�PiQi

¶Qi

¶b
=�PiQiqi

Sum of squared residual L(a;b) = å
d
i=1(pi � Pi)

2,
where pi is the actual probability value of the depen-
dent variable. In the context of chess, which is the
probability we derive from engine evaluation. For
minimizing L, we need the first and second partial
derivatives of L with respect to a and b.

L1 =
¶L
¶a

=
d

å
i=1

2(pi�Pi)
¶Pi

¶a
=�

d

å
i=1

2(pi�Pi)PiQi

L2 =
¶L
¶b

=
d

å
i=1

2(pi�Pi)
¶Pi

¶a
=�

d

å
i=1

2(pi�Pi)PiQiqi

L11 =
¶2L
¶a2 =

�2(
d

å
i=1

piPiQi(Qi�Pi)+
d

å
i=1

P2
i Qi(Pi�2Qi))

L12 = L21 =
¶2L

¶a¶b
=

�2(
d

å
i=1

piPiQiqi(Qi�Pi)+
d

å
i=1

P2
i Qiqi(Pi�2Qi))

L22 =
¶2L
¶b2 =

�2(
d

å
i=1

piq
2PiQi(Qi�Pi)+

d

å
i=1

P2
i Qiq

2(Pi�2Qi))

ICAART�2015�-�Doctoral�Consortium

50



For minimizing:

¶L
¶a

= 0;
¶L
¶b

= 0; (6)

We use an iterative procedure based upon Taylor se-
ries to solve Eq. (6).We target to find an approxima-
tion â1; b̂1 to â; b̂, where â = â1+Dâ and b̂ = b̂1+Db̂.
DâandDb̂ represent the error in approximation. By
Taylor series expansion, ignoring higher order terms,
we can rewrite Equation (6) as

L1 +L11Dâ1 +L12Db̂1 = 0

L2 +L21Dâ1 +L22Db̂1 = 0

Thus we need to solve the following equation for
Dâ1 and Db̂1

�
L1
L2

�
=�

�
L11 L12
L21 L22

�"
Dâ1
Db̂1

#
(7)

"
Dâ1
Db̂1

#
=�

�
L11 L12
L21 L22

��1 �L1
L2

�
(8)

This process is repeated t times until Dât and Dât
are sufficiently small. This yields Eq 9."

â
b̂

#
t+1

=

"
â
b̂

#
t

�
�

L11 L12
L21 L22

��1

t

�
L1
L2

�
t

(9)

This equation is known as the Newton-Raphson
equation. Evaluating the inverse produces:"

â
b̂

#
t+1

=

"
â
b̂

#
t

� 1
L11L22�L2

12

�
L22 �L12
�L21 L11

��
L1
L2

�
(10)

In order to start the iterative estimation process,
initial estimates of the item parameters are required.
For 2PL IRT model, often a and b parameters are set
to 1 and 0, respectively. Once the desired requirement
is met, no further iteration is performed. Item param-
eters a and b can be readily obtained from a and b by
â = â and b̂ =�b̂=â.
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