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Abstract: Scalable and efficient algorithms are needed to compute shortest paths between any pair of vertices in large 
social graphs. In this work, we propose a novel ROBE scheme to estimate the shortest distances. ROBE is 
based on a hub serving as the skeleton of the large graph. In order to stretch the hub into every corner in the 
network, we first choose representative nodes with highest degrees that are at least two hops away from 
each other. Then bridge nodes are selected to connect the representative nodes. Extension nodes are also 
added to the hub to ensure that the originally connected parts in the large graph are not separated in the hub 
graph. To improve performance, we compress the hub through chain collapsing, tentacle retracting, and 
clique compression techniques. A query evaluation algorithm based on the compressed hub is given. We 
compare our approach with other state-of-the-art techniques and evaluate their performance with respect to 
miss rate, error rate, as well as construction time through extensive simulations. ROBE is demonstrated to 
be two orders faster and has more accurate estimations than two recent algorithms, allowing it to scale very 
well in large social graphs. 

1 INTRODUCTION 

As part of “big data” analytics, finding the shortest 
paths in large social networks has been an intense 
research area in both academia and industry. The 
shortest-path query is a classic problem in graph 
theory. Breadth-First Search (BFS) can be used on 
unweighted graphs, such as those in Facebook.com, 
with an O(V+E) computational complexity, where V 
and E are the numbers of vertices and edges of the 
graph, respectively. Due to the sheer sizes of the 
large social graphs, the algorithm cannot be directly 
applied. Instead, scalable and efficient algorithms 
must be developed. 

In order to address shortest-path queries with 
scalable and distributed solutions, researchers rely 
on different types of techniques. For instance, a 
highway transportation system approach is used in 
(Cohen, Halperin et al. 2003). Instead of using 
global landmarks as some shortest path algorithms 
do, we use a much smaller graph that is applicable 
with BFS. In this work, we propose a new hub-based 
algorithm called ROBE (Representative nodes 
Ornamented by Bridge nodes and Extension nodes). 

Our main contributions in this work are: 
1. We propose a new hub concept and 

construction scheme, and give several results that 
guarantee the representativeness and connectivity. 

2. We propose new hub compression strategies to 
reduce the number of nodes in the hub while still 
maintaining the accuracy of shortest path queries.  

3. We design a query computation algorithm on 
the compressed hub and conduct extensive 
simulations to confirm the advantages of our new 
algorithms. 

The rest of the paper is organized as follows. 
Section 2 surveys related work in the field and 
distinguishes our approach from others. Sections 3 
and 4 provide detailed description of our hub 
construction and hub compression techniques, 
respectively. Query evaluation is presented in 
Section 5, followed by performance evaluation on 
different data sets in Section 6. In Section 7, we 
conclude the work. 

2 RELATED WORK 

Shortest-path discovery is a classic problem in 
computer science. For an extensive related work 
discussion, the readers are referred to for instance 
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(Wei 2011), a state-of-the-art work in the field. We 
discuss some of the latest developments in the field 
in the following. 

Traditional approaches to the shortest-path 
discovery problem (Dijkstra 1959) (Bellman 1958), 
while elegant and accurate by design, do not scale to 
the large social networks today. The main issue is 
the large number of vertices and edges: they 
introduce significant delays on I/O storage and 
memory access. Another unique property of social 
networks is the small degree of separation, which 
states that any two vertices are likely to be 
connected through some paths with hop-counts no 
more than four (Backstrom, Boldi et al. 2012). 

Considering these computational costs and the 
unique properties of large social networks, 
researchers proposed various techniques to improve 
the scalability and efficiency of the shortest-path 
discovery algorithms. For instance, in (Potamias, 
Bonchi et al. 2009), Potamias et al. proposed a 
landmark-based distance indexing technique. The 
landmarks are supposed to represent different 
regions. Then the distances among themselves are 
computed. Shortest-distance queries are estimated 
by distances of the two nodes to the landmarks. Such 
an approximation technique based on triangulation 
has been used by different researchers, for example, 
the 3-hop scheme (Jin, Xiang et al. 2009), the TEDI 
scheme based on tree decomposition (Wei 2011), the 
query-dependent local landmark scheme (Qiao, 
Cheng et al. 2012), and the highway-centric scheme 
(Jin, Ruan et al. 2012). 

Zhao et al. (Zhao, Sala et al. 2010) mapped 
nodes in high dimensional graphs to positions at a 
low dimensional Euclidean space in a scheme called 
Orion. To improve non-landmark coordinate 
calculation in Orion, a new algorithm called Pomelo 
(Chen, Chen et al. 2011) is proposed to calculate the 
graph coordinates in a decentralized manner. Gao et 
al. provides relational approach to process shortest 
queries in graph (Gao, Jin et al. 2011).  

Akiba et al. (Akiba, Iwata et al. 2013) claim that 
BFS on every vertex using pruning and simultaneous 
searches with bitwise operations can process exact 
distance queries efficiently. They experiment large 
graphs with hundreds of millions of edges. Through 
walking consecutive gate nodes in a gate graph, a 
new approach of graph simplification can cover non-
local nodes while preserving distances (Ruan, Jin et 
al. 2011).   

Feder and Motwani researched on graph 
compression through cliques (Feder and Motwani 
1995). It is well known that the problem of whether 
there is a clique of size k in a given graph is NP-

hard. In this work, we design a clique detection 
algorithm similar to the famous association rule 
mining algorithm Apriori (Agrawal and Srikant 
1994).  The clique compression is especially 
important in social networks because cliques are 
quite common in such graphs. For general graph 
queries, a smaller graph is computed to preserve the 
original query in a compression framework proposed 
by Fan et al. (Fan, Li et al. 2012). Other work related 
to graph compression includes (Karande, Chellapilla 
et al. 2009, Apostolico and Drovandi 2009). 

For approximate distance oracles, Thorup and 
Zwick gave an algorithm (Thorup and Zwick 2005) 
that pre-computes a data structure of size O(kn1+1/k) 
in O(kmn1/k) and answers a distance query 
approximately in O(k) time, where m is the number 
of edges, n is the number of nodes, and k is a certain 
constant. The query is approximate, but no more 
than a factor of 2k-1 of the true distance away. On 
top of this, Baswana and Sen further improved the 
expected construction times of the approximate 
oracles to O(n2) (Baswana and Sen 2006).  

Recently, Gubichev et. al proposed a sketch-
based index to compute distance queries together 
their corresponding paths (Gubichev, Bedathur et al. 
2010). Another sketch-based algorithm given by 
Sarma et. al computes the distance queries for web-
scale large graphs (Sarma, Gollapudi et al. 2010). It 
estimates the distance through the sketches of the 
source node and the destination node. 

3 HUB CONSTRUCTION 

3.1 Goals of Hub Construction 

Essentially, our idea is to build a “robe” – the hub 
graph and pre-compute pairwise shortest distances 
between all the hub nodes. A “query miss” happens 
when the hub is not a connected graph though they 
are originally connected in the input graph. A good 
hub should satisfy the following properties: 
 Good representation so that the missing rate is 

low or even zero; 
 Good connection among the nodes inside the 

hub so that their shortest distances are close to 
the actual shortest distance in the original 
graph G; 

 Low construction time. This is needed so that 
the overhead of constructing the hub is as low 
as possible. 
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3.2 Representative Nodes, RN 

We first sort all the nodes by degrees in decreasing 
order and choose the nodes one by one starting from 
the node with highest degree, such that the newly 
chosen one must not be a direct neighbour of any 
existing members in the set. The restriction is to 
leave chances to nodes in sparser regions so that the 
hub is spread wide. These nodes are termed 
representative nodes (the set is RN). The graph is 
called GR, with |RN| singleton nodes. 

In Figure 1, for instance, nodes 2, 8, 12, 17, 21, 
and 4 will be chosen as the representative nodes. 
Despite that node 11 has a large node degree (of 4), 
it is not qualified to serve because its neighbours 2 
and 8 have already been chosen. 

 

Figure 1: Illustration of rn, bn, and en in a graph. Double-
ovals (in red) are representative nodes. Dashed-ovals (in 
green) are bridge nodes. Dotted-ovals (in darker blue) are 
extension nodes. The thick solid lines (in red) represent 
bridge edges. The dotted lines (in red) represent extension 
edges. 

THEOREM 1. (ZERO MISS RATE) If the input graph is 
connected and the above RN selection algorithm is 
applied, any node in the graph will always have at 
least one representative node within distance of two. 
That is, the miss rate will be zero if the hub is 
eventually connected and two-hop neighbors of the 
hub nodes are searched. 

PROOF: we prove it by contradiction. Suppose 
there is a node u and the closest representative node 
U is at least 3-hops away: u - y - x - U. Then there 
exists at least one neighbor, node y, in node u’s 

neighbor set, that does not have a representative 
node within one hop (otherwise node u can choose 
such a neighbor toward a representative node for 
two hops). Based on our representative node 
selection rule, node y would have been chosen as a 
representative node. Node u’s distance to the closest 
representative node is then 1, which contradicts to 
our assumption that the closest representative is at 
least 3-hop away. 

 
 

 

The detailed algorithm of selecting representative 
nodes is described in Algorithm 3.1. The intersection 
in line 3 and 4 takes linear time O(|RN| +D), where 
D is the max degree of input graph G. Line 4 takes 

Algorithm 3.2: Selection of 
Bridge Nodes 
Input: input graph linked lists 
ig, GR 
Output: a set of bridge nodes 
1.  Sort lists in G\GR in 
decreasing order of degrees 
2.  for each node i 
3.     if (node i does not 
connect at least two RN nodes)    
continue 
4.     if ( it does not add 
connectivity of GR)   continue 
5.     add i into BN and update 
the distance between two RN 
nodes it connects to 2. 

Algorithm 3.1: Selection of 
Representative Nodes 
Input: input graph linked lists 
ig 
Output: a set of representative 
nodes 
1.  Sort the lists in decreasing 
order according to degrees 
2.  RN = {v0}, v0 is the node ID 
of the first list 
3.  for each next ID Vi, see if 
vi’s neighbors are in RN  
4.  if not, i.e. ig[vi] ∩  RN = 
φ,  insert it in RN in right 
position using binary search so 
that RN is still sorted. This 
step is similar to insertion 
sort. 
5.  if yes, continue to node ID 
of next list 
6.  repeat step 3-5 until the 
lists are all examined.  
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O(log|RN|+|RN|). Time complexity for Algorithm 
3.1 is then O(|RN|2). Typically, D is smaller than 
|RN| for large graphs. The bridge node selection 
algorithm is presented in Algorithm 3.2. 

3.3 Bridge Nodes, BN 

Since GR only contains totally isolated singleton 
nodes, we need to add other non-representative 
nodes, in decreasing order of degrees if they can 
directly connect at least two representative nodes 
and improve the connectivity of GR. We call these 
connecting nodes as bridge nodes. The graph 
composed of representative nodes, bridge nodes, and 
their edges is called GB. In Figure 1, for example, 
nodes 11, 1, and 22 are chosen as bridges in order. 

3.4 Extension Nodes, EN 

Even though the bridge nodes greatly improve 
connectivity of GR, the graph GB may still be 
disconnected. For example, in Figure 1, the 
component of nodes 17, 22, and 21 is separated from 
the other larger component with six nodes. To 
address this problem, we select additional nodes to 
connect the isolated components in GB.  

 
 

The newly selected nodes are called extension 
nodes, en, and the edges that connect the 
disconnected components are called extension edges. 
The graph that extends GB with extension nodes and 

edges is called GE – the “robe” we use to estimate 
shortest paths. In this paper, we also call GE as hub 
graph (HG). In Figure 1, nodes 14, 16, and 20 are 
extension nodes and the extension edges are shown 
in dotted lines.  

Algorithm 3.3 shows the details of finding the 
extension nodes and adding them with extension 
edges to graph GB. The first two lines analyze the 
component structures of input graph G and GB by 
BFS calls, through which we can find the component 
sizes and check whether any two nodes are from the 
same connected component.  

Lines 4 through 8 explore and add pairwise, 
component-to-component connections in GB if they 
are from the same component in G. Hi and Hj are the 
smallest node IDs as representatives in components i 
and j respectively while num_comp is the total 
number of components in GB. The BFS calls in line 
7 in Algorithm 3.3 are partial searches: only to the 
third iterations at most in order to reach their target 
nodes T (e.g. nodes 12 and 11 in Figure 1). In the 
following theoretic analysis, we find that the lengths 
of the extension paths will be two or three. Lastly, in 
order to improve performance we start with smallest 
components (in line 3). 
THEOREM 2. (DISTANCE OF THREE) Suppose nodes u 
and v are two closest representative nodes in 
different components of GB and are connected in G, 
then |u-v| = 3 in G.  

PROOF:    

1) The distance cannot be one because they cannot 
be direct neighbors according to our representative 
selection rule.  

2) The distance cannot be two. If u-x-v, then x must 
be a bridge node because it connects two 
representative nodes u and v. Then u and v would be 
in the same component, a contradiction to our 
assumption.  

3) The distance cannot be four or more if they are 
connected in G. Suppose the path is u-u1-x-v1-v, 
then the node x should be chosen as a representative 
node as well thus forcing u and v to be connected in 
GB. In our example, u and v are nodes 17 and 12. 

4 HUB COMPRESSION 

4.1 Rationale of Hub Compression 

The hub containing representative nodes, bridge 
nodes, and extension nodes can be quite large. 
Experiments show that vast majority of the time of 

Algorithm 3.3: Selection of 
Extension Nodes 
Input: input graph linked lists 
G, GB 
Output: a set of extension nodes 
1. BFS(G) to find connected 
components in G 
2. BFS(GB) to find all connected 
components in GB 
3. sort components of GB in 
increasing sizes 
4. for (int i=0; i<num_comp; 
i++) 
5.    for (int j=i+1;  
j<num_comp; j++) 
6.  if ( Hi and Hj are connected 
in G) 
7.    BFS(Hi) to 3rd generation 
to meet a         node T in 
component j 
8.     add extension nodes and 
edges between Hi and T to GB 
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hub construction is on the writing of the pre-
computed pair-wise distances between hub nodes to 
disks. This motivates us to reduce the number of 
nodes in the hub so that distance computation can 
still be performed without storing all of them on 
disk. 

4.2 Retracting the Tentacles and 
Collapsing the Chains 

The first method of compression is to remove the 
nodes with a degree of one or two. The leaves that 
grow out of nodes called home nodes. The nodes 
with degree two are called chain nodes. From any 
chain node, we can search from both sides until the 
both ends have a degree other than two. We can 
choose the closer end as its home node. If only one 
end is a leaf, then this chain is called a tentacle. The 
other end of the tentacle will be the home node for 
all the nodes on the tentacle. If neither end is a leaf, 
this chain will be an inside chain. The algorithm to 
retract the tentacles, leaves, and to remove chain 
nodes is called collapse (see Algorithm 4.1). 

 
 

Two maps, leaf_map and chain_map, are used to 
store the home nodes of the leaf nodes and chain 
nodes. In Figure 1, the home nodes are 1 and 11 for 
two leaves 4 and 8 respectively (saved in leaf_map 
in line 3 of Algorithm 4.1). The long ring chain 11-
12-14-16-17-22-21-20-11 will be saved in 
chain_map in line 7 with node 11 being the home of 
the chain. Another chain 4-1-2-11 is a tentacle since 
one end is a leaf (node 4). The home node is 11 for 
chain nodes 1 and 2. After collapsing, the 
compressed hub only has one node 11. 

4.3 Compressing the Cliques 

Another powerful compression technique is to 

replace complete sub-graphs called cliques with so-
called super nodes. We are only interested in cliques 
of size three (also called triangulation) or more. We 
can choose the node with largest degree as the home 
node of other super members in the same super 
node. The super members are saved in super_map. 
Algorithm 4.2 describes the process of finding 
cliques and super nodes. It is similar to a standard 
association rule mining algorithm called Apriori. We 
will use an example shown in Figure 2 to illustrate. 

 

First, we scan the linked lists and remove the nodes 
with degree zero or one. Also we only retain the list 
nodes with larger IDs than the node ID. For the first 
list 1: 2, 3, 4, 7, 13, 14, we self join clique L2 = { 
{1,2}, {1,3}, {1,4}, {1, 7}, {1, 13}, {1, 14}} and 
create candidates C3 = { {1, 2, 3}, {1, 2, 4}, {1, 2, 
7}, {1, 2, 13}, {1, 2, 14}, {1, 3, 4}, {1, 3, 7}, {1, 3, 
13}, {1, 3, 14}, {1, 4, 7}, {1, 4, 13}, {1, 4, 14}, {1, 
7, 13}, {1, 7, 14}, {1, 13, 14}} (Line 4 in Algorithm 
4.2). 

Similar to Apriori algorithm, the join of two 
clique sets of size k {N1, N2, ...N k-1, Nk} and {N1, 
N2, ...N k-1, Nk+1} that have first k-1 common nodes 
generates a candidate set {N1, N2, ...N k-1, Nk, Nk+1}. 
If there is an edge  from  Nk  to  Nk+1  (by  examining 

Algorithm 4.2: Compress Cliques 
Input: GE 
Output: super_map 
1. remove nodes with degree 1 or 
below 
2. only retain nodes with higher 
IDs 
3. for each non-empty list 
   // generate candidate cliques 
4.     candidate Ci = Li-1 self 
join Li-1 
5.     check if they have the 
joining edge to grow to Li 
6.     repeat steps 4 and 5 
until there is no more growth 
7.     save the largest Li in 
candidate clique list 
8. sort the candidate list in 
decreasing sizes 
9.  choose the top one  and save 
it in super_map 
10. remove it and any clique 
that intersects with it 
11. repeat 9 and 10 until the 
candidate list is empty 
12. choose the node with largest 
degree as the home node of other 
members in the same clique 

Algorithm 4.1: Collapse 
Input: GE 
Output: leaf_map, and chain_map 
1. for each linked list in GE 
2.       if (list size is one) 
3. leaf_map.put(leaf_ID, 
home_ID) 
4.       if (list size is two) 
5.  expand from node i left to 
get left chain and left_home 
6. expand to right to get right 
chain and right_home 
7. form a chain and save it in 
chain_map 
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Figure 2: Illustration of an input graph with two cliques, 
one with 5 nodes and the other with 3 nodes. 

 

Nk's adjacency list), the new candidate will be a 
newly grown clique of size k+1.   Otherwise, it will 
be eliminated from the candidate list Ck+1 (indicated 
by stricken crossed lines above). Since the joining 
edge (2, 7) does not exist, {1,2,7} will not be a 
clique of size 3. The remaining is L3.  Self join L3, 
we have C4 = {{1, 2, 3, 4}, {1, 3, 4, 13}, {1, 3, 4, 
14}, {1, 4, 13, 14}}. L4 = C4. C5 = {{1, 3, 4, 13, 14} 
= L5. Finally, we have a clique of size 5 {1, 3, 4, 13, 
14} and add it in the candidate clique list. 

To reduce the query evaluation complexity, we 
require that the cliques are disjoint. Using a greedy 
strategy, we choose the largest clique and eliminate 
any candidate that overlaps with it (lines 8-11). The 
final clique set is {{1, 3, 4, 13, 14}, {5, 10, 12}}. 

Once the cliques are found, we then compute the 
pair-wise distances among the hub nodes through 
BFS and save them in a file for query evaluation. 
The hub nodes hn will be the remaining nodes after 
removing leaves, tentacle nodes, chain nodes, and 
super members in cliques (lines 1 and 2 in 
Algorithm 4.3. The pair-wise distances are 
computed and stored in lines 4 through 6. Now, we 
are ready to evaluate shortest distance queries. 

 

5 QUERY EVALUATION 

Since in social media graphs most nodes are of a 
distance four or less (Small World Theory), we first 
directly compute the shortest distance of u and v in a 
given query by intersecting the neighbor set (N1) or 
neighbor-of-neighbor set (N2) of u and v. This is an 
accurate computation if the intersection set is non-
empty. If the shortest distance between u and v is 
more than four, we will always be able to find two 
nodes U and V in the hub GE within N1 or N2 of u 
and v according to Theorem 1. One or both u and v 

Algorithm 5.1: Distance (u, v) 
Input: any two nodes u and v in G 
Output: the shortest distance (or 
estimate) between u and v. 
1. if ( u =  v) return 0; 
2. if ( distance between u and v 
is smaller than five)directly 
compute by intersection and 
return 
3. extra =0 
4. if (u is in GE) U = u; 
5. else if ( N1(u) ∩ V(GE) is non 
empty) 
6.     U is the common element; 
extra++; 
7. else if ( N2(u) ∩ V(GE) is non 
empty) 
8.     U is the common element; 
extra = extra +2; 
9. if (v is in GE) V = v; 
10.else if ( N1(v) ∩ V(GE) is non 
empty) 
11.     V is the common element; 
extra++; 
12. else if ( N2(v) ∩ V(GE) is non 
empty) 
13.     V is the common element; 
extra = extra +2; 
14. return extra + hub_distance 
(U, V) 

Algorithm 4.3: Compute Distances 
Among Hub Nodes 
Input: GE, leaf_map, chain_map, 
super_map 
Output: hub-nodes, 
dist_matrix(hub_nodes) 
1. remove leaf nodes, tentacle 
nodes, and chain nodes from GE 
2. remove super members from GE, 
the remaining nodes are hub 
nodes hn 
3. clean super member's lists sl 
so that it only contain hub 
nodes 
4. for each node i in hn 
5. call BFS(i) to compute the 
shortest distances from i to 
any other hub nodes 
6. store pair-wise distances of 
hub nodes in file 
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may be one of those nodes in GE. 

 

We use an extra value to indicate the distance 
between u and U or between v and V. If u is in GE, 
the extra distance is zero; if N1(u) intersects with 
V(GE) then extra =1; if N2(u) intersects with V(GE), 
extra = 2. Similarly, we can set extra values for v as 
well (see Algorithm 5.1). 

To compute the distance between U and V in GE 
called hub_distance(U, V) (Algorithm 5.2), we need 
to handle the cases of leaves, tentacles, chain nodes, 
and super members all of which do not appear in 
hub nodes. We can retrieve through a file the 
distances between any two hub nodes and use extra 

values (initially set to zero) as additional distance 
overhead.  Lines 2-3 handle the leaf cases. Hu and 
Hv are the home nodes of leaves u and v, retrieved 
from leaf_map. Due to the symmetry, we only show 
the code for U. The code for V is similar. Lines 4-7 
handles the tentacle case while lines 8-11 for self 
chains. If U and V are in the same chain (lines 12-
13), the shortest distance will be the shorter one of 
the path between u and v or the path through the two 
homes of hub nodes. Suppose iu1 and iu2 are the 
distances from u to two homes home1 and home2 
respectively. The same for iv1 and iv2. Lines 14-16 
tackle the case of inside chain of two different home 
nodes. 

 

Algorithm 5.3 computes the distances hub_dist(Hu, 
Hv) and handle the case of super members. If Hu 
and Hv are in the same super node, their distance 
will be one.  If both Hu and Hv are hub nodes, we 
directly retrieve the distance between them through 
pre-computed, pre-stored file. The rest of lines 
handles the case where one or both of Hu and Hv are 
super members. For example, if Hu is a super 
member, remember sl(Hu) is the neighbors of Hu 
that are hub nodes. If Hv is also a super member, 
then hub_dist(Hu, Hv) is the minimum distance of 
all pair-wise distances between sl(Hu) and sl(Hv) 
(lines 8-12) 

Algorithm 5.3: Hub_dist(Hu, Hv) 
Input: two nodes in GE but not 
of degree one or two 
Output: the distance between 
them 
1. if (Hu = Hv) return 0 
2. if (Hu and Hv are from the 
same super node) 
3.       return 1 
4. if (both Hu and Hv are hub 
nodes) 
5.      directly retrieve their 
distance from file and return 
6. if ( Hu is a super member) 
extra++; 
    // one hop away to hub node 
7. if ( Hv is a super member) 
extra++; 
8.  min = Infinity 
9.  for each i in sl[Hu] 
10.   for each j in sl[Hv] 
11.     if (the retrieved 
distance d from i to j <min) 
12.  min = d; 
13. return  extra + min; 

 

Algorithm 5.2: Hub_distance(U, 
V) 
Input: two nodes U and V in GE, 
leaf_map, chain_map, super_map 
Output: shortest distance 
between them 
1. if (U = V ) return 0; 
    // leaves 
2. if ( U is a leaf)  
3.      Hu is the home node of 
u; extra++; 
    // tentacles 
4. if (U is in a tentacle) 
5.      Hu is home node of u;  
6.      iu is the distance 
between u and Hu 
7.       extra = extra +iu 
     // self chain, ring 
8.  if ( U is in a self chain) 
9. Hu is the home node 
10. iu is the shorter distance 
from u to Hu 
11. extra = extra +iu 
// U and V are in the same chain 
   // home1 - - U- - V - - home2 
 //  | <-- iu1-->| <-- iu2-->| 
12. if ( U and V are in the same 
chain) 
13. return min( iv1-iu1, 
hub_dist(home1, home2)+ iu1+iv2)   
// inside chain 
14. if ( U is in an inside chain 
of different ends) 
15. Suppose Hu1 and Hu2 are the 
ends 
16.  return the shortest 
distance of U and V  through 
Hu1, Hu2, Hv1, Hv2 
17.  return extra + hub_dist(Hu, 
Hv) 
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6 PERFORMANCE 
EVALUATION 

In this section, we perform extensive simulation 
using an eight-core Linux server and Java 1.6 
programming. The data set used include 4,040-node 
graph data-SNAP provided by SNAP (SNAP 2009) 
and data set data-UCI, a graph containing more than 
one million nodes and about 30 million edges 
(Gjoka , Gjoka, Kurant et al. 2011).   

Our first group of experiments is to test the 
effects and trade offs of the techniques used in 
ROBE. We use several algorithms which are either 
adapted algorithms or different stages of our 
algorithm ROBE. The first algorithm directly select 
certain number of nodes with largest degrees without 
restriction of not being neighbors to form a popular 
graph (call this algorithm Gp). The second algorithm 
is GB and the third is GE (without compression), and 
the last one is ROBE (with hub compression). 

Table 1: Structural data for ROBE. 
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Figure 3 shows the construction times of these 
algorithms. Naturally, Gp runs fastest since it is the 
simplest and only the first portion of other 
algorithms. We can see a significant reduction of 
construction time by ROBE due to reduced number 
of nodes and thus amount of pairwise distances 
necessary to write on disk. The number of landmarks 
indicated in the x-axis is the number of 
representative nodes or popular nodes as a control 
parameter. More structural data is shown in Table I, 
where the column heads are number of marks, 
number of representative nodes (rn), candidate 
bridges (cand), chosen bridge nodes (bn), extension 
nodes (en), number of components in GB, number of 
super members (sm) and hub nodes (hub). In a dense 
graph such as the one from SNAP, there are quite a 
few super members in cliques. The compression rate 
is roughly half. 

Figure 4 shows the error rate, defined as 
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Figure 3: Construction times of different schemes. 
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Figure 4: Error rates of different schemes. 

This measure reflects a relative, average error. The 
error rate of Gp is the lowest (i.e. best) whenever the 
distances can be estimated. However, if the distance 
cannot be measured, a miss occurs. The query miss 
happens either they are too far away or the chosen 
subgraph is disconnected though they are originally 
connected in the input graph. 

From Figure 5, we find that more than half of the 
queries are missed in Gp, which is normally 
unacceptable. When we add bridges nodes and 
extension nodes, the miss rate is greatly reduced. If 
we do not limit the number of representative nodes, 
the miss rate is zero. Most importantly, both 
algorithms ROBE and GE have the same low error 
rate and zero miss rate but ROBE is much faster due 
to effective compression. 
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Figure 5: Miss rate of different schemes. 
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Figure 6: Error rates of ROBE, Central, and Constraint 
schemes. 

In our next group of experiments we compare the 
performance and error rate with two other recent 
algorithms called Central and Constraint described 
in (Potamias, Bonchi et al. 2009). In Central, from a 
random set of seeds, a set of landmarks are chosen 
so that their average distances to all other nodes in 
the input graph are smallest. In Constraint, a number 
of landmarks with the largest degrees are chosen so 
that they are not next to one another. The critical 
difference between ROBE and the other two 
algorithms is that ROBE estimates the distance using 
a chosen (much smaller) subgraph of the given input 
graph while Central and Constraint need to compute 
the distances from their global landmarks to all the 
nodes in the input graph. Distance from u to v is 
estimated as min{ distance(u, li)+distance(v, li)} 
where the minimum is for each of the global mark li.  

Figures 6 and 7 illustrate the error rates and 
construction times for different numbers of 
landmarks. We can clearly see that ROBE greatly 

reduces the construction time (two orders faster) 
while maintaining similar or better error rates than 
Central and Constraint. Among the latter two, in 
general Constraint is better than Central. 
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Figure 7: Construction times of ROBE, Central, and 
Constraint schemes. 
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Figure 8: Error rates for large data set. 
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Figure 9: Construction times for large data set. 
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Lastly, we conduct a similar comparison on a much 
larger, more realistic data set data-UCI provided by 
University of California, Irvine (Gjoka , Gjoka, 
Kurant et al. 2011). The graph has 1,189,768 nodes, 
29,760,300 edges, one component, with an average 
degree of 50 and maximal degree of 4,411. The 
results are shown in Figures 8 and 9. Similar 
observations can be made. The advantages of ROBE 
are even more evident 

7 CONCLUSIONS 

In this work we have proposed and investigated a 
technique called ROBE, which is based a hub 
containing representative nodes, bridge nodes, and 
extension nodes. Graph compression techniques 
including clique compression, chain collapsing, and 
tentacle retracting are exploited in order to reduce 
the size and overall computation for the hub.  

If all eligible representative nodes are chosen, 
our scheme has a zero miss rate. Otherwise, its miss 
rate is still very low. It also enjoys a low error rate, 
in addition to its short construction time and low 
cost for shortest-path queries. We have detailed our 
design and performed extensive evaluations of 
ROBE with related schemes and experimented on 
two real data sets. The results suggest that ROBE 
can serve as a good candidate for shortest-path 
computation in large social networks. 
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