
ROBE
Knitting a Tight Hub for Shortest Path Discovery in Large Social Graphs

Lixin Fu and Jing Deng
Department of Computer Science, University of North Carolina at Greensboro, Greensboro, NC 27412, U.S.A.

Keywords: Shortest Paths, Error Rate, Social Networks.

Abstract: Scalable and efficient algorithms are needed to compute shortest paths between any pair of vertices in large
social graphs. In this work, we propose a novel ROBE scheme to estimate the shortest distances. ROBE is
based on a hub serving as the skeleton of the large graph. In order to stretch the hub into every corner in the
network, we first choose representative nodes with highest degrees that are at least two hops away from
each other. Then bridge nodes are selected to connect the representative nodes. Extension nodes are also
added to the hub to ensure that the originally connected parts in the large graph are not separated in the hub
graph. To improve performance, we compress the hub through chain collapsing, tentacle retracting, and
clique compression techniques. A query evaluation algorithm based on the compressed hub is given. We
compare our approach with other state-of-the-art techniques and evaluate their performance with respect to
miss rate, error rate, as well as construction time through extensive simulations. ROBE is demonstrated to
be two orders faster and has more accurate estimations than two recent algorithms, allowing it to scale very
well in large social graphs.

1 INTRODUCTION

As part of “big data” analytics, finding the shortest
paths in large social networks has been an intense
research area in both academia and industry. The
shortest-path query is a classic problem in graph
theory. Breadth-First Search (BFS) can be used on
unweighted graphs, such as those in Facebook.com,
with an O(V+E) computational complexity, where V
and E are the numbers of vertices and edges of the
graph, respectively. Due to the sheer sizes of the
large social graphs, the algorithm cannot be directly
applied. Instead, scalable and efficient algorithms
must be developed.

In order to address shortest-path queries with
scalable and distributed solutions, researchers rely
on different types of techniques. For instance, a
highway transportation system approach is used in
(Cohen, Halperin et al. 2003). Instead of using
global landmarks as some shortest path algorithms
do, we use a much smaller graph that is applicable
with BFS. In this work, we propose a new hub-based
algorithm called ROBE (Representative nodes
Ornamented by Bridge nodes and Extension nodes).

Our main contributions in this work are:
1. We propose a new hub concept and

construction scheme, and give several results that
guarantee the representativeness and connectivity.

2. We propose new hub compression strategies to
reduce the number of nodes in the hub while still
maintaining the accuracy of shortest path queries.

3. We design a query computation algorithm on
the compressed hub and conduct extensive
simulations to confirm the advantages of our new
algorithms.

The rest of the paper is organized as follows.
Section 2 surveys related work in the field and
distinguishes our approach from others. Sections 3
and 4 provide detailed description of our hub
construction and hub compression techniques,
respectively. Query evaluation is presented in
Section 5, followed by performance evaluation on
different data sets in Section 6. In Section 7, we
conclude the work.

2 RELATED WORK

Shortest-path discovery is a classic problem in
computer science. For an extensive related work
discussion, the readers are referred to for instance

97Fu L. and Deng J..
ROBE - Knitting a Tight Hub for Shortest Path Discovery in Large Social Graphs.
DOI: 10.5220/0005353500970107
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 97-107
ISBN: 978-989-758-096-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

(Wei 2011), a state-of-the-art work in the field. We
discuss some of the latest developments in the field
in the following.

Traditional approaches to the shortest-path
discovery problem (Dijkstra 1959) (Bellman 1958),
while elegant and accurate by design, do not scale to
the large social networks today. The main issue is
the large number of vertices and edges: they
introduce significant delays on I/O storage and
memory access. Another unique property of social
networks is the small degree of separation, which
states that any two vertices are likely to be
connected through some paths with hop-counts no
more than four (Backstrom, Boldi et al. 2012).

Considering these computational costs and the
unique properties of large social networks,
researchers proposed various techniques to improve
the scalability and efficiency of the shortest-path
discovery algorithms. For instance, in (Potamias,
Bonchi et al. 2009), Potamias et al. proposed a
landmark-based distance indexing technique. The
landmarks are supposed to represent different
regions. Then the distances among themselves are
computed. Shortest-distance queries are estimated
by distances of the two nodes to the landmarks. Such
an approximation technique based on triangulation
has been used by different researchers, for example,
the 3-hop scheme (Jin, Xiang et al. 2009), the TEDI
scheme based on tree decomposition (Wei 2011), the
query-dependent local landmark scheme (Qiao,
Cheng et al. 2012), and the highway-centric scheme
(Jin, Ruan et al. 2012).

Zhao et al. (Zhao, Sala et al. 2010) mapped
nodes in high dimensional graphs to positions at a
low dimensional Euclidean space in a scheme called
Orion. To improve non-landmark coordinate
calculation in Orion, a new algorithm called Pomelo
(Chen, Chen et al. 2011) is proposed to calculate the
graph coordinates in a decentralized manner. Gao et
al. provides relational approach to process shortest
queries in graph (Gao, Jin et al. 2011).

Akiba et al. (Akiba, Iwata et al. 2013) claim that
BFS on every vertex using pruning and simultaneous
searches with bitwise operations can process exact
distance queries efficiently. They experiment large
graphs with hundreds of millions of edges. Through
walking consecutive gate nodes in a gate graph, a
new approach of graph simplification can cover non-
local nodes while preserving distances (Ruan, Jin et
al. 2011).

Feder and Motwani researched on graph
compression through cliques (Feder and Motwani
1995). It is well known that the problem of whether
there is a clique of size k in a given graph is NP-

hard. In this work, we design a clique detection
algorithm similar to the famous association rule
mining algorithm Apriori (Agrawal and Srikant
1994). The clique compression is especially
important in social networks because cliques are
quite common in such graphs. For general graph
queries, a smaller graph is computed to preserve the
original query in a compression framework proposed
by Fan et al. (Fan, Li et al. 2012). Other work related
to graph compression includes (Karande, Chellapilla
et al. 2009, Apostolico and Drovandi 2009).

For approximate distance oracles, Thorup and
Zwick gave an algorithm (Thorup and Zwick 2005)
that pre-computes a data structure of size O(kn1+1/k)
in O(kmn1/k) and answers a distance query
approximately in O(k) time, where m is the number
of edges, n is the number of nodes, and k is a certain
constant. The query is approximate, but no more
than a factor of 2k-1 of the true distance away. On
top of this, Baswana and Sen further improved the
expected construction times of the approximate
oracles to O(n2) (Baswana and Sen 2006).

Recently, Gubichev et. al proposed a sketch-
based index to compute distance queries together
their corresponding paths (Gubichev, Bedathur et al.
2010). Another sketch-based algorithm given by
Sarma et. al computes the distance queries for web-
scale large graphs (Sarma, Gollapudi et al. 2010). It
estimates the distance through the sketches of the
source node and the destination node.

3 HUB CONSTRUCTION

3.1 Goals of Hub Construction

Essentially, our idea is to build a “robe” – the hub
graph and pre-compute pairwise shortest distances
between all the hub nodes. A “query miss” happens
when the hub is not a connected graph though they
are originally connected in the input graph. A good
hub should satisfy the following properties:
 Good representation so that the missing rate is

low or even zero;
 Good connection among the nodes inside the

hub so that their shortest distances are close to
the actual shortest distance in the original
graph G;

 Low construction time. This is needed so that
the overhead of constructing the hub is as low
as possible.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

98

3.2 Representative Nodes, RN

We first sort all the nodes by degrees in decreasing
order and choose the nodes one by one starting from
the node with highest degree, such that the newly
chosen one must not be a direct neighbour of any
existing members in the set. The restriction is to
leave chances to nodes in sparser regions so that the
hub is spread wide. These nodes are termed
representative nodes (the set is RN). The graph is
called GR, with |RN| singleton nodes.

In Figure 1, for instance, nodes 2, 8, 12, 17, 21,
and 4 will be chosen as the representative nodes.
Despite that node 11 has a large node degree (of 4),
it is not qualified to serve because its neighbours 2
and 8 have already been chosen.

Figure 1: Illustration of rn, bn, and en in a graph. Double-
ovals (in red) are representative nodes. Dashed-ovals (in
green) are bridge nodes. Dotted-ovals (in darker blue) are
extension nodes. The thick solid lines (in red) represent
bridge edges. The dotted lines (in red) represent extension
edges.

THEOREM 1. (ZERO MISS RATE) If the input graph is
connected and the above RN selection algorithm is
applied, any node in the graph will always have at
least one representative node within distance of two.
That is, the miss rate will be zero if the hub is
eventually connected and two-hop neighbors of the
hub nodes are searched.

PROOF: we prove it by contradiction. Suppose
there is a node u and the closest representative node
U is at least 3-hops away: u - y - x - U. Then there
exists at least one neighbor, node y, in node u’s

neighbor set, that does not have a representative
node within one hop (otherwise node u can choose
such a neighbor toward a representative node for
two hops). Based on our representative node
selection rule, node y would have been chosen as a
representative node. Node u’s distance to the closest
representative node is then 1, which contradicts to
our assumption that the closest representative is at
least 3-hop away.

The detailed algorithm of selecting representative
nodes is described in Algorithm 3.1. The intersection
in line 3 and 4 takes linear time O(|RN| +D), where
D is the max degree of input graph G. Line 4 takes

Algorithm 3.2: Selection of
Bridge Nodes
Input: input graph linked lists
ig, GR
Output: a set of bridge nodes
1. Sort lists in G\GR in
decreasing order of degrees
2. for each node i
3. if (node i does not
connect at least two RN nodes)
continue
4. if (it does not add
connectivity of GR) continue
5. add i into BN and update
the distance between two RN
nodes it connects to 2.

Algorithm 3.1: Selection of
Representative Nodes
Input: input graph linked lists
ig
Output: a set of representative
nodes
1. Sort the lists in decreasing
order according to degrees
2. RN = {v0}, v0 is the node ID
of the first list
3. for each next ID Vi, see if
vi’s neighbors are in RN
4. if not, i.e. ig[vi] ∩ RN =
φ, insert it in RN in right
position using binary search so
that RN is still sorted. This
step is similar to insertion
sort.
5. if yes, continue to node ID
of next list
6. repeat step 3-5 until the
lists are all examined.

ROBE�-�Knitting�a�Tight�Hub�for�Shortest�Path�Discovery�in�Large�Social�Graphs

99

O(log|RN|+|RN|). Time complexity for Algorithm
3.1 is then O(|RN|2). Typically, D is smaller than
|RN| for large graphs. The bridge node selection
algorithm is presented in Algorithm 3.2.

3.3 Bridge Nodes, BN

Since GR only contains totally isolated singleton
nodes, we need to add other non-representative
nodes, in decreasing order of degrees if they can
directly connect at least two representative nodes
and improve the connectivity of GR. We call these
connecting nodes as bridge nodes. The graph
composed of representative nodes, bridge nodes, and
their edges is called GB. In Figure 1, for example,
nodes 11, 1, and 22 are chosen as bridges in order.

3.4 Extension Nodes, EN

Even though the bridge nodes greatly improve
connectivity of GR, the graph GB may still be
disconnected. For example, in Figure 1, the
component of nodes 17, 22, and 21 is separated from
the other larger component with six nodes. To
address this problem, we select additional nodes to
connect the isolated components in GB.

The newly selected nodes are called extension
nodes, en, and the edges that connect the
disconnected components are called extension edges.
The graph that extends GB with extension nodes and

edges is called GE – the “robe” we use to estimate
shortest paths. In this paper, we also call GE as hub
graph (HG). In Figure 1, nodes 14, 16, and 20 are
extension nodes and the extension edges are shown
in dotted lines.

Algorithm 3.3 shows the details of finding the
extension nodes and adding them with extension
edges to graph GB. The first two lines analyze the
component structures of input graph G and GB by
BFS calls, through which we can find the component
sizes and check whether any two nodes are from the
same connected component.

Lines 4 through 8 explore and add pairwise,
component-to-component connections in GB if they
are from the same component in G. Hi and Hj are the
smallest node IDs as representatives in components i
and j respectively while num_comp is the total
number of components in GB. The BFS calls in line
7 in Algorithm 3.3 are partial searches: only to the
third iterations at most in order to reach their target
nodes T (e.g. nodes 12 and 11 in Figure 1). In the
following theoretic analysis, we find that the lengths
of the extension paths will be two or three. Lastly, in
order to improve performance we start with smallest
components (in line 3).
THEOREM 2. (DISTANCE OF THREE) Suppose nodes u
and v are two closest representative nodes in
different components of GB and are connected in G,
then |u-v| = 3 in G.

PROOF:

1) The distance cannot be one because they cannot
be direct neighbors according to our representative
selection rule.

2) The distance cannot be two. If u-x-v, then x must
be a bridge node because it connects two
representative nodes u and v. Then u and v would be
in the same component, a contradiction to our
assumption.

3) The distance cannot be four or more if they are
connected in G. Suppose the path is u-u1-x-v1-v,
then the node x should be chosen as a representative
node as well thus forcing u and v to be connected in
GB. In our example, u and v are nodes 17 and 12.

4 HUB COMPRESSION

4.1 Rationale of Hub Compression

The hub containing representative nodes, bridge
nodes, and extension nodes can be quite large.
Experiments show that vast majority of the time of

Algorithm 3.3: Selection of
Extension Nodes
Input: input graph linked lists
G, GB
Output: a set of extension nodes
1. BFS(G) to find connected
components in G
2. BFS(GB) to find all connected
components in GB
3. sort components of GB in
increasing sizes
4. for (int i=0; i<num_comp;
i++)
5. for (int j=i+1;
j<num_comp; j++)
6. if (Hi and Hj are connected
in G)
7. BFS(Hi) to 3rd generation
to meet a node T in
component j
8. add extension nodes and
edges between Hi and T to GB

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

100

hub construction is on the writing of the pre-
computed pair-wise distances between hub nodes to
disks. This motivates us to reduce the number of
nodes in the hub so that distance computation can
still be performed without storing all of them on
disk.

4.2 Retracting the Tentacles and
Collapsing the Chains

The first method of compression is to remove the
nodes with a degree of one or two. The leaves that
grow out of nodes called home nodes. The nodes
with degree two are called chain nodes. From any
chain node, we can search from both sides until the
both ends have a degree other than two. We can
choose the closer end as its home node. If only one
end is a leaf, then this chain is called a tentacle. The
other end of the tentacle will be the home node for
all the nodes on the tentacle. If neither end is a leaf,
this chain will be an inside chain. The algorithm to
retract the tentacles, leaves, and to remove chain
nodes is called collapse (see Algorithm 4.1).

Two maps, leaf_map and chain_map, are used to
store the home nodes of the leaf nodes and chain
nodes. In Figure 1, the home nodes are 1 and 11 for
two leaves 4 and 8 respectively (saved in leaf_map
in line 3 of Algorithm 4.1). The long ring chain 11-
12-14-16-17-22-21-20-11 will be saved in
chain_map in line 7 with node 11 being the home of
the chain. Another chain 4-1-2-11 is a tentacle since
one end is a leaf (node 4). The home node is 11 for
chain nodes 1 and 2. After collapsing, the
compressed hub only has one node 11.

4.3 Compressing the Cliques

Another powerful compression technique is to

replace complete sub-graphs called cliques with so-
called super nodes. We are only interested in cliques
of size three (also called triangulation) or more. We
can choose the node with largest degree as the home
node of other super members in the same super
node. The super members are saved in super_map.
Algorithm 4.2 describes the process of finding
cliques and super nodes. It is similar to a standard
association rule mining algorithm called Apriori. We
will use an example shown in Figure 2 to illustrate.

First, we scan the linked lists and remove the nodes
with degree zero or one. Also we only retain the list
nodes with larger IDs than the node ID. For the first
list 1: 2, 3, 4, 7, 13, 14, we self join clique L2 = {
{1,2}, {1,3}, {1,4}, {1, 7}, {1, 13}, {1, 14}} and
create candidates C3 = { {1, 2, 3}, {1, 2, 4}, {1, 2,
7}, {1, 2, 13}, {1, 2, 14}, {1, 3, 4}, {1, 3, 7}, {1, 3,
13}, {1, 3, 14}, {1, 4, 7}, {1, 4, 13}, {1, 4, 14}, {1,
7, 13}, {1, 7, 14}, {1, 13, 14}} (Line 4 in Algorithm
4.2).

Similar to Apriori algorithm, the join of two
clique sets of size k {N1, N2, ...N k-1, Nk} and {N1,
N2, ...N k-1, Nk+1} that have first k-1 common nodes
generates a candidate set {N1, N2, ...N k-1, Nk, Nk+1}.
If there is an edge from Nk to Nk+1 (by examining

Algorithm 4.2: Compress Cliques
Input: GE
Output: super_map
1. remove nodes with degree 1 or
below
2. only retain nodes with higher
IDs
3. for each non-empty list
 // generate candidate cliques
4. candidate Ci = Li-1 self
join Li-1
5. check if they have the
joining edge to grow to Li
6. repeat steps 4 and 5
until there is no more growth
7. save the largest Li in
candidate clique list
8. sort the candidate list in
decreasing sizes
9. choose the top one and save
it in super_map
10. remove it and any clique
that intersects with it
11. repeat 9 and 10 until the
candidate list is empty
12. choose the node with largest
degree as the home node of other
members in the same clique

Algorithm 4.1: Collapse
Input: GE
Output: leaf_map, and chain_map
1. for each linked list in GE
2. if (list size is one)
3. leaf_map.put(leaf_ID,
home_ID)
4. if (list size is two)
5. expand from node i left to
get left chain and left_home
6. expand to right to get right
chain and right_home
7. form a chain and save it in
chain_map

ROBE�-�Knitting�a�Tight�Hub�for�Shortest�Path�Discovery�in�Large�Social�Graphs

101

Figure 2: Illustration of an input graph with two cliques,
one with 5 nodes and the other with 3 nodes.

Nk's adjacency list), the new candidate will be a
newly grown clique of size k+1. Otherwise, it will
be eliminated from the candidate list Ck+1 (indicated
by stricken crossed lines above). Since the joining
edge (2, 7) does not exist, {1,2,7} will not be a
clique of size 3. The remaining is L3. Self join L3,
we have C4 = {{1, 2, 3, 4}, {1, 3, 4, 13}, {1, 3, 4,
14}, {1, 4, 13, 14}}. L4 = C4. C5 = {{1, 3, 4, 13, 14}
= L5. Finally, we have a clique of size 5 {1, 3, 4, 13,
14} and add it in the candidate clique list.

To reduce the query evaluation complexity, we
require that the cliques are disjoint. Using a greedy
strategy, we choose the largest clique and eliminate
any candidate that overlaps with it (lines 8-11). The
final clique set is {{1, 3, 4, 13, 14}, {5, 10, 12}}.

Once the cliques are found, we then compute the
pair-wise distances among the hub nodes through
BFS and save them in a file for query evaluation.
The hub nodes hn will be the remaining nodes after
removing leaves, tentacle nodes, chain nodes, and
super members in cliques (lines 1 and 2 in
Algorithm 4.3. The pair-wise distances are
computed and stored in lines 4 through 6. Now, we
are ready to evaluate shortest distance queries.

5 QUERY EVALUATION

Since in social media graphs most nodes are of a
distance four or less (Small World Theory), we first
directly compute the shortest distance of u and v in a
given query by intersecting the neighbor set (N1) or
neighbor-of-neighbor set (N2) of u and v. This is an
accurate computation if the intersection set is non-
empty. If the shortest distance between u and v is
more than four, we will always be able to find two
nodes U and V in the hub GE within N1 or N2 of u
and v according to Theorem 1. One or both u and v

Algorithm 5.1: Distance (u, v)
Input: any two nodes u and v in G
Output: the shortest distance (or
estimate) between u and v.
1. if (u = v) return 0;
2. if (distance between u and v
is smaller than five)directly
compute by intersection and
return
3. extra =0
4. if (u is in GE) U = u;
5. else if (N1(u) ∩ V(GE) is non
empty)
6. U is the common element;
extra++;
7. else if (N2(u) ∩ V(GE) is non
empty)
8. U is the common element;
extra = extra +2;
9. if (v is in GE) V = v;
10.else if (N1(v) ∩ V(GE) is non
empty)
11. V is the common element;
extra++;
12. else if (N2(v) ∩ V(GE) is non
empty)
13. V is the common element;
extra = extra +2;
14. return extra + hub_distance
(U, V)

Algorithm 4.3: Compute Distances
Among Hub Nodes
Input: GE, leaf_map, chain_map,
super_map
Output: hub-nodes,
dist_matrix(hub_nodes)
1. remove leaf nodes, tentacle
nodes, and chain nodes from GE
2. remove super members from GE,
the remaining nodes are hub
nodes hn
3. clean super member's lists sl
so that it only contain hub
nodes
4. for each node i in hn
5. call BFS(i) to compute the
shortest distances from i to
any other hub nodes
6. store pair-wise distances of
hub nodes in file

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

102

may be one of those nodes in GE.

We use an extra value to indicate the distance
between u and U or between v and V. If u is in GE,
the extra distance is zero; if N1(u) intersects with
V(GE) then extra =1; if N2(u) intersects with V(GE),
extra = 2. Similarly, we can set extra values for v as
well (see Algorithm 5.1).

To compute the distance between U and V in GE
called hub_distance(U, V) (Algorithm 5.2), we need
to handle the cases of leaves, tentacles, chain nodes,
and super members all of which do not appear in
hub nodes. We can retrieve through a file the
distances between any two hub nodes and use extra

values (initially set to zero) as additional distance
overhead. Lines 2-3 handle the leaf cases. Hu and
Hv are the home nodes of leaves u and v, retrieved
from leaf_map. Due to the symmetry, we only show
the code for U. The code for V is similar. Lines 4-7
handles the tentacle case while lines 8-11 for self
chains. If U and V are in the same chain (lines 12-
13), the shortest distance will be the shorter one of
the path between u and v or the path through the two
homes of hub nodes. Suppose iu1 and iu2 are the
distances from u to two homes home1 and home2
respectively. The same for iv1 and iv2. Lines 14-16
tackle the case of inside chain of two different home
nodes.

Algorithm 5.3 computes the distances hub_dist(Hu,
Hv) and handle the case of super members. If Hu
and Hv are in the same super node, their distance
will be one. If both Hu and Hv are hub nodes, we
directly retrieve the distance between them through
pre-computed, pre-stored file. The rest of lines
handles the case where one or both of Hu and Hv are
super members. For example, if Hu is a super
member, remember sl(Hu) is the neighbors of Hu
that are hub nodes. If Hv is also a super member,
then hub_dist(Hu, Hv) is the minimum distance of
all pair-wise distances between sl(Hu) and sl(Hv)
(lines 8-12)

Algorithm 5.3: Hub_dist(Hu, Hv)
Input: two nodes in GE but not
of degree one or two
Output: the distance between
them
1. if (Hu = Hv) return 0
2. if (Hu and Hv are from the
same super node)
3. return 1
4. if (both Hu and Hv are hub
nodes)
5. directly retrieve their
distance from file and return
6. if (Hu is a super member)
extra++;
 // one hop away to hub node
7. if (Hv is a super member)
extra++;
8. min = Infinity
9. for each i in sl[Hu]
10. for each j in sl[Hv]
11. if (the retrieved
distance d from i to j <min)
12. min = d;
13. return extra + min;

Algorithm 5.2: Hub_distance(U,
V)
Input: two nodes U and V in GE,
leaf_map, chain_map, super_map
Output: shortest distance
between them
1. if (U = V) return 0;
 // leaves
2. if (U is a leaf)
3. Hu is the home node of
u; extra++;
 // tentacles
4. if (U is in a tentacle)
5. Hu is home node of u;
6. iu is the distance
between u and Hu
7. extra = extra +iu
 // self chain, ring
8. if (U is in a self chain)
9. Hu is the home node
10. iu is the shorter distance
from u to Hu
11. extra = extra +iu
// U and V are in the same chain
 // home1 - - U- - V - - home2
 // | <-- iu1-->| <-- iu2-->|
12. if (U and V are in the same
chain)
13. return min(iv1-iu1,
hub_dist(home1, home2)+ iu1+iv2)
// inside chain
14. if (U is in an inside chain
of different ends)
15. Suppose Hu1 and Hu2 are the
ends
16. return the shortest
distance of U and V through
Hu1, Hu2, Hv1, Hv2
17. return extra + hub_dist(Hu,
Hv)

ROBE�-�Knitting�a�Tight�Hub�for�Shortest�Path�Discovery�in�Large�Social�Graphs

103

6 PERFORMANCE
EVALUATION

In this section, we perform extensive simulation
using an eight-core Linux server and Java 1.6
programming. The data set used include 4,040-node
graph data-SNAP provided by SNAP (SNAP 2009)
and data set data-UCI, a graph containing more than
one million nodes and about 30 million edges
(Gjoka , Gjoka, Kurant et al. 2011).

Our first group of experiments is to test the
effects and trade offs of the techniques used in
ROBE. We use several algorithms which are either
adapted algorithms or different stages of our
algorithm ROBE. The first algorithm directly select
certain number of nodes with largest degrees without
restriction of not being neighbors to form a popular
graph (call this algorithm Gp). The second algorithm
is GB and the third is GE (without compression), and
the last one is ROBE (with hub compression).

Table 1: Structural data for ROBE.

5465011457162507523600

509455356442461400400

2902513173552068200200

203176342491913150150

1149221301653100100

59323144611395050

|hub||sm|#comp|en||bn||cand||rn|#mark

Figure 3 shows the construction times of these
algorithms. Naturally, Gp runs fastest since it is the
simplest and only the first portion of other
algorithms. We can see a significant reduction of
construction time by ROBE due to reduced number
of nodes and thus amount of pairwise distances
necessary to write on disk. The number of landmarks
indicated in the x-axis is the number of
representative nodes or popular nodes as a control
parameter. More structural data is shown in Table I,
where the column heads are number of marks,
number of representative nodes (rn), candidate
bridges (cand), chosen bridge nodes (bn), extension
nodes (en), number of components in GB, number of
super members (sm) and hub nodes (hub). In a dense
graph such as the one from SNAP, there are quite a
few super members in cliques. The compression rate
is roughly half.

Figure 4 shows the error rate, defined as

k
k

i
i

ii

/
)(

1







where k is the total number of randomly generated

queries,
i

 , and i are the estimated and true

distance of ith query.

0

0,5

1

landmarks

Er
ro
r
ra
te

Robe 0,009 0,043 0,042 0,06 0,048

Central 0,564 0,568 0,569 0,5 0,513

Constrai 0,31 0,274 0,257 0,24 0,251

10 20 30 40 50

Figure 3: Construction times of different schemes.

0

1000

2000

#landmarks

C
o
n
st
ru
ct
io
n
 T
im

e
 (
se
c)

Robe 0,49 1,56 1,562 1,81 3,18

Central 279,5 464,4 632,4 1002 1199

Constrai 167,2 423,5 527,2 875 1001

10 20 30 40 50

Figure 4: Error rates of different schemes.

This measure reflects a relative, average error. The
error rate of Gp is the lowest (i.e. best) whenever the
distances can be estimated. However, if the distance
cannot be measured, a miss occurs. The query miss
happens either they are too far away or the chosen
subgraph is disconnected though they are originally
connected in the input graph.

From Figure 5, we find that more than half of the
queries are missed in Gp, which is normally
unacceptable. When we add bridges nodes and
extension nodes, the miss rate is greatly reduced. If
we do not limit the number of representative nodes,
the miss rate is zero. Most importantly, both
algorithms ROBE and GE have the same low error
rate and zero miss rate but ROBE is much faster due
to effective compression.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

104

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

50 15
0

40
0

#landmarks

M
is

s
R

at
e Gp

Gb

Ge

Figure 5: Miss rate of different schemes.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

50 100 150 200 400 600

#landmarks

E
rr

o
r

R
at

e

Robe Central Constraint

Figure 6: Error rates of ROBE, Central, and Constraint
schemes.

In our next group of experiments we compare the
performance and error rate with two other recent
algorithms called Central and Constraint described
in (Potamias, Bonchi et al. 2009). In Central, from a
random set of seeds, a set of landmarks are chosen
so that their average distances to all other nodes in
the input graph are smallest. In Constraint, a number
of landmarks with the largest degrees are chosen so
that they are not next to one another. The critical
difference between ROBE and the other two
algorithms is that ROBE estimates the distance using
a chosen (much smaller) subgraph of the given input
graph while Central and Constraint need to compute
the distances from their global landmarks to all the
nodes in the input graph. Distance from u to v is
estimated as min{ distance(u, li)+distance(v, li)}
where the minimum is for each of the global mark li.

Figures 6 and 7 illustrate the error rates and
construction times for different numbers of
landmarks. We can clearly see that ROBE greatly

reduces the construction time (two orders faster)
while maintaining similar or better error rates than
Central and Constraint. Among the latter two, in
general Constraint is better than Central.

0

10000

20000

30000

40000

50000

60000

50 100 150 200 400 600

#landmarks

C
o

n
st

ru
ct

io
n

 T
im

e
(m

s)
Robe Central Constraint

Figure 7: Construction times of ROBE, Central, and
Constraint schemes.

0

0.2

0.4

0.6

landmarks

Er
ro
r
ra
te

Robe 0.009 0.043 0.042 0.06 0.048

Central 0.564 0.568 0.569 0.5 0.513

Constrai

nt

0.31 0.274 0.257 0.24 0.251

10 20 30 40 50

Figure 8: Error rates for large data set.

0

500

1000

1500

#landmarks

C
o
n
st
ru
ct
io
n
 T
im

e
 (
se
c)

Robe 0.49 1.56 1.56 1.81 3.18

Central 280 464 632 1002 1199

Constrai

nt

167 424 527 875 1001

10 20 30 40 50

Figure 9: Construction times for large data set.

ROBE�-�Knitting�a�Tight�Hub�for�Shortest�Path�Discovery�in�Large�Social�Graphs

105

Lastly, we conduct a similar comparison on a much
larger, more realistic data set data-UCI provided by
University of California, Irvine (Gjoka , Gjoka,
Kurant et al. 2011). The graph has 1,189,768 nodes,
29,760,300 edges, one component, with an average
degree of 50 and maximal degree of 4,411. The
results are shown in Figures 8 and 9. Similar
observations can be made. The advantages of ROBE
are even more evident

7 CONCLUSIONS

In this work we have proposed and investigated a
technique called ROBE, which is based a hub
containing representative nodes, bridge nodes, and
extension nodes. Graph compression techniques
including clique compression, chain collapsing, and
tentacle retracting are exploited in order to reduce
the size and overall computation for the hub.

If all eligible representative nodes are chosen,
our scheme has a zero miss rate. Otherwise, its miss
rate is still very low. It also enjoys a low error rate,
in addition to its short construction time and low
cost for shortest-path queries. We have detailed our
design and performed extensive evaluations of
ROBE with related schemes and experimented on
two real data sets. The results suggest that ROBE
can serve as a good candidate for shortest-path
computation in large social networks.

REFERENCES

Agrawal, R. and R. Srikant (1994). Fast Algorithms for
Mining Association Rules in Large Databases.
VLDB'94, Proceedings of 20th International
Conference on Very Large Data Bases, September 12-
15, 1994, Santiago de Chile. J. B. Bocca, M. Jarke and
C. Zaniolo, Morgan Kaufmann: 487-499.

Akiba, T., Y. Iwata and Y. Yoshida (2013). Fast Exact
Shortest-Path Distance Queries on Large Networks by
Pruned Landmark Labeling. SIGMOD. New York.

Apostolico, A. and G. Drovandi (2009). "Graph
Compression by BFS." Algorithms 2: 1031-1044.

Backstrom, L., P. Boldi, M. Rosa, J. Ugander and S.
Vigna (2012). Four degrees of separation. WebSci.
Evanston, IL, USA: 33-42.

Baswana, S. and S. Sen (2006). "Approximate Distance
Oracles for Unweighted Graphs in Expected O(n^2)
Time." ACM Transactions on Algorihms 2(4): 557-
577.

Bellman, R. (1958). "On a routing problem." Quarterly of
Applied Mathematics (16): 87–90.

Chen, Z., Y. Chen, C. Ding, B. Deng and X. Li (2011).
Pomelo: accurate and decentralized shortest-path

distance estimation in social graphs. ACM SIGCOMM
Conference. Toronto, ON, Canada: 406-407.

Cohen, E., E. Halperin, H. Kaplan and U. Zwick (2003).
"Reachability and distance queries via 2-hop labels."
SIAM J. Comput. 32(5): 1338–1355.

Dijkstra, E. W. (1959). "A note on two problems in
connexion with graphs." Numerische Mathematik 1(1):
269–271.

Fan, W., J. Li, X. Wang and Y. Wu (2012). Query
preserving graph compression. SIGMOD. Scottsdale,
Arizona, USA: 157-168.

Feder, T. and R. Motwani (1995). "Clique partitions,
graph compression and speeding-up algorithms."
Journal of Computer And System Sciences 51: 261-
272.

Gao, J., R. Jin, J. Zhou, J. X. Yu, X. Jiang and T. Wang
(2011). Relational approach for shortest path
discovery over large graphs. Proc. VLDB Endow.

Gjoka, M. from http://odysseas.calit2.uci.edu/doku.php/
public:online_social_networks.

Gjoka, M., M. Kurant, C. T. Butts and A. Markopoulou
(2011). "Practical Recommendations on Crawling
Online Social Networks." IEEE J. Sel. Areas Commun.
on Measurement of Internet Topologies 29(9): 1872-
1892.

Gubichev, A., S. Bedathur, S. Seufert and G. Weikum
(2010). Fast and Accurate Estimation of Shortest
Paths in Large Graphs. CIKM, Toronta, Ontario,
Canada.

Jin, R., N. Ruan, Y. Xiang and V. E. Lee (2012). A
highway-centric labeling approach for answering
distance queries on large sparse graphs. SIGMOD:
445-456.

Jin, R., Y. Xiang, N. Ruan and D. Fuhry. . In ’09 (2009).
3-hop: a high-compression indexing scheme for
reachability query. SIGMOD.

Karande, C., K. Chellapilla and R. Andersen (2009).
Speeding up algorithms on compressed web graphs.
Proceedings of the Second ACM International
Conference on Web Search and Data Mining,
Barcelona, Spain.

Potamias, M., F. Bonchi, C. Castillo and A. Gionis (2009).
Fast shortest path distance estimation in large
networks. Proceedings of the 18th ACM conference on
Information and knowledge management. Hong Kong,
China: 867-876.

Qiao, M., H. Cheng, L. Chang and J. X. Yu (2012).
Approximate Shortest Distance Computing: A Query-
Dependent Local Landmark Scheme. ICDE,
Washington, DC, USA (Arlington, Virginia), 1-5
April, 2012.

Ruan, N., R. Jin and Y. Huang (2011). Distance
Preserving Graph Simplification.. ICDM. Vancouver,
Canada 1200-1205.

Sarma, A. D., S. Gollapudi, M. Najork and R. Panigrahy
(2010). A Sketch-Based Distance Oracle for Web-
Scale Graphs. WSDM, New York, USA.

SNAP. (2009). from http://snap.stanford.edu/data/.
Thorup, M. and U. Zwick (2005). "Approximate Distance

Oracles." Journal of the ACM 52(1): 1-24.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

106

Wei, F. (2011). "TEDI: Efficient Shortest Path Query
Answering on Graphs." Graph Data Management:
Techniques and Applications: 214-238.

Zhao, X., A. Sala, C. Wilson, H. Zheng and B. Zhao
(2010). Orion: shortest path estimation for large social
graphs. Proceedings of the 3rd conference on Online
social networks. Boston, MA: 9-9.

ROBE�-�Knitting�a�Tight�Hub�for�Shortest�Path�Discovery�in�Large�Social�Graphs

107

