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Abstract: In this paper, we discuss global device calibration based on Structure from Motion (SfM) (Hartley and Zis-
serman, 2004) in the context of active scanning systems. Currently, such systems are usually pre-calibrated
once and partial, unaligned scans are then registered using mostly variants of the Iterative Closest Point (ICP)
algorithm (Besl and McKay, 1992). We demonstrate, that SfM-based registration from visual features yields a
significantly higher precision. Moreover, we present a novel matching strategy that reduces the influence of an
object’s visual features, which can be of low quality, and introduce novel hardware that allows to apply SfM
to untextured objects without visual features.

1 INTRODUCTION

3D scanning and reconstruction of static objects are
important applications of computer vision, in partic-
ular for cultural heritage preservation and reverse en-
gineering. Laser or structured light scanners are most
commonly used for this task and we focus on high-
precision reconstruction using such active scanning
systems in this paper.

To acquire a full reconstruction of an object, sev-
eral partial scans must be aligned, since the scanning
devices usually have a limited field of view. The
transformation of these partial scans into a common
coordinate frame is customarily referred to as regis-
tration. Throughout the literature, registration is al-
most completely considered as the problem of finding
the (rigid) transformations between 3D data.

Structure from motion (SfM) algorithms that ex-
tract 3D geometry from images constitute a different
approach to object reconstruction. A respective sys-
tem usually reconstructs a scene from images by in-
cremental computation of new camera poses and con-
secutive triangulation of new points. This is done in a
common coordinate frame, the data is thus registered
implicitly.

Surprisingly and to the best of our knowledge,
this approach to the registration problem is hardly
discussed in the context of active scanning systems,
where variants of the iterative closest point algorithm
(Besl and McKay, 1992) are heavily dominating.

In this paper we break with this tradition. Instead
of registering individual scans computed in the local

Figure 1: Our proposed hardware, consisting of a struc-
tured light scanning unit (back) and a turntable with out-
riggers. Each outrigger holds a small projector, whose pro-
jected fringe patterns statically remain on the object.

frame of the scanner, we first calibrate the scanner
globally by calibrating each of its individual devices
(projectors and cameras) using sparse visual features.
Global optimization by bundle adjustment, which ad-
justs both the sparse structure and all device parame-
ters simultaneously, is well studied in this context and
greatly improves the overall reconstruction accuracy.
In particular, it automatically adapts device parame-
ters that can slightly change over time, due to e.g. heat
generation. If the scanner calibration is, according to
the current predominant paradigm of precalibration,
kept constant instead, partial scans can suffer from
small distortions that cannot be corrected by the sub-
sequent registration anymore. This problem was first
reported in (Furuakwa et al., 2009) and addressed by
global optimization after ICP-based alignment. How-
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ever, most approaches ignore this insight and assume
that partial scans can be aligned perfectly.

For calibration we use an SfM algorithm with au-
tocalibration, that is tailored to a projector-camera
scanning setup. In such a system, the projector in-
duces high-quality correspondences to the cameras.
We show that these correspondences can be used to
reduce the influence of the object’s natural features to
an acceptable minimum. Moreover, we present novel
hardware that makes the calibration fully independent
of the object’s own features. With our setup, it is pos-
sible to reconstruct any object that exhibits a reason-
able diffuse reflection component at very high preci-
sion. This holds in particular for featureless objects,
where optical registration will fail and symmetrical
objects, where geometry-based registration will fail.

We evaluate this method using a novel approach,
that expresses the error in terms of point accuracy in-
stead of pose accuracy. Our SfM-approach outper-
forms common, geometry-based methods. The main
contributions of this paper are:

� Analysis and discussion of registration by global
device calibration in the context of structured light
scanners.

� A novel matching strategy, that minimizes the in-
fluence of potentially bad natural features.

� A novel hardware to gain independence of natural
features.

2 RELATED WORK

Existing methods for rigid shape registration process
geometry and/or optical features, either yield a coarse
or a fine registration and align a single pair or mul-
tiple views. In this paper, we focus on multi-view
fine registration and assume, that a coarse alignment
is already provided if required. A coarse alignment
is often computed from correspondences between ge-
ometrical features, a survey on computation of such
correspondences can be found in (van Kaick et al.,
2011).

The vast majority of existing registration methods
operate only on reconstructed geometry. This might
be due to the fact that off-the-shelf devices like laser
scanners, which are widely available nowadays, serve
as black box depth sensors and often output only point
clouds. In this case, registration must be performed
using only this data. Two surveys on geometry-
based registration are (Salvi et al., 2007) and the more
recent (Tam et al., 2013). The largest part of all
methods is undeniably based on the iterative closest
point (ICP) algorithm (Besl and McKay, 1992). This

method approximates unknown correspondences be-
tween two shapes by the closest point and iteratively
minimizes the distance between the shapes by updat-
ing an initial pose estimate. Many adaptations exist
that vary mostly in the point sampling, correspon-
dence weighting, outlier rejection and error measure-
ment (Rusinkiewicz and Levoy, 2001). Although the
closest point approximation becomes more difficult
and costly among multiple views, numerous methods
extended ICP to this case, including (Bergevin et al.,
1996; Pulli, 1999; Williams and Bennamoun, 2001;
Toldo et al., 2010; Du et al., 2010).

Especially in the multi-view case, several new ap-
proaches were proposed recently. (Krishnan et al.,
2005) uses a manifold optimization on the constrained
manifold of rotations, (Huang et al., 2007) proposes a
bayesian formulation of the registration problem and
(Torsello et al., 2011) applies motion diffusion with
motion being expressed by dual quaternions. How-
ever, (Torsello et al., 2011) minimizes the error distri-
bution among multiple views and requires a pairwise
registration - ICP thus is also relevant in this context.

A different class of registration methods uses vi-
sual cues derived from images aligned to the recon-
structed points. 2D point correspondences among the
images induce 3D point correspondences, which can
be used to estimate the unknown transformation (Seo
et al., 2005; Dold and Brenner, 2006).

An entirely different approach to the registration
problem is given by SfM-algorithms. This class of
methods assumes a sequence of images and jointly
estimates camera motion and scene geometry. In the
context of an active scanner, SfM can be used to es-
timate all involved device parameters and optimize
them together with a sparse version of the final re-
construction in a globally optimal way. In contrast to
the previously mentioned registration approaches that
keep the partial reconstructions and the device cali-
bration fixed, this offers a larger flexibility for align-
ing the data. While SfM is commonly used for passive
scene reconstruction from imagery, we are, surpris-
ingly, only aware of two publications that use it for
active scanners (Köhler et al., 2013; Weinmann et al.,
2011).

Most active projector camera scanning setups that
could employ an SfM approach (e.g. (Holroyd et al.,
2010; Weise et al., 2009; Sadlo et al., 2005)) instead
rely on a local precalibration and register the partial
scans using a variant of ICP. We believe the main
reason for this to be the still dominant paradigm of
scanner precalibration. Up to the present day, the vast
majority of publications that address the problem of
scanner calibration only aim at such a local calibra-
tion that inevitably requires subsequent registration,
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including (Audet and Okutomi, 2009; Griesser and
Van Gool, 2006; Moreno and Taubin, 2012).

The failure cases for all previously discussed
methods are obvious: The accuracy of all geometry-
based registration methods will degrade for objects
exhibiting a certain degree of symmetry, as the un-
known rigid transformation cannot be determined
uniquely in this case. Methods based on optical fea-
tures will fail for sparsely textured or textureless ob-
jects. We overcome these problems by introducing a
novel matching strategy that enables precise scanning
in case of sparse features, and new hardware, which
generates static, high-quality optical features. To the
best of our knowledge, it is the first device that en-
ables to capture the geometry of symmetric and tex-
tureless objects at high precision.

3 SFM FOR ACTIVE SCANNING

In the following, we assume we are provided with a
rigid, active scanning unit consisting of a light emit-
ting device P (“projector”) and at least two cameras
Ci. P is used to establish pixel-wise correspondences
of very high precision among the cameras for a partic-
ular scanner/object pose. Those correspondences are
commonly used to reconstruct dense, partial scans.
We refer to them as internal correspondences. In or-
der to capture a full object, either the object or the
scanning setup must be moved. We assume that each
scanner/object pose j generates new, virtual devices
Pj and Ci j with individual parameters each. Corre-
spondences among Ci j;Ckl of different scanner poses
j; l are called external correspondences. They can-
not be generated by P, and need to be computed by
other means. If external correspondences can be es-
tablished successfully, it is possible to estimate the
individual parameters of all virtual devices in a com-
mon frame.

The relationship to existing registration ap-
proaches is straightforward, if e.g. the projector’s
frame is used as the local scanner frame: SfM esti-
mates the scanner pose [Rjt] for each scanner posi-
tion, which maps a point from the world to the local
scanner frame. In case of a precalibrated setup, recon-
structions are computed in the local scanner frame. A
registration algorithm thus computes the inverse pro-
jector pose [RT j �RT t], which maps the reconstruc-
tion to the common world frame.

In this section, we assume that a set of sparse cor-
respondences is provided among all virtual devices.
Correspondence generation is addressed in detail in
Sections 4 and 5.

We employ the following SfM-approach to esti-

mate the parameters of all virtual cameras Ci j. As cus-
tomary, we assume that all Ci can be modeled by the
pinhole model (Hartley and Zisserman, 2004). First,
we initialize a set of calibrated cameras and a sparse
point cloud:

1. Choose Ci j and Ckl with most 2D-2D correspon-
dences.

2. If the intrinsic parameters of these cameras are not
known estimate them using an adaption of (Gher-
ardi and Fusiello, 2010).

3. Initialize the relative pose by epipolar matrix fac-
torization.

4. Triangulate all correspondences with a reprojec-
tion error � t0.

Then, we iteratively apply the following steps to
all virtual cameras:

1. Choose an uncalibrated Ci j with most 3D-2D cor-
respondences.

2. If the intrinsic parameters of Ci j are not known,
compute a camera matrix P using direct linear
transform and factorize it into pose and intrinsic
parameters. Otherwise, compute the pose using
(Lepetit et al., 2009). In both cases, outliers are
rejected by RANSAC (Fischler and Bolles, 1981)
with a threshold of t0.

3. Update the set of triangulated points with a repro-
jection error � t0.

4. Apply global bundle adjustment (Hartley and Zis-
serman, 2004).

5. Remove all 3D-2D correspondences with a repro-
jection error > t1.

During bundle adjustment, we optimize all trian-
gulated points as well as focal length, principal point,
distortion coefficients and pose for each virtual cam-
era. The clear advantage of this process is, that a
sparse version of the final reconstruction and all de-
vice parameters are simultaneously adjusted in a glob-
ally optimal way before the actual reconstruction. We
maintain a data structure that allows navigating from
each 3D point to all its valid projections and vice
versa. It is used to derive 3D-2D from 2D-2D cor-
respondences for calibrating a new device. Due to the
use of autocalibration, projectors can be easily inte-
grated, if required and a precalibration is not neces-
sary anymore.

4 CORRESPONDENCES FROM
NATURAL FEATURES

In this section, we adress external correspondence
generation from an object’s natural visual features.
For this purpose, descriptors such as SIFT (Lowe,
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Figure 2: Left: Exemplary scanning unit with internal,
projector-generated matching. Right: Multiple positions of
the unit for complete object acquisition, circles illustrate ex-
ternally matched, virtual cameras. If the angle between the
scanning unit’s cameras is the same as the angle for turning
the object, virtual cameras of different scanner poses are
very close to each other.

1999) are commonly used to establish correspon-
dences. Passive SfM-approaches do not distinguish
between external and internal matches and use the
same descriptors for all camera pairs. In our context,
however, we can match using two different strategies,
i.e. use P for high quality internal matching and a fea-
ture descriptor for external matching with lower ro-
bustness. As natural features can be sparse and of low
quality (see (Zeisl et al., 2009) for details), it is impor-
tant to reduce their negative influence on the virtual
device calibration. We achieve this in two steps:

First, we do not allow low-quality SIFT-matches
internally. However, all external matches must be
internally matched to different cameras, as pairwise
matches do not allow to deduce 3D-2D correspon-
dences in the SfM process. Any point of an exter-
nal correspondence is thus extended internally using
P. Moreover, we generate additional internal matches
by regularly sampling the respective camera images.
An internal pair of virtual cameras thus always has
more matches than an external pair and thereby gets
a higher priority in our SfM algorithm. If a new
camera is initialized with 3D-2D correspondences de-
rived from potentially bad SIFT correspondences, the
3D points consequently were entirely computed from
high-quality P-generated matches. Moreover, the ma-
jority of these 3D points is valid, as P-generated cor-
respondences contain only few outliers. The high
quality of the internal matches can thus be propagated
to SIFT-matches to some extent, while global influ-
ence of SIFT is kept low.

Second, we can exploit the characteristics of the
most common scanning setups (consisting of a scan-
ning unit and a turntable), to drastically increase qual-
ity and amount of external correspondences. In gen-
eral, the quality of correspondences decreases when
the angle between the principal axes of the associ-
ated cameras increases. This is a natural consequence

of perspective distortion, which changes the local ap-
pearance of the object. If the turntable of a scanning
setup is turned by n� and two cameras of the scan-
ning unit are separated by a rotation of n� around
the turntable axis, motion of the turntable will al-
ways move virtual cameras of different scanner/object
poses very close to each other (Figure 2). The corre-
sponding images will thus be almost identical. This
greatly increases both the quality and the amount of
correspondences. We restrict the external matching
to only these camera pairs. Note that this concept
of internal/external matches is not restricted to the
exemplary turntable scanning setup used in this sec-
tion. It is easily adapted to units with more cameras
and/or more rotational axes. If the scanner is freely
moved around the object however, it becomes more
difficult to maintain a small baseline between exter-
nally matched cameras.

5 CORRESPONDENCES FROM
ARTIFICIAL FEATURES

The approach presented in Section 4 still relies on nat-
ural visual features and fails for textureless objects.
One possibility to generate new features would be to
add additional objects with strong texture information
as calibration targets. However, they will occlude the
actual object of interest.

In this section, we present a novel hardware setup
that makes scanning fully independent of both visual
features and the object geometry. The precision of
geometry-based registration deteriorates for objects
exhibiting a certain amount of symmetry, because the
correct transformation cannot be estimated uniquely.
Our results in Section 6 contain respective examples.
Optical registration approaches suffer from similar
problems: First, repetitive visual features cannot be
matched uniquely. Second, the features might be of
low quality (Zeisl et al., 2009). And third, textureless
objects yield no visual features at all. Consequently,
it is currently not always possible to acquire a precise,
full reconstruction of arbitrary objects, whose surface
reflectance properties are suitable for active scanning
based on strucured light.

We resolve this by proposing a novel hard-
ware layout (Figure 1), which consists of a cam-
era/projector scanning unit and a special turntable
construction. The turntable is equipped with three
outriggers, that allow to attach additional micro-
projectors. These additional devices allow us to
project data onto the object, similar to the internal
projector. However, this data statically remains on the
object and is thus invariant of the table rotation. The
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Figure 3: Meshes used in our experiments. (a-d) were taken
from (Curless and Levoy, 1996), (e-g) were taken from
(Wang et al., 2010) and (h-j) were taken from our own col-
lection of scans.

external matching can thus be performed in the same
way as the internal matching. Each of these exter-
nal projectors is treated as individual feature source.
Therefore, it can be possible that a 3D point is triangu-
lated twice from a region where two projector images
overlap. Those regions are, however, small and the
duplicate points do not influence the calibration. The
devices used for evaluation are listed in Section 6.

Projectors commonly generate strong heat, which
causes their image to shift over time. This shift can be
significant, we observed several millimeters until the
device reached constant operating temperature. For
the main unit, this is compensated by an individual
set of parameters for each virtual position. For the
additional units, the positions of the projected images
must be static, it is thus very important to comply with
a warming phase.

The high-quality external correspondences make
this setup more general than the approach of Section
4. Cameras of the scanning unit can be freely posi-
tioned without regarding the turntable rotation.

6 RESULTS

We evaluate the SfM-approach with the different fea-
ture generation methods presented in this paper using
both real and synthetic data and compare the precision
to state-of-the-art registration algorithms. In the fol-
lowing, we use phase shifting to generate high-quality
correspondences with all projectors; its advantages
are discussed in (Köhler et al., 2013). The following
approaches are evaluated:

1. SfM with SIFT-features only

2. SfM with our minimal SIFT approach (Section 4)

3. SfM with our artificially generated features (Sec-
tion 5)

4. Multi-view ICP

(1) and (4) are considered as state of the art meth-
ods. (1) can be considered as standard SfM approach
as it is used with cameras only. We use it to demon-
strate the impact of the minimal SIFT approach (see
Section 4). We choose ICP as a geometric alignment
method, since it is undeniably the most common and
widespread registration method, which dominates the
state of the art up to the present day. Our implemen-
tation is an adaption of (Pulli, 1999).

In all experiments, we express the errors not in
terms of the pose parameters, but in terms of the
resulting reconstruction error or, in other words, in
terms of the error introduced to the reconstructed
points. This has the advantage that the error is ex-
pressed as a unidimensional quantity, which is easily
interpreted by a human being. Moreover, it allows us
to derive a simple, but highly expressive error thresh-
old from the scanner’s sampling density: An object
surface is sampled by the pixel grid of the cameras.
For a fixed scanner to object distance, the sampling
density is thus the average distance between vertices
of neighboring pixels. We regard a registration as
good if the error it introduces is below this thresh-
old. In this case, the registration does not degrade the
theoretically achievable scanning precision. Note that
we do not regard the precision of the scanning unit,
but only the precision of the registration. In all exper-
iments, t0 = 5 and t1 = 2.

6.1 Synthetic Data

In our synthetic experiments, each evaluated method
is applied to a multi-view registration problem with
8 partial scans. These scans result from a full rota-
tion of an object and are thus separated by 45�. We
generate 8 point clouds Ci by rendering a given mesh
from 8 different camera poses Pi, which are assumed
to be the scanner poses. The camera resolution is set
to 3296x2472 (8 megapixels) and the distance of the
camera to the object is automatically adjusted, such
that the rendering best occupies the resulting image.
For each pixel, the corresponding depth yields a 3D
point and each point cloud has approximately 2 mil-
lion points.

For the geometry-based registration, we apply a
small transformation Ti to each point cloud but the
first (rotation of 3� around a random axis through
the mesh centroid, translation by 0.5% of the mesh’s
longest main axis). This transformation is small
enough for proper convergence and the transformed
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(e) Multi-view ICP (Pulli,
1999)

(f) SIFT (g) Our min. SIFT (h) Our Phase

Figure 4: Results of our evaluation with synthetic data. Distribution of errors introduced to the reconstruction by wrong pose
estimates. Each histogram contains measurements from 509101060 vertices, resulting from 10 global registration problems
with 8 partial scans each. The top/bottom row illustrates results for a sharp/blurred texture, note that the ICP/Phase results
stay the same. The red line indicates our admissible error tolerance of 0.04 mm, see text for details. The large peaks at the
very right of the ICP and blurred SIFT histogram illustrate registration failures. The (linear) sizes of the x/y-axes are the same
for all plots.

point clouds can be considered as coarse initial align-
ment. The task then is to compute T�1

i .
For the different SfM-approaches, we assume a

scanner with 2 cameras separated by 40 degrees and
a projector centered in between. The projector frame
serves as local scanner frame, the scanner poses Pi
used for point cloud generation thus are the poses of
the respective projectors. For each SfM task (1-3),
the goal is to estimate Pi. By separating the cameras
by 40 degrees, we account for an imprecise position-
ing most likely to occur in practice. Cameras that are
matched with our minimal SIFT approach (Section 4)
are thus separated by 5�.

Using only SIFT-correspondences (task 1), cali-
bration of all Pi was not always possible. We thus
added 6 additional cameras to the scanning unit (3
above, 3 below) to enable precise calibration from
only natural features. Note that these additional cam-
eras yield additional constraints for the registration
and naturally integrate into the SfM pipeline. In prac-
tice, imagery from these additional cameras could be
manually acquired to aid in calibration. The projector
is treated as an additional camera in this case, task 1
thus boils down to calibrate 8 � (2+6+1) = 72 cam-
eras.

For each camera, we generate the corresponding
data for matching as follows: An image for generat-
ing SIFT-features is acquired by rendering the mesh
with a high-resolution (8196x8196 pixels) texture for
visual feature generation. This yields camera images
that have very similar characteristics compared with
real images. The internal and external phases are ac-
quired by tracing rays to the corresponding projec-
tors (we use 3 additional, static projectors for task 3).
We apply gaussian noise to both internal and external

phase correspondences, such that the reprojection er-
rors of the cameras and projectors are similar to the
values we measured in practice after calibration (0.5
pixels for the camera and 0.4 pixels for the projector).

For a given object/mesh, we compute the pose es-
timation error Ei for each point cloud Ci. Let in the
following Qi be the pose estimated by one of the reg-
istration methods for one of the point clouds. I.e. Qi
maps from an initial position (either the common co-
ordinate frame or the coarse alignment position) to the
final scanner position Pi. For the geometry-based reg-
istration, Ei =Qi�Ti� I, since Qi�T�1

i . For the SfM
methods, Ei = Qi �P�1

i � I, since Qi � Pi. For each
vertex V of a given point cloud Ci, the reconstruction
error is then given by jV �Ei(V )j.

We use 10 different meshes chosen from the Stan-
ford 3D Scanning Repository (Curless and Levoy,
1996), a mesh watermarking benchmark (Wang et al.,
2010) and our own collection of scans (Figure 3).
Each method thus must estimate 80 poses in total. The
set of objects contains both complex geometry and
more simple shapes with a certain degree of symme-
try. All per-vertex errors are accumulated in a single
histogram for each method (Figure 4). In all experi-
ments, the corresponding mesh was rescaled such that
the size along the major axis is 10 cm. The scanner’s
sampling density and thereby the admissible regis-
tration error threshold for such an object is 0.04mm.
Note, that this value can, at least in theory, be signif-
icantly lower for an increased device resolution. We
do the whole experiment with two different textures
mapped to the meshes. The first is a complex forest
scene, that generates many visual features. The sec-
ond is a strongly blurred version of the first and is
used to demonstrate the effects of sparse, low quality
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Figure 5: Left: Small version of the forest texture, the red
square indicates the area magnified on the right. Top right:
Original resolution (sharp), bottom right: original resolu-
tion, blurred.

features (Figure 5).
The first row of Figure 4 illustrates the results for

the sharp texture. It is obvious that ICP clearly per-
forms worst. More than 50% of the errors are above
the admissible threshold and in particular for partially
symmetric objects, the alignment is of low quality.
This is, as expected, a major drawback of geometry-
based registration. SfM from only SIFT-features has
a significantly higher quality but still more than 50%
of the points are above our quality threshold. How-
ever, if the SIFT-correspondences are constrained as
suggested in Section 4, the quality of the calibra-
tion/registration can be drastically increased - the
maximum per vertex error is 0.036 mm in all exper-
iments, which is below the scanner’s sampling fre-
quency. The artifical, phase-generated features per-
form best, the maximum per vertex error is 0.035
mm in all experiments. For ICP, the only datasets
that satisfy our quality threshold are those with very
sharp geometry features (Figure 3, (a,b,c,f)). For
smoother shapes like (Figure 3, (d,e,g,h,i,j)), several
partial views were always above our quality thresh-
old. For partially symmetric objects (Figure 3, (h,j)),
the alignment failed. This failure is reflected in the
large peaks at the right border of the histograms (Fig-
ure 4). The second row of Figure 4 illustrates the
effect of low quality visual features. The results of
ICP and our external phase registration stay the same,
while SIFT and our min. SIFT clearly deteriorate. In
contrast to the sharp texture case, our min. SIFT now
does not comply with the quality threshold anymore.
Constant quality thus could only be achieved with our
proposed hardware.

6.2 Real Data

For our real data evaluation, we use the setup illus-
trated in Figure 1 (see also Section 5). Our scanning

unit consists of 2+1 Allied Vision Technologies R

Prosilica R GX 3300 cameras (3296x2472). The
third, centered camera enables calibration from only
SIFT features (similar to the synthetic case), it is not
used for reconstruction. Moreover, we use an Epson R

EH TW 5910 projector (1920x1080) on the scanning
unit and three Dell R M115HD (1280x800) on the
turntable.

In the context of 3D-scanning, real data evalua-
tion is usually done by comparing a scan to a differ-
ent ground truth scan of known precision. In the fol-
lowing, we will thus use two scans: A ground truth
scan G and a scan S whose precision is to be evalu-
ated. In this situation, three types of registration are
potentially involved: First, the scan-internal registra-
tions, which combine multiple, partial shapes to a full
scan (G-internal registration GIR and S-internal regis-
tration SIR). Second, the external registration ER that
aligns S to G. This is necessary, as both scans have
different coordinate frames and often also different
scales. Since our focus is, however, on the precision
of the actual registration methods, an unbiased eval-
uation with real data is not possible - ER will always
add an unknown error to the final result.

To keep the influence of ER, GIR and the sampling
density between G and S as low as possible, we use
the following approach: Both S and G are acquired
with the scanning setup proposed in Section 5. G is
not a full scan and therefore not biased by an internal
registration. S is computed by registering two partial
scans separated by 45�, G is centered in between. S is
recorded once and then reconstructed/registered using
the following methods: ICP, SIFT, minimal SIFT and
Phase (see also Section 4). The external registration
is performed using 2D-2D phase correspondences be-
tween S and G, as the phase registration performed
best in the synthetic evaluation. Since both scans are
fully reconstructed, these 2D-2D correspondences in-
duce 3D-3D correspondences that are used to com-
pute the actual transformation. These 2D-2D cor-
respondences remain static, while the 3D-3D corre-
spondences depend on the given SIR and thus change.
The external registration bias introduced by wrong
2D-2D correspondences thus remains the same for
all evaluated registrations, changes in the error values
thus indeed result from the internal registration that
we want to evaluate. Note that the use of the scanner
itself as ground truth generator is valid in our context,
since we do not want to assess the precision of the
partial scan, but the precision of the inter-scan reg-
istration. Moreover, it has the following advantages:
First, the sampling density is exactly the same for all
scans. Second, phase correspondences can be used
for the external registration, which performed best in
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(a) Lion (b) Vase (c) Shoe (d) Figurine

Figure 6: Objects used for real data evaluation, the amount
of features decreases from left to right, the vase is symmet-
ric.

the synthetic evaluation. For a different scanner, only
the geometry may be used, which performed worst in
the synthetic evaluation. After registering the scans to
the ground truth, we compute an error value (closest
distance to ground truth point) for each scan point in
the overlapping region.

We use four different objects with different char-
acteristics to demonstrate the capabilities of the indi-
vidual registration approaches: A Chinese lion statue
with many natural features and complex geometry,
a symmetric vase with a medium amount of natu-
ral features, a sports shoe with smooth geometry and
low amount of features and a white plastic figurine
without natural features (Figure 6). The amount of
points below our quality threshold is displayed in Ta-
ble 1. The amount does not reach 100%, because both
scans contain holes in regions not seen by all cam-
eras/projectors. In such a region, closest vertices are
not found at the correct position, but across the hole
at its border. The distance is thus automatically high.

Although we consider the simpler pairwise align-
ment instead of a multi-view problem, the results have
similar characteristics: SIFT-based registration con-
stantly deteriorates, when the amount of features is re-
duced and fails for the untextured figurine. However,
a high-quality registration can still be achieved using
our proposed minimal SIFT matching strategy. It has
constant quality, even for the shoe (sparse visual fea-
tures) and fails only for the untextured figurine. This
is resolved by our proposed hardware: The phase-
only matching exhibits constant quality. ICP is only
successful for complex geometry. It fails for the sym-
metric vase and deteriorates for objects with smooth
geometry, just as in the synthetic case. A failure case
is illustrated in Figure 7.

7 DISCUSSION

In this paper, we showed that the precision of pro-
jector/camera based active scanning systems greatly

Figure 7: Geometry cannot be used to align (partially)
symmetric objects. Left: Vase correctly registered with
SfM, right: Vase wrongly registered with ICP. Red/green:
Left/right scanner position, yellow: Overlapping area.

Table 1: Results for real datasets. The values indicate the
amount of errors below the quality threshold, ”-” indicates
registration failure. See text for details.

Lion Vase Shoe Figurine
ICP 90% - 73% 82%
SIFT 91% 85% 53% -

min. SIFT 91% 91% 91% -
Phase 91% 92% 91% 92%

benefits from a global calibration. While SfM ap-
proaches are widely used in the context of imagery,
the predominant paradigm for such active scanners is
still a pre-calibration followed by a geometry-based
registration. In our experiments, the SfM-based re-
constructions could always beat traditional registra-
tion based on ICP.

We introduced a novel minimal SIFT matching
strategy that greatly reduces the influence of poten-
tially bad SIFT-features and presented a novel hard-
ware platform that makes SfM fully independent from
natural features. With this hardware, it is possible
to successfully scan any object suitable for diffuse
structured light. In particular, it allows one to scan
(partially) symmetric objects that cannot be registered
with geometry-based methods and textureless objects
that cannot be registered with optical methods.
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