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Abstract: We propose an image labeling method by integrating the probabilities of local and global information. 
Many conventional methods put label to each pixel or region by using the features extracted from local 
regions and local contextual relationships between neighboring regions. However, labeling results tend to 
depend on a local viewpoint. To overcome this problem, we propose the image labeling method using not 
only local information but also global information. The probability by global information is estimated by K-
Nearest Neighbor. In the experiments using the MSRC21 dataset, labeling accuracy is much improved by 
using global information. 

1 INTRODUCTION 

The goal of image labeling is to associate a class 
label such as sky, water, road, etc. with every pixel 
in the image. Image labeling is one of the most 
crucial steps toward image understanding and has a 
variety of applications such as image retrieval and 
classification. The most fundamental approach put 
labels to each region using the local features (e.g., 
color, texture, etc.) extracted from the region. 
However, labels in an object tend to be inconsistent 
since this approach puts labels to each region 
independently.  

Some approaches have been proposed to 
overcome this problem recently. Popular approaches 
use information not only from local features but also 
from local contextual relationships between regions. 
In those methods, Conditional Random Field (CRF) 
model is used. Shotton et al. (2006) used a CRF 
model which joints the appearance of different 
semantic categories. Tu (2008) introduced the auto-
context model to use contextual information. 

The common problem in these approaches is that 
recognition results tend to be a local optimum. It is 
consider that the reason of the problem is the lack of 
a global viewpoint. Since only local features and 
local relationship are used, the regions easily 
recognized by a global viewpoint are recognized 
incorrectly. 

Omiya et al. (2013) used not only local 

information but also the global information to 
overcome with the problem. They used local 
appearance histogram and Bag of Visual Words 
(BoVW) as the global similarity. However, they 
assumed that each image includes only one class. 
Hence, the method did not work well when there are 
plural classes in an image. 

Therefore, we propose a novel image labeling 
method that can cope with images including plural 
objects. Specifically, we choose similar patches 
which are similar to an input patch from the training 
patches by K-Nearest Neighbor (K-NN). The objects 
in the similar patches are likely to be the same as the 
objects in the input patch. Hence, we vote ground-
truth labels in K similar patches and estimate the 
probabilities of each pixel. This is the global 
probability in our method. We integrate local and 
global probabilities, and labels on a test image are 
estimated. 

In experiments, we used the MSRC21 dataset 
(Shotton et al., 2006). When we estimated class 
labels by using only local information, class average 
accuracy was 49.5% and pixel-wise accuracy was 
63.6%. When we use only global information, class 
average and pixel-wise accuracies were 55.7% and 
61.8%. When we estimated class labels by 
integrating local and global information, class 
average and pixel-wise accuracies were improved to 
64.2% and 82.3%. The results demonstrated the 
effectiveness of integration. The accuracies are 
comparable to those of recent methods. 
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2 OVERVIEW OF THE 
PROPOSED METHOD 

 

Figure 1: Overview of the proposed method. 

We show the overview of the proposed method in 
Figure 1. The proposed method consists of two 
phases; local and global information. An input 
image is segmented by Simple Linear iterative 
Clustering (SLIC) (Achanta et al, 2012) to acquire 
local information, and we extract color and texture 
features from each superpixel. Local feature vectors 
of each superpixel are represented as the local co-
occurrence histogram of the color and texture 
features. The posterior probability of each class is 
estimated by Support Vector Machine (SVM). 

We divide an input image into 7 patches to 
acquire global information, and we extract RootSIFT 
(Arandjelovic and Zisserman, 2012) from each patch 
and represent it by BoVW. We choose similar 
patches by using K-NN from the training patches 
and estimate the probability by voting the ground-
truth labels attached to the similar patches. 

Integration is performed by the product of both 
probabilities every pixel. After integration, the label 
of each pixel is determined to be the class with the 
highest probability. 

2.1 Local Information 

We explain how to extract local feature vectors in 
section 2.1.1. In section 2.1.2, the probability of 
local information is explained. 
 
 
 

2.1.1 Extraction of Local Features 

We estimate the class labels of each superpixel 
based on color and texture features. Color features 
are effective to identify objects which have their 
own characteristic color (e.g., sky, grass, etc.). 
However, color features are sensitive to various 
illumination conditions. In addition, some objects 
have a wide range of color (e.g., red car, blue cars, 
etc.). Therefore, we also use texture feature which is 
robust to various illumination conditions and is not 
affected by color variation. We used HSV as color 
features and LBP (Ojala et al., 2002) as texture 
features.  

The local co-occurrence histogram is composed 
of HSV and LBP. If we use a large number of 
features, we may represent fine difference of objects. 
However, the computational cost is high. Therefore, 
we used clustering by k-means in each features. 

In experiments, the number of dimensions of 
HSV is 100 and the number of dimensions of LBP is 
50. Thus, the number of dimensions of the local co-
occurrence histogram is 5,000. These values were 
determined by using validation images. This local 
co-occurrence histogram is used as the local feature 
vectors. 

2.1.2 Probability of Local Information 

We use SVM to estimate the posterior probability of 
each class label. Since SVM is a binary classifier, 
we use one-against-one strategy. The label of each 
superpixel becomes the class which has maximum 
posterior probability. 

We use Hellinger kernel as the kernel function. 
Hellinger kernel is reported that high accuracy with 
low computational cost can be realized (Vedaldi and 
Zisserman, 2012). Hellinger kernel is defined as 

,ݔሺܭ ሻݕ ൌ ݔ√
்
ඥ(1) .ݕ

In this paper, we use LIBSVM (Chang and Lin, 
2001) to compute the posterior probability. The local 
probability 

 of the ݅-th class for the ݆-th pixel 
in an image is defined as 



ൌ ܲሺܥ|ݔሻ 

(2)

where ܥ corresponds to the ݅-th class and ݔis a 
local feature vector for superpixel ݊. ܲሺܥ|ݔሻ is 
the posterior probability which is estimated by SVM. 
Therefore, all pixels in the superpixel ݊  have the 
same posterior probability. 
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2.2 Global Information 

There are trends in the distribution of the object in 
images (e.g., there is the grass in the lower part of 
the image, or there is the sky in the upper part of the 
image). The similar image has the similar 
distribution of classes in common with the input 
image. By utilizing such properties, the distribution 
of the object in the input image can be estimated. 

Figure 2 shows the overview of the label 
estimation by global information. We choose some 
similar patches which are similar to the input patch 
from the training patches. We use the K-NN of 
BoVW histogram to select similar patches. We vote 
the ground-truth label of similar patches to the input 
patch, and we convert the voting result into 
probability by dividing the number of votes of each 
class by the total number of votes at each pixel. This 
is the global probability. In this method, the 
probabilities of multiple classes are estimated if 
multiple objects are present in the test image. Of 
course, we can estimate the position of the multiple 
objects. 

 

Figure 2: How to estimate label by global information. 

When we estimate the class label from the entire 
image, there is a possibility that the labeling result of 
small objects is difficult since small objects are 
strongly influenced by large objects such as 
background. Therefore, the proposed method is 
divided the image into 7 patches as shown in Figure 
3. The reason for using the patch on the center of the 
image is to capture the foreground objects well, and 
we also obtain spatial information by using these 7 
patches. The size of each patch is fixed to 160 × 160 
pixels. In addition, each patch is cropped with 
overlap from the image, and it is represented by 
BoVW of RootSIFT (Arandjelovic and Zisserman, 
2012). 

We explain how to extract global feature vectors 
in section 2.2.1. In section 2.2.2, the probability of 

global information is explained. 

 

Figure 3: 7 patches for K-NN. 

2.2.1 Extraction of Global Features 

We extract RootSIFT of 4 scales (4, 8, 12, and 16) 
per 2 pixels from 7 patches. It has been reported that 
RootSIFT gives higher accuracy than SIFT in 
(Arandjelovic and Zisserman, 2012). We compose 
BoVW histogram of RootSIFT in each patch. This 
BoVW histogram becomes the global feature vector. 
In experiments, the number of visual words is set to 
2,000. 

2.2.2 Probability of Global Information 

We search similar patches from the training patches 
by using K-NN. If the value of K is small, the 
reliability of the estimated class label is low. On the 
other hand, patches that do not similar to the input 
patch are selected if the value of K is large. In this 
paper, we set K = 40 which gives the optimal result 
in section 3.2. 

The global probability 
  of the ݅-th class 

for the ݆-th pixel in an image is defined as 
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where ∑ ∑ ∑ ݓ
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weighted votes at the ݆-th pixel and ∑ ∑ ݓ
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represents the sum of weighted votes of the ݅-th class 
at the ݆-th pixel. When the label on the ݆-th pixel in 

the ݍ-th patch is not ݅, ݓ





 is 0. ݓ

  is the weight of 
the ݍ-th patch and it is computed as 

ݓ

ൌ ൬

݀ െ ݀
݀ െ ݀ଵ

൰
ଶ

 (4)

where ݀  is the distance of the ݉ -th nearest 
neighbor and ݀ଵ is the distance of the most similar 
patch. ݀ is the distance of the K-th nearest neighbor. 
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The weight of the most similar patch is one and the 
weight gradually decreases in accordance with the 
distance. The weight of the K-th patch is zero. 

2.3 Information Integration 

In this section, we explain the integration of local 
and global information. The probabilities of local 
and global information are calculated in every pixel. 
Since we assume that the local and global 
information is independence, we integrate both 
probabilities by the product. Therefore, it is defined 
as 

௧௧
 ൌ 


∙ 

 (5)

where ௧௧
, 	

 and 
 express the 

probability of the ݅-th class for the ݆-th pixel in an 
image. After integration, the class label ݈ of the ݆-th 
pixel is defined as 

݈ ൌ argmax

ሺ௧௧

ሻ. (6)

3 EXPERIMENTS 

We show the experimental results of our method. In 
section 3.1, we describe the MSRC21 dataset 
(Shotton et al., 2006) and how to evaluate the 
accuracy. We show preliminary experiment in 
section 3.2. In section 3.3, we show the accuracy of 
our method. We show the comparison with related 
works in section 3.4. 

3.1 How to Evaluate Accuracy 

We use the MSRC21 dataset (Shotton et al., 2006) in 
the following experiments. The dataset has 591 
images and contains 21 classes (building, grass, tree, 
cow, sheep, sky, aeroplane, water, face, car, bicycle, 
flower, sign, bird, book, chair, road, cat, dog, body, 
boat). In this paper, we use 276 images for training, 
59 images for validation, and 256 images for testing. 
Therefore, the number of test patches is 1792 (= 256 
× 7), the number of training patches is 1932 (= 276 × 
7) and the number of validation patches is 413 (= 59 
× 7). 

We use pixel-wise accuracy and class average 
accuracy for evaluation. Class average accuracy is 
the average percent of correctly labeled pixel in each 
class. Pixel-wise accuracy is the percent of correctly 
labeled pixels in total. Since the number of pixels in 
each class is different, the two accuracies become 
different value. 

3.2 Preliminary Experiment for Global 
Information 

We show class average and pixel-wise accuracy 
after integration in Figure 4. These accuracies were 
obtained using validation images. After K = 40, 
class average and pixel-wise accuracy are almost 
unchanged. The larger K is, the higher 
computational cost is. Therefore, we set K = 40 in 
the following experiments. 

 

Figure 4: Class average and pixel-wise accuracy (%) after 
integration. The value of K in K-NN is different. 

3.3 Results on the MSRC21 Dataset 

Table 1 shows the accuracies of our method. We see 
that integration of local and global information is 
effective for image labeling. The accuracy of cow 
class is 48.6% by only local information, while the 
accuracy is 57.9% by only global information. In the 
case of building, the accuracy is 41.1% by only local 
information and the accuracy is 33.4% by only 
global information. Thus, local and global 
information have a complementary relationship each 
other, and the accuracy of our method is improved 
by using local and global information. 

We show the examples of labeling results in 
Figure 5. As shown in Figure 5, chair, boat and bird 
are not labeled well. Common points of those classes 
are that within-class variance is large and the 
number of training sample is small. Boat class in the 
MSRC21 dataset includes various ships, e.g. small 
craft or large passenger ship. Chair class includes 
various kinds of chairs, e.g. plastic chair or wooden 
chair. It is considered that the class with large 
within-class variance could not be characterized well 
by using local color and texture feature. The label by 
global information is estimated by voting the 
ground-truth label which is attached to the similar 
patches. Hence, the vote of the class with a small 
number of training samples decreases and the class 
is not easily classified. For example, the grass 
classified with high accuracy has 2,574,052 pixels in 
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training samples, but the boat classified with low 
accuracy has only 91,320 pixels in training samples. 
Therefore, those objects tend to be mislabeled by 
only global information. 

 

Figure 5: Examples of image labeling. (a) original image. 
(b) ground-truth. (c) only local information. (d) only 
global information. (e) integration of local and global 
information. (A), (B) and (C) are the examples that 
classification accuracy is improved by integrating local 
and global information. (D), (E) and (F) are the examples 
that our method did not work well. 

3.4 Comparison with Related Works 

We show the comparison with related works in 
Table 2. Shotton et al. (2006) used a CRF model 
which joints the appearance of different semantic 
categories. They used only local features and local 
contexts without using global information. In 
comparison with their method, our method gives 
higher accuracy in both measures because we used 
global information. 

Tu (2008) introduced the auto-context model to 
use contextual information. Tu (2008) also use only 
local information but their class average accuracy is 
higher than one of our method. This is because 
global information of our method is difficult to 
classify the objects with large within-class variance. 

Gould (2012) proposed a method which 
considers a non-local constraint that penalizes 
inconsistent pixel labels between disjoint image 
regions having similar appearance. Pixel-wise 
accuracy of our method is higher than one of this 
method. This is because our method is able to 
estimate the position of the object by only global 
information and is not easy to intersperse the image 
with the wrong labels. 

We compare our method with the method 
(Omiya et al., 2013). Class average of our method is 
lower than one of Omiya et al. (2013). This is 
because it is difficult for global information in the 
proposed method to classify infrequent and small 
objects (e.g. bird, chair, boat, etc.). On the other 
hand, pixel-wise accuracy is improved. Since global 
information in Omiya et al. (2013) cannot estimate 
the position of objects, their pixel-wise accuracy is 
lower than ours. Moreover, the classes which often 
appear in background are classified with high 
accuracy since our global information can recognize 
spatial information by using 7 patches. For example, 
our accuracies of sky, grass, water, etc. are higher 
than those of Omiya et al. (2013). Omiya et al. 
(2013) used the result of object categorization as 
global information. Therefore, humans must 
determine the main object in an image manually, and 
other objects in the image are ignored. However, our 
global information can estimate class label 
automatically by using K-NN and is able to 
recognize multiclasses. Consequently, the proposed 
method is superior to the method of Omiya et al. 
(2013). 

4 CONCLUSIONS 

In this paper, we introduced the global information 
that can support multiple objects in an image. In 
experiments, good class average accuracy and pixel-
wise accuracy are obtained by integrating local and 
global information. In comparison with related 
works, the proposed method gave high pixel-wise 
accuracy and sufficient class accuracy. 

Our global information is obtained by voting the 
ground-truth label attached to K similar patches. The 
labeling result tends to be influenced by objects with 
large area (e.g. sky and grass). Thus, we plan to 
decide the region with high probability and carry out 
K-NN without the region that already determined. 
The proposed method will estimate the label for 
small objects correctly by estimating the probability 
iteratively. This is a subject for future works. 

Table 1: The accuracy (%) of our method. 

 Local Global Integration 

Building 41.1 33.4 61.2 

Grass 87.7 80.0 93.0 

Tree 73.1 66.3 81.3 

Cow 48.6 57.9 61.3 

Sheep 59.2 61.2 72.4 

Sky 89.1 82.8 95.3 
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Table 1: The accuracy (%) of our method (cont.). 

 Local Global Integration 

Aeroplane 44.7 86.9 69.6 

Water 60.6 63.8 80.4 

Face 61.3 80.1 74.5 

Car 52.3 57.9 66.7 

Bicycle 69.8 97.0 89.4 

Flower 42.2 61.0 70.7 

Sign 27.4 72.2 55.6 

Bird 17.5 12.5 30.2 

Book 65.7 58.5 68.4 

Chair 8.7 46.2 34.0 

Road 75.3 41.7 73.0 

Cat 48.4 41.6 57.9 

Dog 32.7 22.7 41.2 

Body 27.4 37.9 59.6 

Boat 7.0 7.1 13.6 

Class ave 49.5 55.7 64.2 

Pixel-wise 63.6 61.8 82.3 

Table 2: Comparison with related works. 

 Class ave(%) Pixel-wise(%) 

Our method 64.2 82.3 

Omiya et al. 
(2013) 

72.5 76.2 

Shotton et al. 
(2006) 

57.7 72.2 

Tu 
(2008) 

68.4 77.7 

Gould 
(2012) 

71.1 81.0 
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