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Abstract: Nowadays pervasive monitoring of traffic flows in urban environment is a topic of great relevance, since the 
information it is possible to gather may be exploited for a more efficient and sustainable mobility. In this 
paper, we address the use of smart cameras for assessing the level of service of roads and early detect 
possible congestion. In particular, we devise a lightweight method that is suitable for use on low power and 
low cost sensors, resulting in a scalable and sustainable approach to flow monitoring over large areas. We 
also present the current prototype of an ad hoc device we designed and report experimental results obtained 
during a field test. 

1 INTRODUCTION 

Thanks to computer vision techniques, fully 
automatic video and image analysis from traffic 
monitoring cameras is a fast-emerging field based 
with a growing impact on Intelligent Transport 
Systems (ITS). 

Indeed the decreasing hardware cost and, 
therefore, the increasing deployment of cameras and 
embedded systems have opened a wide application 
field for video analytics in both urban and highway 
scenarios. It can be envisaged that several 
monitoring objectives such as congestion, traffic rule 
violation, and vehicle interaction can be targeted 
using cameras that were typically originally installed 
for human operators (Buch et al., 2011). 

On highways, systems for the detection and 
classification of vehicles have successfully been 
using classical visual surveillance techniques such as 
background estimation and motion tracking for some 
time. Nowadays existing methodologies have good 
performance also in case of inclement weather and 
are operational 24/7. On the converse, the urban 
domain is less explored and more challenging with 
respect to traffic density, lower camera angles that 
lead to a high degree of occlusion and the greater 
variety of street users. Methods from object 
categorization and 3-D modelling have inspired 
more advanced techniques to tackle these 
challenges. In addition, due to scalability issues and 

cost-effectiveness, urban traffic monitoring cannot 
be constantly based on high-end acquisition and 
computing platforms; the emerging of embedded 
technologies and pervasive computing may alleviate 
this issue: it is indeed challenging yet definitely 
important to deploy pervasive and untethered 
technologies such as Wireless Sensor Networks 
(WSN) for addressing urban traffic monitoring. 

Based on these considerations, the aim of this 
paper is to introduce a scalable technology for 
supporting ITS-related problems in urban scenarios; 
in particular, we propose an embedded solution for 
the realization of a smart camera that can be used to 
detect, understand and analyse traffic-related 
situation and events thanks to an on-board vision 
logics. Indeed, to suitably tackle scalability issues in 
the urban environment, we propose the use of a 
distributed, pervasive system consisting in a Smart 
Camera Network (SCN), a special kind of WSN in 
which each node is equipped with an image-sensing 
device. Clearly, gathering information from a 
network of scattered cameras, possibly covering a 
large area, is a common feature of many video 
surveillance and ambient intelligence systems. 
However, most of classical solutions are based on a 
centralized approach: only sensing is distributed 
while the actual video processing is accomplished in 
a single unit. In those configurations, the video 
streams from multiple cameras are encoded and 
conveyed (sometimes thanks to multiplexing 
technologies) to a central processing unit, which 
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decodes the streams and perform processing on each 
of them. With respect to those configurations, the 
need to introduce distributed intelligent system is 
motivated by several requirements, namely 
(Remagnino et al., 2004): 

• Speed: in-network distributed processing is 
inherently parallel; in addition, the specialization of 
modules permits to reduce the computational burden 
in the higher level of the network, in this way, the 
role of the central server is relieved and it might be 
actually omitted in a fully distributed architecture.  

• Bandwidth: in-node processing permits to 
reduce the amount of transmitted data, by 
transferring only information-rich parameters about 
the observed scene and not the redundant video data 
stream. 

• Redundancy: a distributed system may be re-
configured in case of failure of some of it 
components, still keeping the overall functionalities. 

• Autonomy: each of the nodes may process the 
images asynchronously and may react autonomously 
to the perceived changes in the scene. 

In particular, these issues suggest moving a part 
of intelligence towards the camera nodes. In these 
nodes, artificial intelligence and computer vision 
algorithms are able to provide autonomy and 
adaptation to internal conditions (e.g. hardware and 
software failure) as well as to external conditions 
(e.g. changes in weather and lighting conditions). It 
can be stated that in a SCN the nodes are not merely 
collectors of information from the sensors, but they 
have to blend significant and compact descriptors of 
the scene from the bulky raw data contained in a 
video stream.  

This naturally requires the solution of computer 
vision problems such as change detection in image 
sequences, object detection, object recognition, 
tracking, and image fusion for multi-view analysis. 
Indeed, no understanding of a scene may be 
accomplished without dealing with some of the 
above tasks. As it is well known, for each of such 
problems there is an extensive corpus of already 
implemented methods provided by the computer 
vision and the video surveillance communities. 
However, most of the techniques currently available 
are not suitable to be used in SCN, due to the high 
computational complexity of algorithms or to 
excessively demanding memory requirements. 
Therefore, ad hoc algorithms should be designed for 
SCN, as we will explore in the next sections. In 
particular, after describing the possible role of SCN 
in urban scenarios, we present in Section 3 a sample 
application, namely the estimation of vehicular 
flows on a road, proposing a lightweight method 

suitable for embedded systems. Then, we introduce 
the sensor prototype we designed and developed in 
Section 4. In Section 5 we report the experimental 
results gathered during a test field and we finally 
conclude the paper in Section 6. 

2 SCN IN URBAN SCENARIOS 

According to (Buch et al., 2011), there has been an 
increased scope for the automatic analysis of urban 
traffic activity. This is partially due to the additional 
numbers of cameras and other sensors, enhanced 
infrastructure and consequent accessibility of data. 
In addition, the advances in analytical techniques for 
processing video streams together with increased 
computing power have enabled new applications in 
ITS. Indeed, video cameras have been deployed for 
a long time for traffic and other monitoring 
purposes, because they provide a rich information 
source for human understanding. Video analytics 
may now provide added value to cameras by 
automatically extracting relevant information. This 
way, computer vision and video analytics become 
increasingly important for ITS.  

In highway traffic scenarios, the use of cameras 
is now widespread and existing commercial systems 
have excellent performance. Cameras are used 
tethered to ad hoc infrastructures, sometimes 
together with Variable Message Signs (VMS), RSU 
and other devices typical of the ITS domain. Traffic 
analysis is often performed remotely by using 
special broadband connection, encoding, 
multiplexing and transmission protocols to send the 
data to a central control room where dedicated 
powerful hardware technologies are used to process 
multiple incoming video streams (Lopes et al., 
2010). The usual monitoring scenario consists in the 
estimation of traffic flows distinguished among 
lanes and vehicles typologies together with more 
advanced analysis such as detection of stopped 
vehicles, accidents and other anomalous events for 
safety, security and law enforcement purposes. 

By converse, traffic analysis in the urban 
environment appears to be much more challenging 
than on highways. In addition, several extra 
monitoring objectives can be supported, at least in 
principle, by the application of computer vision and 
pattern recognition techniques. For example these 
include the detection of complex traffic violations 
(e.g. illegal turns, one-way streets, restricted lanes) 
(Guo et al., 2011; Wang et al. 2013), identification 
of road users (e.g. vehicles, motorbikes and 
pedestrians) (Buch et al., 2010) and of their 
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interactions understood as spatiotemporal 
relationships between people and vehicle or vehicle-
to-vehicle (Candamo et al., 2010). For these reasons, 
it is worthwhile to apply the wireless sensor network 
approach to the urban scenario.  
Generally, we may identify four different scopes that 
can be targeted thanks to video-surveillance based 
systems, namely i) safety and security, ii) law 
enforcement, iii) billing and iv) traffic monitoring 
and management. Although in this chapter we focus 
mostly on the latter, we give a brief overview of 
each of them. 

Safety and security relate to the prevention and 
prompt notification both of proper traffic events and 
of roadside events typical of urban environment. 
Law enforcement is based on the detection of 
unlawful acts and to their documentation for 
allowing the emission of a fine. Besides well-known 
and established technologies e.g. for streetlight 
violations, vision based systems might allow for 
identification of more complex behaviour e.g. illegal 
turns or trespassing on a High Occupancy Vehicle 
(HOV) lane. Documentation of unlawful acts is 
usually performed by acquiring a number of images 
sufficient for representing the violation, combined 
with automatic number plate recognition (ANPR) 
for identifying the offender vehicle. ANPR is also a 
common component of video-based billing and 
tolling. In addition, in this case there are a number of 
established technologies provided as commercial 
solutions by many vendors (Digital Recognition, 
2014). A peculiarity of urban billing systems with 
respect to highways is the non-intrusiveness 
requirement: it is not possible to alter the normal 
vehicular flow but a free-flow tolling must be 
implemented. Technologies satisfying this 
requirement are already available and used in cities 
such as London, Stockholm and Singapore but their 
actual cost prevents their massive deployment in 
medium-size or low-resource cities. Nevertheless, 
the availability of such billing technologies at a 
lower cost may pave the way to the collection of 
fine-grained data analytics of vehicular flows, road 
usage and congestions, allowing for the 
implementation of adaptive Travel Demand 
Management (TDM) policies aimed at a more 
sustainable, effective and socially acceptable 
mobility applied to urban and metropolitan contexts.  
Finally, traffic monitoring and management is 
related to extraction information from urban 
observed scenes that might be beneficial in several 
contexts. For instance, real-time vehicle counting 
might be used to assess level of service on a road 
and detecting possible congestions. Such real-time 

information might then be used for traffic routing; 
either by providing directly suggestion to user (e.g. 
by VMS) of by letting a trip planner deploys these 
data to search for an optimal path. Finally, statistics 
on vehicular flows may be used to understand 
mobility patterns and help stakeholders to improve 
urban mobility. Usually, vehicle count is performed 
by inductive loops, which provide precise 
measurements and some vehicle classification. The 
major drawback of inductive loops is that they are 
very intrusive in the road surface and therefore 
require a rather long and expensive installation 
procedure. Furthermore, maintenance also requires 
intervention on the road pavement and therefore is 
not sustainable in most urban scenarios. Radar-based 
sensing systems are also used for vehicle counting 
and simple analytics but in cases of congestions, 
they generally exhibit deteriorated performance. In 
the last years there has been interest in video-based 
counting system based on imaging devices, also 
embedded. Some solutions, such as (Traficam, 
2014), are commercially available and provide 
vehicle count in several lanes at an intersection. A 
version of Traficam working in the infrared 
spectrum is also available. Besides vehicle counting, 
traffic management can include the extraction of 
other flow parameters, e.g. discriminating the 
components of flow generated by different vehicle 
classes (car, track, buses, bike and motorbikes) and 
assessing the transit speed of each detected vehicle.  

From this brief survey of urban scenario 
applications, we might argue that pervasive 
technologies based on vision turn out to be of 
interest when i) there is some semantics to be 
understood that cannot be acquired solely on the 
basis of scalar sensors, ii) there is no possibility or 
no sufficient revenue in actuating installation of 
tethered technologies, such as intrusive sensor or 
high-end devices and iii) there is the need of a 
scalable architecture, capable of covering a 
metropolitan area. Since computer vision is not 
application specific, an additional feature of a SCN 
is represented by the fact that it can be re-adapted to 
the changing urban environment and reconfigured 
even for supporting new scene understanding tasks 
by  just updating the vision logics hosted in each 
sensor. On the converse, scalar sensors (like 
inductive loops) and specific sensors like radar have 
no flexibility in providing information different form 
the one they were built for. 
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3 TRAFFIC FLOW ANALYSIS 

In this Section, a sample ITS applications based on 
computer vision over SCN is reported. It regards the 
estimation of vehicular flows and is based on a 
lightweight computer vision pipeline that is 
dissimilar form the conventional one used on 
standard architectures.  

More precisely, the analysis of traffic status and 
the estimation of level of service are usually 
obtained by extracting information on the vehicular 
flows in terms of passed vehicles, their speed and 
typology. Conventional pipelines start with i) 
background subtraction and move forward to ii) 
vehicle detection, iii) vehicle classification, iv) 
vehicle tracking and v) final data extraction. On 
SCN, instead, it is convenient to adopt a lightweight 
approach; in particular, data only in Region of 
Interest (RoI) is processed, where the presence of a 
vehicle is detected. On the basis of these detections, 
then, flow information is derived without making 
explicit use of classical tracking algorithms. 

3.1 Background Subtraction 

More in detail, background subtraction is performed 
only on small quadrangular RoIs. Such shape is 
sufficient for modelling physical rectangles under 
perspective skew. In this way, when low vision 
angles are available (as common in urban scenarios), 
it is possible to deal with a skewed scene even 
without performing direct image rectification, which 
can be computationally intensive on an embedded 
sensor. The quadrangular RoI can be used to model 
lines on the image (i.e. a 1 pixel thick line) either. 

On such RoI, lightweight detection methods are 
used to classify a pixel as changed (in which case it 
is assigned to the foreground) or unchanged (in 
which case it is deemed to belong to the 
background). Such decision is obtained by 
modelling the background. Several approaches are 
feasible. The simplest one is represented by 
straightforward frame differencing. In this approach, 
the frame before the one that is being processed is 
taken as background. A pixel is considered changed 
if the frame difference value is bigger than a 
threshold. Frame differencing is one of the fastest 
methods but has some cons in ITS applications; for 
instance, a pixel is considered changed two times: 
first when a vehicle enters and, second, when it exits 
from the pixel area. In addition, if a vehicle is 
homogeneous and it is imaged in more than one 
frame, it might be not detected in the frames after 
the first. Another approach is given by static 

background. In this approach, the background is 
taken as a fixed image without vehicles, possibly 
normalized to factor illumination changes. Due to 
weather, shadow, and light changes the background 
should be updated to yield meaningful results in 
outdoor environments. However strategies for 
background update might be complex; indeed it 
should be guaranteed that the scene is without 
vehicles when updating. To overcome these issues, 
algorithms featuring adaptive background are used. 
Indeed this class of algorithms is the most robust for 
use in uncontrolled outdoor scenes. The background 
is constantly updated fusing the old background 
model and the new observed image. There are 
several ways of obtaining adaptation, with different 
levels of computational complexity. The simplest is 
to use an average image. In this method, the 
background is modelled as the average of the frames 
in a time window. Online computation of the 
average is performed. Then a pixel is considered 
changed if it is different more than a threshold from 
the corresponding pixel in the average image. The 
threshold is uniform on all the pixels. Instead of 
modelling just the average, it is possible to include 
the standard deviation of pixel intensities, thus using 
a statistic model of the background as a single 
Gaussian distribution. In this case, both the average 
and standard deviation images are computed by an 
online method on the basis of the frames already 
observed. In this way, instead of using a uniform 
threshold on the difference image, a constant 
threshold is used on the probability that the observed 
pixel is a sample drawn from the background 
distribution, which is modelled pixel by pixel as a 
Gaussian. Gaussian Mixture Models (GMM) are a 
generalization of the previous method. Instead of 
modelling each pixel in the background image as a 
Gaussian, a mixture of Gaussians is used. The 
number k of Gaussians in the mixture is a fixed 
parameter of the algorithm. When one of the 
Gaussian has a marginal contribution to the overall 
probability density function, it is disregarded and a 
new Gaussian is instantiated. GMM are known to be 
able to model changing background even in cases 
where there are phenomena such as trembling 
shadows and tree foliage (Stauffer and Grimson, 
1999). Indeed, in those cases pixels clearly exhibit a 
multimodal distribution. However, GMM are 
computationally more intensive than a single 
Gaussian. Codebooks (Kim et al., 2004) are another 
adaptive background modelling techniques 
presenting computational advantages for real-time 
background modelling with respect to GMM. In this 
method, sample background values at each pixel are 
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quantized into codebooks, which represent a 
compressed form of background model for a long 
image sequence. That allows to capture even 
complex structural background variation (e.g. due to 
shadows and trembling foliage) over a long period 
of time under limited memory.  

Several ad hoc procedures can be envisaged 
starting with the methods just described. In 
particular, one important issue concerns the policy 
by which the background is updated or not. In 
particular, if a pixel is labelled as foreground in 
some frame, we might want that this pixel does not 
contribute in updating the background or that it 
contributes to a lesser extent. Similarly, if we are 
dealing with a RoI, we might want to fully update 
the background only if no change has been detected 
in the RoI; if a change has been detected instead, we 
may decide not to update any pixel in the 
background. 

3.2 Transit Detection 

The transit detection procedure starts taking in input 
one or more RoIs for each lane suitably segmented 
in foreground/background by the aforementioned 
methods. When processing the frame acquired at 
time t, the algorithm decides if a vehicle occupies 
the RoI Rk or not. The decision is based on the ratio 
of pixels changed with respect to the total number of 
pixels in Rk, i.e.: 

ak(t)=#(changed pixels in Rk)/ #(pixels in Rk) (1)

Then ak(t) is compared to a threshold  in order to 
evaluate if a vehicle was effectively passing on Rk. If 
ak(t) > and at time t-1 no vehicle was detected, then 
a new transit event is generated. If a vehicle was 
already detected instead at time t-1, no new event is 
generated but the time length of the last created 
event is incremented by one frame. When finally at a 
time t+k no vehicle is detected (i.e. ak(t) <) , the 
transit event is declared as accomplished and no 
further updated. Assuming that the vehicle speed is 
uniform during the detection time, the number of 
frames k in which the vehicle has been observed is 
proportional to the vehicle length and inversely 
proportional to its speed. In the same way, it is 
possible to use two RoIs R0 and R1, lying on the 
same lane but translated by a distance , to estimate 
the vehicle speed. See Figure 1.1. Indeed, if there is 
a delay of  frames, the vehicle speed can be 
estimated as v=/(*) where  is the frame rate. 
The vehicle length can in turn be estimated as l=k/v. 
Clearly, the quality of these estimates varies greatly 
with respect to several factors, and is in particular 

due to a) frame rate and b) finite length of RoIS. 
Indeed, the frame rate generates a quantization error, 
which leads to the estimation of the speed range; 
therefore, the approach cannot be used to compute 
the instantaneous speed. For what regards b), an 
ideal detection area is represented by a detection line 
having length equal to zero. Otherwise, a 
localization error affects any detection, i.e. it is not 
know exactly where the vehicle is inside the RoI at 
detection time. The use of a 1-pixel thick RoIs 
alleviates the problem but it results in less robust 
detections. This problem introduces some issues 
both in vehicle length and speed computations, 
because in both formulas we use the nominal 
distance  and not the precise (and unknown) 
distance between the detections. This is the 
drawback in not using a proper tracking algorithm in 
the pipeline, which would require however 
computational resources not usually available on 
embedded devices. Nevertheless, it is possible to 
provide a speed and size class for each vehicle. For 
each speed and vehicle class a counter is used to 
accumulate the number of detections. Temporal 
analysis on the counter is sufficient for estimating 
traffic typologies, average speed and analysing the 
level of service of the road, early identifying 
possible congestions.   

 

Figure 1: RoI configuration for traffic flow analysis. 

4 SENSOR PROTOTYPE 

In this section the design and development of a 
sensor node prototype based on SCN concepts is 
presented. This prototype is particularly suited for 
urban application scenarios. In particular, the 
prototype is a sensor node having enough 
computational power to accomplish the computer 
vision task envisaged for urban scenarios as 
described in the previous section. For the design of 
the prototype an important issue to follow has been 
the use of low cost technologies. The node is using 
sensors and electronic components at low cost, so 
that once engineered, the device can be 
manufactured at low cost in large quantities. The 
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single sensor node has a main board that manages 
both the vision tasks and the networking tasks thanks 
to an integrated wireless communication module 
(RF Transceiver). 

Other components of the sensor node are given 
by the power supply system that controls charging 
and permits to choose optimal energy savings 
policies. The power supply system includes the 
battery pack and a module for harvesting energy, 
e.g. through photovoltaic panel. See Figure 2: 
Architecture of the sensor node. 

 

Figure 2: Architecture of the sensor node. 

4.1 The Main Board 

For the realization of the vision board, an embedded 
Linux architecture has been selected in the design 
stage for providing enough computational power and 
ease of programming. A selection of ready-made 
Linux based prototyping boards has been evaluated 
with respect to computing power, 
flexibility/expandability, price/performance ratio 
and support. They were all find to have as common 
disadvantages high power consumption and the 
presence of electronic parts which are not useful for 
the tasks of a smart camera node. 

It has been therefore decided to design and 
realize a custom vision component by designing, 
printing and producing a new PCB. The new PCB 
(see Figure 3) was designed in order to have the 
maximum flexibility of use while maximizing the 
performance/consumption ratio. A good compromise 
has been achieved by using a Freescale CPU based 
on the ARM architecture, with support for MMU -
like operating systems GNU/Linux.  

This architecture has the advantage of integrating 
a Power Management Unit (PMU), in addition to 
numerous peripherals interface, thus minimizing the 
complexity of the board. In addition, the CPU 
package of type TQFP128 helped us minimize the 
layout complexity, since it was not necessary to use 
multilayer PCB technologies for routing. Thus, the 
board can be printed also in a small number of 
instances. The choice has contributed to the further 
benefit of reducing development costs, in fact, the 
CPU only needs an external SDRAM, a 24MHz 

quartz oscillator and an inductance for the PMU. 
It has an average consumption, measured at the 

highest speed (454MHz), of less than 500mW. 
The board has several communication interfaces 

including RS232 serial port for communication with 
the networking board, SPI, I2C and USB 

For radio communication, a transceiver 
compliant with IEEE 802.15.4 has been integrated in 
line with modern approaches to IoT. A suitable glue 
has been used to integrate the transceiver with the 
IPv6 stack, also containing the 6LoWPAN header 
compression and adaptation layer for IEEE 802.15.4 
links. Therefore, the operating system is well 
capable of supporting ETSI M2M communications 
over the SCN.  

 

Figure 3. Design of the PCB and main features. 

4.2 Sensor, Energy Harvesting and 
Housing 

For the integration of a camera sensor on the vision 
board, some specific requirements were defined in 
the design stage for providing easiness of connection 
and to the board itself and management through it, 
and capability to have at least a minimal 
performance in difficult visibility condition, i.e. 
night vision. Thus, the minimal  constraints  were  to 

 

Figure 4: General setup of a single node. 
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be compliant with USB Video Class device (UVC) 
and the possibility to remove IR filter or capability 
of Near-IR acquisition. Moreover, the selection of a 
low cost device was an implicit requirement 
considered for the whole sensor node prototype.  

The previously described boards and camera are 
housed into an IP66 shield. Another important 
component of the node is the power supply and 
energy harvesting system that controls charging and 
permits to choose optimal energy savings policies. 
The power supply system includes the lead (Pb) acid 
battery pack and a module for harvesting energy 
through photovoltaic panel. 

In Figure 4, the general setup of a single node 
with the electric connections for the involved 
components is shown. 

5 EXPERIMENTAL RESULTS 

For the traffic flow, the set-up consists in a small set 
of SCN nodes, which are in charge of observing and 
estimating dynamic real-time traffic related 
information, in particular regarding traffic flow and 
the number and direction of the vehicles, as well as 
giving a rough estimate about the average speed of 
the cars in the traffic flow. 

Two versions of the algorithm were 
implemented. In the first, the solutions uses frame 
differencing as a background subtraction method, 
obtaining a binary representation of the moving 
objects in the RoI frame. In the second, an adaptive 
background modelling based on Gaussian 
distribution has been employed using a weighted 
mixture of previous backgrounds. This means that 
previous backgrounds are used with a heavier weight 
in case of no-event occurring (i.e. no transit of car), 
while they are used with light or no-weight in case 
there is an event of transit occurring. 

Test sequences have been acquired under real 
traffic conditions and then used for testing both 
algorithms. The ground-truth total for these 
sequences was the following: 

- 124 vehicles transited, 
having the following length estimation subdivision: 

- 11 with length between 0 and 2 metres 
- 98 (between 2 and 5 metres) 
- 15 (5 and more metres) 

In the following figure a view from the sensor on 
the testing scenario is shown. 

Moreover, the algorithms yield a speed class 
estimate, but for this type of data there is no ground 
truth available. 

 

Figure 5. Sample of frame from one of the test sequences 
(in black and white are shown the RoIs). 

The total classification results are shown in the 
following table: 

Ground-
truth

Alg.1 
Frame diff. 

Alg.2
Adaptive

Total 
transited 
vehicles

124 140 121 

Correctly identified 
vehicles

124 
(100%) 

118
(95.2%)

False positive 16 
(12.9%) 

3
(2.4%)

The first algorithm based on frame differencing has 
a significant number of false positives but it reaches 
a 100% identification rate, while the second adaptive 
algorithm has an acceptable rate of identification 
with a very low false positive rate. As a further step, 
in the following two tables are shown the 
classification estimates for the speeds and lengths 
classes for each of the implemented algorithms. 

Algo 1
Frame 
Diff.

Speed 
<20 

Km/h

Sp. Betw. 
20-35 
Km/h 

Speed 
>35 

Km/h 
TOT 

L. 0-2 m. 10 8 2 20
L. 2-5 m. 29 27 8 64
L. 5+ m. 0 10 46 56

TOT 39 45 56 140
 

Algo 2
Adaptive

Speed 
<20 

Km/h

Sp. Betw. 
20-35 
Km/h 

Speed 
>35 

Km/h 
TOT 

L. 0-2 m. 25 1 1 27
L. 2-5 m. 27 35 3 65
L. 5+ m. 8 15 6 29

TOT 60 51 10 121

For a correct evaluation of these tables, it has to be 
taken into account the fact that length estimates were 
made roughly by an observer by sight, while there is 
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no estimate at all on the ground truth regarding the 
speeds. Furthermore, for the first algorithm all the 
false positive were detected in the class of length 5 
or more metres with fastest speed, and have been 
identified as bugs related to the camera and its 
automatic setting of balance and contrast. All these 
issues and deeper analysis are under studying and 
will provide more detailed results. 

6 CONCLUSIONS 

In this paper, we have presented technologies based 
on computer vision for supporting urban mobility, 
envisaging a number of applications of interest. 
Then, as a sample, we introduced a specially-
designed lightweight pipeline for traffic flow 
analysis that is suitable for embedded system with 
constrained memory and computational power. Such 
method has been tested on a prototype sensor we 
designed and developed and whose main features are 
also reported in this paper. The sensor, being low 
cost and equipped with a wireless transceiver, is a 
very good candidate for becoming the key ingredient 
of a scalable and pervasive smart camera network 
for the urban environment. Its good functionalities 
are proved by the set of experimental results that 
were collected on the field in realistic conditions. In 
the future, besides refining the procedure for vehicle 
characterization in term of speed and size, we plan 
to extend the class of vision logics to address further 
applications to mobility. 
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