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Keywords: Facial Metamorphosis, Morphing, Laplacian.

Abstract: Deformation of expressive textures is the gateway to realistic computer synthesis of expressions. By their good
mathematical properties and flexible formulation on irregular meshes, most texture mappings rely on solutions
to the Laplacian in the cartesian space. In the context of facial expression morphing, this approximation can
be seen from the opposite point of view by neglecting the metric. In this paper, we use the properties of the
Laplacian in manifolds to present a novel approach to warping expressive facial images in order to generate a
morphing between them.

1 INTRODUCTION

Image morphing is the process of obtaining the se-
quence of intermediate images that transforms an im-
age into another one. Morphing techniques create
powerful visual effects that are widely used in the en-
tertainment industry and have applications in medi-
cal visualization and industrial design (Smythe, 1990;
Zell and Botsch, 2013).

The morphing sequence is obtained as an interpo-
lation between two or more images and it is essen-
tially based on two steps (Wolberg, 1998):

� Warping: Deformation of an image A to another B
and vice versa according to a percentage between
two symmetric deformations (40% and 60%, 70%
and 30%) generating two images.

� Cross Dissolve: Merging two images to get the
final one.

As there may be infinite transformations from one im-
age to another, the desired transformation is computed
from a correspondence established between pairs of
key line segments, points or meshes which specify
image features or landmarks. This feature correspon-
dence is used to compute warps that interpolate the
positions of such features across the morph sequence
and extend it to all image pixels. The definition of
the warping at pixel level is a main challenge, espe-
cially in case of facial images morphing which has to
address the large variability across individuals facial
shape and the elasticity associated to emotions.

There exists several image morphing methods, de-

pending on how the correspondence is established and
how the images are warped. Feature-based morphing
(Beier and Neely, ) uses line segments to establish the
correspondence between the two images. To gener-
ate the sequence at pixel level, the influence of each
line is blended to interpolate line correspondence to
the whole image warp. A main limitation (Wu and
Liu, 2012) is the identification of the key lines de-
scribing the geometry of the image objects that have
to be matched, especially for objects with curved bor-
ders (like faces). Another approximation is to employ
scattered-data interpolation methods (like radial ba-
sis function or thin plate splines (Lee et al., 1996))
to extend landmark correspondence to the whole im-
age. In this case, the warp between images is obtained
by constructing two surfaces (one per image) inter-
polating the set of scattered key points. Though fast
and intuitive, scattered-data interpolation are prone to
introduce distortion artifacts near object boundaries
(Lipman et al., 2008) and blurring and ghosting ef-
fects across in-between images (Wu and Liu, 2012).
Recent methods for reducing the impact of ghosting
and blurring (Wu and Liu, 2012) are complex strate-
gies that require the minimization of an energy using
the alpha-expansion algorithm (Boykov et al., 2001).

Differential geometry representations are com-
monly used for texture mapping and three dimen-
sional meshes remeshing (Yoshizawa et al., 2004;
Floater and Hormann, 2005; Desbrun et al., 2002).
The idea is to map the 3D mesh onto the 2D image
plane and assign the mapped vertices coordinates to
the texture coordinates of original vertices. This is
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equivalent to finding a suitable parametric map be-
tween the 3D surface and the 2D texture domain (Spi-
vak, 1965). Many methods (Yoshizawa et al., 2004;
Lévy et al., 2002; Desbrun et al., 2002) define such
texture coordinates by using the solution to the Lapla-
cian to compute each parametric coordinate function.
By the mean value theorem (Evans, 1998), solutions
to the Laplacian can be computed on irregular meshes
as solutions to a sparse linear system that assigns
weights to adjacent vertices. Such weights determine
the deformation that the texture will undergo when
mapped back to the 3D surface.

Existing mappings depend on the approximation
considered to define the weights of the Laplacian
system: barycentric coordinates (Tutte, 1963), mean
value coordinates (Floater and Hormann, 2005), or
angle-based coordinates (either conformal (Eck et al.,
) or area-preserving (Desbrun et al., 2002)). In
any case, all of them approximate the Laplacian
in the cartesian domain which implicitly assumes
an identity metric for computing deformations. A
main limitation for a realistic texture deformation is
that they might introduce areas of high local stretch
(Yoshizawa et al., 2004) that visually distort textured
patterns. Another concern in the context of face ex-
pression synthesis is that none of them guarantees
that the assigned texture coordinates are consistent
across different subjects and expressions. Although,
such registration condition could be forced by using
Dirichlet constrains at some anatomical locations (Xu
et al., 2009; Vera et al., 2014), such constrains could
introduce folds in the final parametrization in case of
large deformations across cases.

In this paper, we use the theoretical properties of
solutions to the Laplacian to define texture coordinate
changes suitable for the synthesis of facial expression
images morphing. In particular, we present the use
of an identity metric with fixed boundary conditions
to define a unitary texture mapping that allows mor-
phing of texture expressions by straight interpolation
of texture values in the unitary domain. We have ap-
plied our method to the morphing of real frontal face
textures from the BosphorusDB (Savran and Sankur,
2008) public database. Several transitions illustrate
the accuracy and flexibility of unitary coordinates for
expression and identity morphing.

2 EXPRESSIVE TEXTURE
MORPHING IN AN UNITARY
LAPLACIAN DOMAIN

A facial expression is given by the geometry of the

expressive face and a function defining the color and
texture of the face. Therefore, expression morphing
should interpolate face vertex positions and its corre-
spondent texture values. We use the solutions to the
Laplacian to define a transformation that maps a given
facial geometry to a common unitary domain for the
interpolation of texture values.

Mathematically, a face is a 2D surface, S, that ad-
mits an embedding in R3. Thus, it exists a parametric
map, f, from a regular domain, D 2 R2 to S:

R2 �D f�! S� R3

u = (u1;u2)�! (x1(u);x2(u);x3(u))

The map f should be a differentiable bijection be-
tween the surface and D , so that the mapping of the
level curves of the coordinates (u1;u2) define a mesh
on the surface (Spivak, 1965). In the case of face
parametrization (Floater and Hormann, 2005), D is
usually a common unitary domain (either a square or
a circle), which boundary, dD , is mapped to the face
surface boundary, dS. Surface geometric properties
(Spivak, 1965) are encoded in the 2�2 matrix of the
first fundamental form or metric, g = (gi j)i; j defined
from f first partial derivatives (Jacobian).

In this context, face texture is a function from the
parametric domain to the real numbers:

I = I(u1;u2) : S�! Rn (1)

where n = 1 in case of grey level textures and n = 3
in case of color images. Any transformation on the
surface is given by a suitable coordinate change in D ,
j(u1;u2) = (v1(u);v2(u)). We will use the solutions
to the Laplacian to compute a coordinate change that
maps any mesh to common unitary coordinates.

Laplacian operators (Evans, 1998) are a powerful
mathematical tool to compute differentiable functions
on manifolds with values fixed at some locations. Let
g = (gi j)i; j denote the manifold’s first fundamental
form and g�1 = (gi j)i; j its inverse matrix. The Lapla-
cian is defined (Davies, 1989) as the divergence oper-
ator associated to that metric and a function is har-
monic if the divergence of its gradient cancels. A
function components vk, k = 1;2 are computed as:

Dgvk = divg(Ñgvk) =

=
1

det(g) å
i

¶ui

 
det(g)(å

j
gi j

¶u j vk)

!
= 0

with vkjdD = dvk (2)

for det denoting the determinant of a matrix and dvk a
differentiable function defined on the boundary of the
domain, dD . In case that (dv1;dv2)2 dD , by the max-
imum principle for harmonic functions (Evans, 1998),
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we have that j = (v1;v2) defines a unique map from
D onto itself.

By setting g = Id, for Id the 2� 2 identity ma-
trix, and dvk = ukjdD , we obtain the Laplacian in R2

and the coordinate change defines a uniformly dis-
tributed mesh. Further, by setting boundary condi-
tions at equal fixed values, the solution to (2) with
identity metric defines a coordinate change that maps
any facial surface to equal unitary coordinates.

In the case of interpolation of textured values, sur-
faces correspond to the image domain and the unitary
coordinates can be taken in D = [0;1]� [0;1]. Given
two different image surfaces, S1, S2, and their texture
intensities, I1, I2, the following diagram:

(S1; Id)
f
�1
1 �� (D; Id)

f
�1
2��! (S2; Id)

induces a composition of the texture intensities I�1 :=
I1 � f

�1
1 = I1(f

�1
1 ), I�2 := I2 � f

�1
2 = I2(f

�1
2 ) defined

at the same coordinate values. Therefore, they can
be linearly interpolated to define a transformation be-
tween the two textures in the unitary domain:

I�t := tI�1 +(1� t)I�2 (3)

for t 2 [0;1] the texture morphing sequence parameter.

2.1 Implementation in a Discrete
Domain

Solutions to the Laplacian in manifolds (Davies,
1989) satisfy an interesting property for implemen-
tation of expression morphing. By the mean value
theorem (Evans, 1998), the function vk, k = 1;2, can
be defined by its values in a ball centered at each point
as the average given by:

vk(u) =
1

jjBujjg

Z
dBu

vk(ũ)dũ (4)

for jjBujjg the ball area given by the metric g and dũ
the area element of the ball boundary, dBu.
The mean value formulation (4) can be easily im-
plemented for irregular surface meshes. Let M =
fVi;Tg be a triangular mesh on D , where Vi = ui =
(u1i;u2i) is a discrete sampling on D and T is a trian-
gulation defining vertex connectivity. Then eq. (4) is
approximated by the weighted sum:

wk(ui) =
1

å(detg) j
å

u j2Ni

(detg) jwk(uj) =

=
1

å j ai j
å

u j2Ni

ai jw(uj) (5)

for Ni the 1-ring of each vertex in the discrete mesh,
ui, and (detg) j the metric determinant evaluated at

uj. It follows that solutions to the Laplacian are fast
to compute in the form of a linear system:

Awk = b (6)

The matrix A codifies the weighted average given by
(5) and b is a vector that contains the boundary con-
ditions. In case that we have the identity metric, i.e.
(detg)i = 1 8i, the matrix A is simply the adjacency
matrix of the triangulation and the map j = (w1;w2)
defines a mesh uniformly distributed inside D , pro-
vided that the adjacency is constant.

Texture interpolation can be easily implemented
using the solutions to (6) as follows. Given two dif-
ferent meshes, M1, M2, and their texture images, I1,
I2, their morphing sequence is obtained by interpolat-
ing vertex positions, as well as, their texture values.

Intermediate vertex positions, Mt = fVt ;Tg, can
be directly obtained by a linear interpolation:

Vt = tV1 +(1� t)V2

for the sequence parameter t 2 [0;1]. In order to inter-
polate intensity values for all pixels between two dif-
ferent texture images, I1, I2, we should deform images
to obtain two warped versions, I�1 , I�2 , such that face
structures are matched. In the context of Laplacian
coordinate changes, this can be achieved by trans-
forming mesh vertices, M1, M2, to common unitary
coordinates in D that take equal values for points be-
longing to the same face structure. Such a transforma-
tion is computed using the solution to the Laplacian
with identity metric.

Intermediate texture values, are computed by eval-
uating formula (3) at the intermediate vertex positions
Vt using the composition with the coordinate map, ft ,
that maps Mt to the unitary coordinates:

It := I�t �ft = I�t (ft) =

= (tI1(f
�1
1 (ft))+(1� t)I2(f

�1
2 (ft))

for t 2 [0;1].
Figure 1 illustrates the whole strategy for texture

morphing using interpolation in Laplacian unitary co-
ordinates. We show meshes (in blue) and the corre-
sponding texture images for: the original space (left
column), the Laplacian unitary domain (central col-
umn) and the final textured meshes using the interpo-
lated images in the Laplacian unitary domain (right
column). Top row shows the source data, M1; I1, bot-
tom row the target data, M2; I2, and the central row an
intermediate step of the deformation between source
and target. In the original domain, vertex positions
can be interpolated from source to target as they are
from corresponding points on same face structures.
However, texture values can not be directly interpo-
lated since images are not registered. After transform-
ing to Laplacian unitary coordinates, vertex positions
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Figure 1: Mesh morphing and texture morphing through Unitary Metric parametrization.

are equal for all meshes and, thus, the transformed im-
ages are registered and can be interpolated to create
the intermediate textures. In the right column, such
textures are rendered on the interpolated meshes.

3 EXPERIMENTS

The goal of our experiments is to illustrate the poten-
tial of Laplacian unitary coordinates for the morphing
of textures coming performing different facial expres-
sions. In order to do so, the model described in Sec-
tion 2.1 has been applied to deform 2D frontal face
meshes and textures selected from the BosphorusDB
(Savran and Sankur, 2008) public database1.

We have considered 3 different kinds of morphing
transitions between: different expressions from the
same person, different persons performing the same
expression and different persons performing different
expressions. The first transition checks the compati-
bility/accuracy for expression morphing. The second
transition checks identity morphing accuracy. The
last one is the more general and complex case and
illustrates the ghost effect (Wu and Liu, 2012).

1available at http://bosphorus.ee.boun.edu.tr/
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Figure 2: BosphorusDB Examples in the cartesian, (a), (b),
and unitary Laplacian, (c),(d), domains.

Faces have been sampled using a sparse set of 36
landmarks that define the main facial structures (eyes,
lips, nose and face boundary). Figure 2 shows two
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Figure 3: Morphing of different expressions of the same subject.
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Figure 4: Morphing of the same expression from different subjects.
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Figure 5: Morphing of different expressions from different subjects.

examples of the BosphorusDB faces from two differ-
ent subjects, one expressing surprise (fig.2(a)) and the
other one with a neutral expression (fig.2(b)). The tri-
angulation defined by the sparse set of selected land-
marks (numbered from 1 to 36) is shown in blue lines.

Such landmarks have been used to compute the uni-
tary Laplacian coordinates.

Bottom images in fig.2 show the transformation
of texture coordinates and image to the unitary Lapla-
cian domain computed over the mesh of landmarks.
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We observe that texture coordinates (blue lines) co-
incide for, both, expressions and subjects. Thus, in-
dividuals and expressions are registered in these new
coordinates. Since, by definition, such coordinate are
a diffeomorphism (i.e. infinitely differentiable), reg-
istration in the unitary domain guarantees an implicit
registration in the image domain through the inverse
change. This allows the morphing between textures
from different expressions and subjects.

Figure 3 shows the texture deformation of two
different expressions (sadness and happiness) of the
same person, figure 4 the deformation of the same ex-
pression (anger) for two different persons and figure
5 the deformation between different identities and ex-
pressions. For all cases, deformations in the carte-
sian image domain are shown in first rows, while
the corresponding deformations in the unitary Lapla-
cian domain are shown in second rows. Each column
corresponds to the deformation at different times,
t = 0;0:1;0:3;0:5;0:7;1, with the original textures at
t = 0 and t = 1. The implicit registration of texture co-
ordinates achieved in the unitary Laplacian domain al-
lows smooth interpolation of texture color values, re-
gardless of the expression and subject identity. Origi-
nal expressions and identities are recovered by the in-
verse mapping from the unitary to the cartesian image
domain. Since Laplacian coordinate changes are in-
finitely differentiable, texture deformation is smooth
in both, unitary and cartesian image domains.

4 CONCLUSIONS

Solutions to the Laplacian constitute a unique tool
for defining smooth coordinate changes that could put
into correspondence different meshes. Such an elastic
registration, could be the final stage in the synthesis
of facial expressions including their texture. In or-
der to get realistic expressions, the Laplacian system
weights should be tuned according to the geometric
deformation that the surface undergoes, so that coor-
dinate changes solve the Laplacian in a manifold.

In this paper, we have presented a first study on
the properties of the Laplacian in manifolds for under-
standing the deformation that the coordinate change
induces. We have shown the potential of such solu-
tions for expression synthesis by presenting a user-
friendly texture morphing and a texture expression
synthesis from a sketch. The promising results en-
courage further research on the use of Laplacian in
manifolds for affective avatars synthesis. First, the
role of the Dirichlet conditions will be investigated
to actually register anatomies without mesh folding.
Such registration will be used to get a model of face

identity and expression for the synthesis of realis-
tic avatars. Simultaneously, temporal models for and
4D data (3D geometry+time) will be used to build a
model of facial expression deformations to animate
static face meshes or to synthesize realistic avatars.
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