
A Top-down Feature Mining Framework for Software Product Line

Yutian Tang and Hareton Leung
Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China

Keywords: Variability, Feature Mining, Concept Location, Top-down Framework, Software Product Line.

Abstract: Software product line engineering is regarded as a promising approach to generate tailored software products
by referencing shared software artefacts. However, converting software legacy into a product line is extremely
difficult, given the complexity, risk of the task and insufficient tool support. To cope with this, in this paper,
we proposed a top-down feature-mining framework to facilitate developers extracting code fragments for
features concerned. Our work aims to fulfill the following targets: (1) identify features at a fine granularity,
(2) locate code fragments for concerned feature hierarchically and consistently, and (3) combine program
analysis techniques and feature location strategies to improve mining performance. From our preliminary case
studies, the top-down framework can effectively locate features and performs as good as Christians approach
and performs better than the topology feature location approach.

1 INTRODUCTION

Software product line engineering (SPLE), a promis-
ing approach in generating software product at a low
cost, is broadly applied and adopted in software pro-
duction nowadays (Kang et al., 2009). SPLE provides
software products in a large-scale with systematically
reuse of software assets, including documents, source
code, design and so forth (Chen et al., 2009). More-
over, SPLE enables tailoring software products to sat-
isfy various customers by providing products with
feature diversity.

Features, designed and declared in the specifi-
cation, are used to represent functions and charac-
teristics of the system. Conceptually, features can
be classified into two categories including common
and distinguished features. Specifically, common
features are implemented in all products within the
software product line (SPL). On the contrary, distin-
guished features denote variants in SPLE, which are
employed to generate tailored software products for
customers (Benavides et al., 2010). For instance, a
banking product line provides common features in-
cluding creating accounts, deposit, and withdrawal
from accounts as well as some distinguished features
such as multi-language support and exchange calcu-
lation.

Despite SPL supports customized software prod-
ucts at a low cost and optimized time to market,
the adoption rate of SPL has been low, since sup-

pliers have to take the risk of converting software
legacy into SPL. Meanwhile, the complexity and the
cost of this task will also prevent suppliers to adopt
SPL as their preferred approach to generate soft-
ware products. Software product line could be built
based on software legacy by extracting and refactor-
ing features, which could save the cost at the prelimi-
nary stage, at which variants are designed and imple-
mented. Migrating software legacy to SPL normally
includes the following procedures: extracting features
from legacy; transferring extracted features into a fea-
ture model; and building product line architecture un-
der the feature guide (Laguna and Crespo, 2013).

To partially resolve the issues unsolved in migrat-
ing legacy to product line and enhance the perfor-
mance in feature mining, in this paper, our study will:
(1) provide a strategy to mine source fragments from
software legacy in fine granularity; and (2) reduce
the cost and risk when migrating software legacy to
SPL and assist developer to locate specific feature ef-
ficiently.

The rest of this paper is organized as follows: in
Section II, our top-down feature mining framework
along with supporting recommendation strategies will
be introduced. Case study and experimental results
will be presented in Section III. Section IV reviews
the techniques related to feature mining. Conclusion
will be given in the last section.
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2 PROPOSED FRAMEWORK
AND METHODOLOGY

Our vision is to recommend code fragments to de-
velopers to support learning and analyzing the code
legacy. As described in (Kastner et al., 2014), the
skeleton of a feature mining process should include
following steps: (1) a domain expert describes the
features and internal relationship, (2) automatically
or manually select the initial seeds to start feature
searching, (3) iteratively expand identified code to
include more code fragments that have not been as-
signed to features temporally, and (4) developers
could extract and rewrite the code segments as vari-
ants. Unfortunately, it is unrealistic to provide a fully
automatic approach to extract all code fragments at-
tached to the feature concerned given the complexity
and risk of the task. To follow the general procedure
of feature mining, in the coming subsections, we will
introduce our top-down framework by covering the
underlying model, extraction of relationship between
programming elements, recommendation mechanism
and concrete process of our top-down approach.

2.1 Fundamental Elements

The fundamental elements of a program are program-
ming elements and relationships among them. Tech-
nically, a program can be represented by a standard
graph with nodes to represent programming elements
and links to depict relations. Specifically, program-
ming elements (nodes), in fine granularity, could be
fields, methods, statements, expressions, and local
variables. Meanwhile, relations between program-
ming elements describe the structure of the program
and dependencies between elements as well. Par-
ticularly, in Java, we could extract programming el-
ements using Java Development Tookit (JDT) API,
which is also the kernel compilation mechanism in
Eclipse. Relationships between programming ele-
ments are normally embedded in keywords defined in
programing language under grammar rule and could
be employed to depict the structural information of
the code base. Specifically, in this paper, we adopt
AST (Abstract Syntax Tree) nodes to represent pro-
gramming elements. AST is an abstract representa-
tion of the program by categorizing programming el-
ements by types, for instance, IfStatement, ForState-
ment, and VariableDeclarationExpression.

2.2 Relation Extraction

Relations between programming elements need to be
normalized to be displayed directly and quantitatively.

All relations can be classified into control flow and
data flow. In this paper, we extract fundamental pro-
gramming elements by JDT and transfer keywords
under grammar rules of specific programming lan-
guages into the control flow and data flow respec-
tively. Specifically, we divide the data flow relation
into two subsets by granularity: statement level and
function level. Statement level depicts how data are
transferred within a method. By contrary, function
level data flow, also known as call flow, provides
method invocation information and guides execution
path from one method to another.

2.2.1 Control Flow

Control flow relation is normally represented by a
control flow graph, which describes how the program
is constructed and organized. We adopt the con-
trol flow model described in (Sderberg et al., 2013),
which constructs the control flow graph based on ab-
stract syntax tree (AST) of a program. According to
(Sderberg et al., 2013), control flow nodes could be
classified into three types, including non-directing,
internal flow, and abruptly completing, according
to different types of execution control. Concretely,
non-directing node decides the next node by the con-
text; varAccess node, which represents variable ac-
cess, is an instance of this type. In practice, a state-
ment node could contain various sub AST nodes.
For instance, in ForStmt (for statement), ForInit, Ex-
pression, ForUpdate and forbody statements are em-
bedded in ForStmt. Internal flow node directs the
control flow inside the node and traverses all AST
nodes within it. For the ForStmt case, the control
flow will go through ForInit, Expression, forbody, and
ForUpdate until the exit criteria is met. In addition,
WhileStmt and IfStmt are also examples in this cate-
gory. Abruptly completing node allows the program
goes to a specific location, which is outside the scope
of current block; examples include Break and Return.

2.2.2 Data Flow (Statement Level)

Data flow depicts how data are transferred, accessed
and stored inside the program and is mainly built on
the control flow graph. Technically, there are two
types of data flow analysis (Sderberg et al., 2013):
liveness analysis, which detects the state of variable
at a certain point within the program, and reach-
ing definition analysis, which identifies the destina-
tion that a definition can reach. Particularly, liveness
checking is applied for dead assignment checking and
reaching definition analysis mainly detects use-define
and define-use chain. To simplify this analysis, we
only detect and build use-define and define-use chains
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(both intra-procedural and inter-procedural); for ex-
ample, we build the connection between variable ac-
cess and variable declaration, rather than checking
for any dead assignment. This aligns with our main
goal of locating feature code relate to a certain feature
rather than finding potential program defect, which is
the key application of dead assignment checking.

2.2.3 Call Flow (Function Level)

Call graph (Rountev et al., 2004) supports analysis of
calling relationships between methods, and displays
the potential behavior of the program. In call graph
analysis, two types of graphs (static and dynamic),
could be applied. Static call graph analysis merely
relies on structural information represented by pro-
gram. On the other hand, dynamic analysis also takes
runtime information into account. In this paper, we
adopt static call graph to detect method invocation
relationships. In static analysis, we extract follow-
ing three relationships: (1) method mi calls method
mj;(2) call site ik in method mi invokes method mj;
and (3) call site ik in method mi invokes method mj
on an instanceof X, where X is the identifier of class.
By extracting call relations mentioned above,the call
relation at fine granularity could be derived.

2.3 Recommendation Mechanism

To support feature-mining, we provide a set of recom-
mendation strategies, which will assist locating fea-
tures precisely. Concretely, for a programming ele-
ment, there is a neighbor-set, which contains all pro-
gramming elements, which may have control rela-
tion and data (reference) relation. Nevertheless, the
connections between a programming element and its
neighbors could be strong and weak, which means
this element and its neighbor elements could and
could not belong to the same feature. To rank all pro-
gramming elements inside the neighbor-set, we use
text comparison, distance-based analysis, centrality-
based analysis, and topology approach to determine
their relevancy.

2.3.1 Text Comparison

Features could be extracted from textural aspect when
treating a source code file as a set of tokens. Thereby,
similarity between two programming elements can be
measured from the textural aspect. Using text com-
parison enables examination of potential connection
between the declaration of method, fields, variable,
and class. Text comparison is not restricted to dif-
ferent programming elements, as it can identify the
importance of various token and feature. Particularly,

for a feature, we identify a list of tokens (feature de-
scriptor) serving as a descriptor of this feature. When
a new code fragment is classified into this feature, the
featured tokens embedded in it will be added to this
feature list automatically. Within this feature list, all
tokens are ranked based on a weight value according
to Christians approach (Kastner et al., 2014);that is,a
token is ranked by counting relative occurrences of
substring in the current feature list after subtracting
occurrences of list outside this feature. That is:

scoreT R(e;extent( f );exclusion( f )) = å
t2tokenized(e)

(F(extent( f ); t)�F(exclusion( f ); t)) �r(t)
(1)

where extent(f ) represents the feature token list under
consideration, exclusion(f ) contains all programming
elements currently not annotated to feature f , e de-
notes a programming element, and function F gives
the frequency of token t in the feature list.

2.3.2 Distance-based Analysis

In a broader sense, clustering can be used for feature
mining, when the goal is to explore and extract all
code fragments attached to the feature concerned.
Specifically, each cluster could be adapted to rep-
resent a unique feature and all nodes within the
cluster are programming elements belonging to this
feature. As mentioned previously, a program could
be interpreted as a graph with programming elements
(nodes) and relationships (links). In graph clustering,
distance-based clustering algorithms are widely
adopted, of which K-medoid (Dhillon et al., 2005)
is a representative one. For feature mining purpose,
we modified the original algorithm by considering
following scenarios to classify un-annotated program-
ming elements: (1) for a single programming element
e, if it merely connects to an annotated feature cluster
c1, we compute its distance by: scoreDA(e;c1) =
åt2neighbors(c1) D(e; t)=neighbors(e),to denotes the
possibility that it belongs to a feature cluster and
t represents e’s neighbor node inside the cluster
c1. For example, in Figure 1, node 11 is linked
with node 12 only.(2) If a programming element is
connected to various elements, which belongs to
different clusters as shown in Figure 2, then for any
two neighboring elements, we compute the distance
as: scoreDA(e;c1;c2) = (åt12neighbors(c1) D(e; t1) �
åt22neighbors(c2) D(e; t2))=neighbors(e), where e is
the programming element currently under consider-
ation, and åti2neighbors(ci) D(e; ti) represents the total
distance between element e and all its neigbhors in
cluster i. Therefore,there is a negative correlation
between scoreDA and the rank of the programming
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element. To simplify, we adjust the formula to:

scoreDA(e;extent( f );exclusion( f )) =

( å
t12neighbors(exclusion( f ))

D(e; t1)

� å
t22neighbors(extent( f ))

D(e; t2))=

max(jneighbors(extent( f ))j ; jneighbors(exclusion( f ))j)
(2)

where extent(f ) represents proramming elements
inside the feature f , and exclusion(f ) shows
elements currently not annotated to feature
f .We adjust the original formula by changing
the order of åt12neighbors(exclusion(f )) D(e; t1) and
åt22neighbors(extent(f )) D(e; t2) to guarantee the simi-
larity is positively correlated with scoreDA, which
means the higher is the score, the larger the distance
to exclusion of feaeture f . That is, a higher score
indicates that a higher possibility of recommending
this programming element to the feature f .

Figure 1: Example of single connection.

2.3.3 Centrality-based Analysis

Girvan-Newman algorithm (Newman and Girvan,
2004) is a graph-based community detection ap-
proach, which implements graph partitioning ac-
cording to betweenness centrality. The concept
betweenness centrality describes a property of the
network as well as the shortest paths between
nodes, and it is normally defined as: for edge
e 2 E;B(e) = åu;v2V

ge(u;v)
g(u;v) , where g(u;v) represents

the number of paths from u to v and ge(u;v) repre-
sents the number of paths from u to v via e. Their
algorithm ranks all edges by betweennes and removes
the highest one iteratively. Girvan-Newman has been
shown to perform well for graph clustering in practice
(Figueiredo et al., 2008). To fit our particular need in
software product line feature mining, we compute pri-
ority based on the extent and exclusion of the feature.

Figure 2: Example of multiple connections.

scoreCA(e;extent( f );exclusion( f )) =

å
i2extent( f ); j2exclusion( f );v2V

ge(i;v)�ge( j;v)
ge(i;v)+ge( j;v)

(3)

2.3.4 Topology Analysis

Topology approach provides recommendations by
referencing the topology structure of a graph. Here,
we adopt Robillards topology approach (Robillard,
2008) to identify interested programming elements.
To rank all potential programming elements, it em-
ploys specificity and reinforcement metrics. Speci-
ficity describes the case that if one programming el-
ement only refers to a single element, it will rank
higher than others that refer to many elements. In
contrast to specificity, the underlying intuition in re-
inforcement is that an element, which is referred by
many annotated elements, should be ranked higher.
Unfortunately, the original algorithm described in
(Robillard, 2008) is merely designed for method and
field instead of programming elements at the fine
granularity including statements, local variable and so
forth. Therefore, we adjusted the original algorithm
to the product-line settings by applying it to the fine
granularity programming elements. To rank the prior-
ity of a programming element among all candidates,
we employed the following formula:

scoreTA(e; f ) = topology(e;extent( f ))�
topology(e;exclusion( f ))

(4)

where topology is defined as

topology(e;X) = 1+j f orward(e)
T

X j
j f orward(e) j � jbackward(e)

T
X j

jbackward(e) j
(5)

Forward represents a set of programming elements,
which are the target nodes of relation links.By con-
trast, backward refers to a group of elements, which
are the starting points of relation links. For in-
stance, in Figure 3, the forward set of node d is
forwardd = fa;b;eg and the backward set of node b
is backwardb = fdg.
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Figure 3: Example of backward and forward relation in a
graph.

2.3.5 Integrating All Approaches

To provide an overall recommendation strategy, we
adopt Robillards (Robillard, 2008) operator to merge
all recommendation approaches mentioned above. In
this approach, the formula x] y = x+ y� x � y is uti-
lized to combine two priority scores x and y to rank
the potential elements. Specifically, our integrated
strategy will consider all aspects and methods dis-
cussed above using the score� = scoreT R] scoreDA]
scoreCA] scoreTA.

2.4 Top-down Framework

In previous sections, we presented the strategy to ex-
tract potentially related programming elements for a
give programming element and four approaches to
rank all potential programming elements from various
aspects. Here potential programming elements mean
a set of programming elements, which connect with a
give element under a certain relation, which could be
data (call) or control. Next, we will introduce a top-
down framework by presenting seeds selection and
the key steps of our framework respectively. Our pro-
cess is named top-down because it locates the feature
from coarse granularity to fine granularity. That is,
firstly it identifies the class and method, which may
be related to the feature. Then, it locates the specific
statements inside the method.
Seeds Selection. To launch the top-down framework,
seeds should be determined by developers or domain
experts initially. Although they may not be familiar
with the whole implementation, developers can nev-
ertheless propose some start up points. Specifically,
in our method, all initial seed recommended are meth-
ods, which are MethodDeclaration nodes in java AST.
Top-down Process. Our framework first locates the
class and method that may be related to feature. Then,
it looks inside the method and inspects associated
code segments for the feature concerned. The top-
down feature mining process contains four steps as
illustrated in Figure 4:
1 Call relation, data flow, and control relation; 2
Data and control relation (Re.Stmts) and call relation
(Re.Method); 3 Replace; 4 Extract and rewrite.

Figure 4: Top-down recommendation procedure.

� STEP1. Initially, a domain expert or developer
will be required to select the seed (a single or a
set of methods) for feature concerned to launch
the mining process. This procedure is essential
and the seed should be carefully chosen to ensure
that it could be applied to represent the feature;

� STEP2. If it is the first iteration, the start-up
method(s) should be the seed(s) selected by devel-
opers or domain experts. The start-up method(s)
serves as input to the recommendation system,
which will return two groups of programming el-
ements. The first group includes recommended
methods and the second group programming ele-
ments within the start-up method(s). These pro-
gramming elements are considered to be part of
code that implements the feature. In this way,
the goal of fine granularity mining is achieved,
since statement-level programming elements are
inspected to be contained in the feature con-
cerned;

� STEP3. The returns of STEP2 are recom-
mended method and statements based on the start-
up method. If the returned method is not null,
it will be redirect to STEP2 and serve as the
start-up method. For instance, first we select
method BankAccount as the start-up method in
STEP2 and the recommendation system provides
the method getBankName as result. Then, in
STEP3, the method getBankName will turn back
to STEP2 and serve as the start-up method;

� STEP4. Eventually, code fragments related to the
feature concerned will be extracted.

Next, we will demonstrate the recommendation
mechanism using the example shown in Figure 5:

� To extract code fragments related to feature lock-
ing, developers first annotate the method lock as
a seed. After that, the call graph and control
chain graph are employed to detect internal and
external relations of this method. That is, method
push, pop and class lock are taken into further
consideration using the recommendation mecha-
nism (STEP 1).

� Next, the control and data flow are utilized to de-
tect reference and potential branches, which may
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jump to code fragments that belong to other fea-
tures. For instance, assuming that feature Lock
is the feature cared; the developer/domain expert
might first pinpoint method lock in class stack.
Moving on, methods which invoke lock (push and
pop) or invoked by lock (acquire) will be recom-
mended by the framework as a result of STEP 2.
Method push, pop and acquire will serve as input
of STEP 3, and then method unlock will be sug-
gested by our system.

Figure 5: Stack example shows feature locking (related
code are all highlighted).

Stopping Criteria. We next introduce the stopping
criteria of our top-down framework, which defines the
condition that the algorithm for a single programming
element (STEP 1 and 2 in Figure 4) will halt. When
one of following criteria is met, the recommendation
for current programming element will stop:

� All (data or control) neighbors of the current pro-
gramming element are annotated by other fea-
tures: when all data and control neighbors of
the current programming element are annotated to
some features, the mining procedure for this spe-
cific programming element will stop.

� All neighbors of the current programming ele-
ments are computed by using the recommenda-
tion system. A threshold is set to select program-
ming elements from all potential pools. That is,
if and only if the score computed is greater than
the threshold, then it will be annotated to this fea-
ture. Otherwise, it will be un-annotated and extra
analysis is done to decide whether it should be an-
notated by other features.

When there is no fresh programming element rec-
ommended by the top-down framework, the min-
ing process for current feature will stop. Top-
down framework will consider following attributes of
product line engineering when mining feature from
legacy:

� Consistent Feature Mining. To resolve the spe-
cific need in product line context, if a feature is
extracted and all code fragment related to this fea-
ture should be explored and located as well, since
in further step of product line constructing, vari-
ants will be compiled and constructed to imple-
ment product line variability. Top-down frame-
work tries to inspect relative code segment itera-
tively (in STEP 2 and 3) to fulfill the consistent
mining need.

� Binary Mapping. For a specific programming el-
ement at fine granularity (could be a statement or a
variable), it should be classified to a feature. That
is, the relation between a feature and all code seg-
ments implemented it, is a belong-to relation. Bi-
nary mapping means there are two possible cases
to denote the relation between a feature and a
programming element, which are include and ex-
clude. To deal with this, we proposed several ap-
proaches to depict the closeness between a feature
and a programming element, with the computed
value supports the binary decision as described in
section 2.

3 EVALUATIONS

3.1 Case Study

To reduce bias and for comparison purpose, we se-
lect practical products that have been widely used
for our study. We select following systems includ-
ing Prevayler, MobileMedia, and Sudoku. To exclude
the bias in selecting features, all main features within
these systems are selected. In this paper, we concen-
trate on feature mining, and detecting feature interac-
tion is beyond the scope of this paper. Therefore, all
features are equally treated.
Prevayler. Prevalyer is an open source object persis-
tence library for Java. It is a Prevalent System design
pattern for keeping live in memory and transaction
during system recovery. This project is well inves-
tigated in (Kastner et al., 2014; Valente et al., 2012)
. We adopted the same Prevayler version1researched
by de Oliveira at the University of Minas Gerais, with
five features, including Censor, Gzip, Monitor, Repli-
cation, and Snapshot.
MobileMedia. MobileMedia is a medium size prod-
uct line originally designed by University of Lances-
ter to provide various operations including manipu-
late photo, music and video on mobile device on Java

1See http://spl2go.cs.ovgu.de/projects/35.
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ME platform. Specifically, it offers six features in-
cluding Photo, Controller, Count Views, Persistence,
Favorites, and Exception Handling. MobileMedia2 is
a mature product line that has been analyzed and in-
vestigated by many studies (Figueiredo et al., 2008).
Sudoku. Sudoku is a simple java puzzle game de-
signed by University of Passau, containing 1975 lines
of code within 26 files. It includes five features: Vari-
able Size, Generator, Undo, Solver, and States. Con-
sidering the structure described in (Apel et al., 2009),
this product is designed with a composition-based ap-
proach.

3.2 Quantitative Evaluation

To assess our framework for feature mining from soft-
ware legacy, we implement a tool named JFeTkit
(Java Feature Mining Tookit) to extract featured code
from the software legacy. JFeTkit is a compound sys-
tem, which uses several existing software analysis li-
braries, including BCEL (Byte Code Engineering Li-
brary), Crystal3 analysis framework and JDT (Java
Development Tookit). JFeTkit collects the informa-
tion generated using these third-party APIs and anno-
tates software code legacy using our framework. To
start, the recommendation system provides a single
programming element each time. When the algorithm
stops, a set of programming elements are annotated to
the features concerned. Next, code fragments are ex-
tracted and rewritten in terms of feature.

To evaluate the performance of our recommenda-
tion mechanism quantitatively, metrics recall and pre-
cision are adopted. Recall is the number of correct re-
sults over the number of total results returned. That is,
the percentage of feature code detected and annotated
by the algorithm comparing to all code within this fea-
ture. Precision describes the number of correct rec-
ommendations comparing to all inspected code. Here,
we adopted the same quantitative functions as defined
in (Kastner et al., 2014) and the metrics are calculated
based on LOC (line of code):

Precision =
Correct recommendation

All code inspection when stop
;

Recall =
Lines o f code annotated when stop
Lines o f code annotated in original

(6)

3.3 Mining Result

Table 1 gives the line of recommended code for each

2Version 6, in 2009 and the feature name used in pre-
sented in (Figueiredo et al., 2008).

3Crystal analysis framework: https://code.google.com/
p/crystalsaf/.

feature, precision and recall results along with the
basic information for studied systems. For all three
systems, our framework can reach a recall of 95%
on average along with a precision of 44%. Recall
denotes the degree at which our framework can ex-
tract the source code for specific feature concerned.
The recall results indicate our framework could de-
tect and extract almost the entire code fragment for
the feature concerned. That is, for a single feature, the
method could extract 95% of all programming seg-
ments, which should be annotated to this feature. Ac-
cording to the precision result, unfortunately, the low
score means our framework sometimes provides some
unnecessary code segments for developers. However,
by following the annotated code fragments, devel-
opers will have a general understanding and insight
into the code legacy instead of searching repository
for code segments that implement a certain feature.
Thereby, developers could find most code fragments
for the feature concerned, although additional effort
is required to improve the precision and extract the
complete code fragments.

We compared the performance of our top-down
framework with Christians semiautomatic variability
mining approach(Kastner et al., 2014) and the topol-
ogy approach as shown in Figure 6 and 7. Here,
the values on horizontal axis represent ten features in
comparison. The underlying reasons to choose Chris-
tians variability mining approach for comparison are
follows: (1) both approaches are designed for soft-
ware product line use instead of traditional software
systems, since both consider fine granularity instead
of coarse level. Differently, Christians approach can
be used to compare the similarity of fine level pro-
gramming elements using strategy pool, which con-
tains text comparison, type checking, and topology
approach. (2) Secondly, we adopted the same per-
formance assessment metrics of recall and precision,
also the same evaluation procedure as described in
3.2. We found that the top-down framework per-
forms as well as the semiautomatic variability min-
ing approach and shows strength comparing to topol-
ogy approach. As demonstrated in Figure.6 and 7,
our feature mining approach performs almost as good
as Christians approach with small improvement in re-
call.

Additionally, we compare our feature-mining
framework with the topology approach, which is a
traditional feature location strategy. Note that the
topology approach is one of recommendation strate-
gies used in our framework. It was originally de-
signed for coarse granularity, which could only locate
methods and fields instead of elements at the state-
ment level. However, it has not been adapted for fea-
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ture mining in software product line. We compare
our merged recommendation system with topology
for the following reasons: (1) among all approaches
within our framework, only the topology approach is
designed for feature location, and (2) As, the topology
approach is a sub-method embed in our approach, it
is natural to provide comparison with this approach.
Although the original topology method is not fully
adapt to product-line context, we adjust it to serve the
fine granularity need. Consequently, the topology ap-
proach could reach a recall of 79% and precision of
37% on average as shown in Figure. 6 and 7. There-
fore, our approach performs better than the topology
approach in both recall and precision.

We found following scenarios that may influence
the performance of our approach:

� Seed Selection. The performance of our frame-
work is highly influenced by the selection of ini-
tial seeds. A single seed sometimes might not
be sufficient to represent a feature, and the seed
selected may not be strongly connected to a par-
ticular feature, that is, the seed may also contain
code segments belonging to other features. These
might be the reasons that lead to the bad perfor-
mance of Sample 7 shown in Figure 6 and 7.

� Paralleled Feature Selection. Comparing to ex-
tracting featured code one after one, if domain ex-
perts or developers select multiple seeds for each
feature concerned, the resulting precision will be
higher, since interaction among features will be
considered together. For instance, considering a
feature F in a Switch-Case statement, if there is
one sub-case branch annotated to feature T, then
local variables only used in this sub-branch should
be annotated to T.

Figure 6: Recall performance comparison.

Figure 7: Precision performance comparison.

In any case, the top-down approach shows advan-
tages in efficiency, since, in essence, it is a search-
ing approach. To improve its performance, follow-
ing steps could be adopted: (1) select multiple seeds
instead of a single one, and (2) let multiple features
launched simultaneously to enhance the feature inter-
action.

Table 1: Feature Mining Result.

Project Feature LOC Recall Prec.
MobileM. Persist. 748 100% 42%

Favorite 88 100% 44%
CountV. 96 98% 26%
Control. 423 100% 68%
Photo 185 91% 49%

Exce. Hand. 434 99% 61%
Sudoku Vari.Size 44 100% 32%

Generator 172 100% 37%
Solver 445 99% 61%
Undo 39 100% 25%
State 171 96% 47%

Prevalyer Censor 105 100% 41%
Gzip 161 71% 76%

Monitor 240 100% 53%
Replica. 1487 99% 63%
Snapshot 263 77% 39%

3.4 Threats to Validity

To assess the experimental setting and procedure, and
ensure that experiments have been designed properly,
we consider the procedure to avoid bias introduced by
inappropriate settings. Specifically, three key aspects
of threats, including construct, internal and external
validity, will be discussed in this section. Construct
validity is the degree to which the variables measure
the concept purport to measure. Internal validity is
the degree, which reflects a causal relation between
the presumed process and expected result. External
validity is the degree to which experimental results
can be generalized to a larger population. Construct
validity and internal validity are highly dependent on
the projects selected for the case study. We studied
the selected software projects carefully to guarantee
all chosen cases are mature and suitable, which means
that features can be clearly defined as investigated in
previous research. Furthermore, the recall and preci-
sion metrics are established upon LOC to count code
lines instead of function points to measure the perfor-
mance of our framework in a fine granularity. Due
to the tool we use, there may be some inaccuracy in
the metrics result. Another issue of internal validity
is that sometimes a single line shared or annotated by
more than one feature might rise the risk of introduc-
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ing interference. Notice that this case will only oc-
cur when launch the framework to locate feature se-
quentially, since when there are more than one feature
inspecting the same programming element, the close-
ness between features and the programming element
will be computed to decide belongings. For external
validity, since the object of experiments is to verify
and test the performance of our framework, the con-
clusions drawn are simply based on the cases selected
and not attempt to extend to all systems. Although the
scope of applying our conclusion is limited, the selec-
tion of case projects is reasonable, since they are from
research and industrial settings.

4 RELATED WORK

Feature mining is highly associated with feature lo-
cation, reengineering, feature identification and other
relevant fields(Laguna and Crespo, 2013). The pri-
mary task of feature mining is to map features to the
related source code, which is often scattered all over
the system. Typically, techniques involved mainly in-
clude static, dynamic and textural analysis. Most ap-
proaches proposed are targeting conventional systems
instead of product lines. Whereas these approaches
are not principally designed for the SPL purpose, en-
hancement to these techniques could be applied to
meet the specific circumstances in SPL. Due to space
restriction, this section briefly introduces some repre-
sentative approaches instead of providing a compre-
hensive list of relative work. Comprehensive reviews
can be found in (Dit et al., 2013; Galster et al., 2013;
Laguna and Crespo, 2013).

4.1 Static Analysis

In static analysis, the underlying structural relations
are extracted including structural control or data flow
without requiring execution information. Generally,
static analysis concentrates on mining program ele-
ments related to the initial set, which is chosen by de-
velopers, based on a dependency graph and a series
of software artifacts manually or automatically(Dit
et al., 2013). Over the passing years, a vast amount
of research work has been conducted in static analy-
sis from various aspects. Specifically, Chen provided
an static analysis approach based on Abstract System
Dependence Graph (ASDG) to locate the code frag-
ments(Chen et al., 2009). Benefit from Robillard and
Murphys work(Robillard and Murphy, 2007), a fea-
ture can be displayed in an abstract way, which allows
creating and saving the mappings between features
and code. Later, Robillard(Robillard, 2008) described

the topology approach to extract programming ele-
ments based on the initial set, which mainly serves
as input set to mine all relevant elements, with poten-
tial elements ranked by two different strategies named
specificity and reinforcement respectively. In addi-
tion, searching strategy is another feasible direction
in the category of static analysis. For instance, Saul et
al. presented an approach using a random walk algo-
rithm with a given starting point as input (Saul et al.,
2007).

4.2 Dynamic Analysis

On the contrary, execution information is collected for
analysis during runtime in dynamic analysis, which
is principally belonging to program comprehension.
Due to its long history, a vast amount of research
works has been conducted. Initially, dynamic anal-
ysis mainly supports debugging, testing and profiling,
since providing related source code at hand is cru-
cial for that kind of analysis. Focusing on feature
location, Wilde and Scullys work (Wilde and Scully,
1995) provides a software reconnaissance tool basi-
cally relying on dynamic information. The extension
of (Wilde and Scully, 1995) is called Dynamic Fea-
ture Traces (DFT), provided by Eisenberg (Eisenberg
and De Volder, ). This approach enables test scenar-
ios used to examine the feature to collect execution
information (Cornelissen et al., 2009). Other research
works include Wong et al.(Wong et al., 2000), Anto-
niol et al.(Antoniol and Gueheneuc, 2006) and Poshy-
vanyk et al.(Poshyvanyk et al., 2007).

4.3 Textual Analysis

Some useful information embedded in textual infor-
mation may imply the related feature, since identifiers
and comments are highly related to the feature that
code fragments are attached. This process includes
information retrieval (Cleary et al., 2009; Poshyvanyk
et al., 2007) and natural language processing (Hill
et al., ). Besides that, some code engines are em-
ployed to search for code. For example, LSI (Mar, ),
SNIFF(McMillan et al., ), and FLAT 3 (Savage et al.,
2010) are also well investigated to provide competi-
tive mining results.

4.4 Tool

In this section, tools which support feature-mining
process will be presented based on the types of tech-
nique. Rather than providing a comprehensive survey,
we just list some representative tools as shown in Ta-
ble 2, where Dyn. represents dynamic and Text. de-
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Table 2: Feature location tools.

Name Type Attributes

Ripples
(Chen et al., 2009) Static

ASDG,
impact
analysis

Sude
(Warr and Robillard, 2007) Static Topology

analysis
TraceG.

(Lukoit et al., ) Dyn. Emphasize first
time call

STRADA
(Egyed et al., 2007) Dyn.

Logical
constraints to

exclude unrelated
code

GES
(Poshyvanyk et al., 2006) Text.

Unobtrusively
re-indexes search

spaces
IRiSS

(Poshyvanyk et al., 2005) Text. Sort the results
by granularity

notes textural. Detailed description can be found in
(Dit et al., 2013).

In summary, approaches presented mainly work
at the coarse granularity, which are not suitable for
extracting fine level statement for software product
line. The reason fine granularity is critical is that after
feature location, code segments should be extracted,
rewritten and organized to variants. Later, these vari-
ants will serve as basic infrastructures and compo-
nents of product line. Thereby, current approaches
should be adjusted to meet the specific need in the
software product line context. Our approach is like
a compound approach of feature location techniques;
particularly, we also apply clustering techniques to
improve feature mining. Comparing to original ap-
proaches in feature location, the top-down framework
shows advantages in the following aspects:

� It is designed for fine granularity instead of coarse
granularity for the particular circumstance in SPL,
since featured code should be extracted and refac-
tored to variants. Approaches listed in related
work are mainly designed for conventional soft-
ware instead of product line; thus they are not
very effective for feature mining work in software
product line.

� A single strategy could provide a competitive
mining result in term of feature mining, but it
might not have a comprehensive analysis on the
system. Therefore, some meaningful information,
which indicate relations among programming el-
ements and features may somewhat omitted. To
cope with this issue, top-down framework com-
bines multiple methods to provide a more precise
recommendation.

5 CONCLUSIONS

Software product line engineering has received great
attention, as it offers software products with cus-
tomized features and opportunity for reuse. To reduce
the risk, complexity and cost of adopting software
product line, feature mining helps to extract useful
features from software legacy code. In this paper, we
demonstrate a top-down feature-mining framework,
which binds feature location strategies and program
analysis techniques. In the case studies with 3 sys-
tems, we demonstrate that our top-down framework
performs well in feature location.

For future work, we will initially migrate more ex-
isting feature location strategies to our recommenda-
tion system to improve its performance. One feasible
direction is to introduce dynamic program analysis for
extracting the relationship between programming el-
ements. Furthermore, to reduce potential impact in-
troduced by incorrect seeds selection, some natural
language processing algorithms could be considered
to improve the seed selection process.
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